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THE ROTHE METHOD FOR NONLINEAR 
HYPERBOLIC PROBLEMS 
E. MARTENSEN 
Mathematinches Iustitut II, Lhiirersitdt Karlsruhe 
7500 Karlsruhe I, West Germany 

The ROTHE method or the h o r i z o n t a l method of lines, if it is app­

lied to parabolic as well as to hyperbolic evolution problems, reduces 

these problems to a sequence of elliptic p r o b l e m s . That from a former 

point of view, such an approach has appeared more natural in the case 

of parabolic than of hyperbolic problems, may serve <is an explanation 

for the considerable delay of time in studying the method for both clas­

ses of problems. So after ROTHE [11] has introduced his method in the 

early thirties of our century, numerous parabolic differential equation 

problems, linear as well as nonlinear ones, have been treated by it suc­

cessfully; the names of LADYSHENSKAJA , REKTORYS , NEC'AS , and KACTJR may 

stand here for many others (references, for instance, may be seen from 

the book of REKTORYS [10]). On the other hand, efforts for appJymq the 

ROTHE method to hyperbolic problems firstly have been started durinq 

the last decade. Results have been qiven mainly for certain linear prob­

lems of mathematical physics, so as for the wave equation [1,2,5], the 

continuity equation [3], and the MAXWELL equations [4]; recently the 

vibrating string problem with discontinuous data has been completely 

solved by the ROTHE method [6]. Further linear hyperbolic problems have 

been investigated by REKTORYS [10]. With regard to nonlinear hyperbolic 

problems, however, one is standing at the very beginning. First results 

of MUNZ [8,9] concerning the quasilinear scalar conservation equation, 

especially have shown the ROTHE method as a suitable tool for approxi­

mation of shocks and rarefaction waves. 

In the following we shall consider the CAUCHY problem for the 

BURGERS equation 

u + , + - l ( u
2 ) - 0 , (x,t)61Rx(0,°°) , (1) 

t 2 x ' ' 
where the initial values 

u( x,0) = u (x) , x e IR , (2) 

' o ' 

are assumed to be piecewise continuous with at most a finite number of 

discontinuities and existing limits for x - + » . The ROTHE method for a 

fixed chosen time step length h > 0 leads to the ordinary differential 
equation 
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u + -̂  (u2 ) ' = U Q xGlR (3) 

which for qiven u (x) , x 6 ]R, has to be solved successively accordinq 
o 

to the next time step. On the solutions u(x), x G ]R , of (3), there 

are imposed piecewise continuity with at most a finite number of dis­

continuities and existinq limits for x - + °°; furthermore, the square 

[u(x)]2 . x€IR, is asked as a piecewise continuously differentiable 

function (as a consequence of the foreqoing, for the derivative there 

may occur at most a finite number of discontinuities). Without mention­

ing in detail, the following assertions will concern to solutions of 

(3) having at least these properties. 

Theorem 1 (Behaviour at the infinity). For a solution u(x), xG E , 

of (3) it holds 

lim u(x) = lim u (x ) (4 ) 
o X-* + oo x-+°° 

Proof follows immediately from (3) in connection with the second 

L'HOSPITAL rule: 

n . . h [ u ( x ) ] 2 . . (h d r , , , , \ , . 
0 = l1™ — 2 - — = l l m \ 2 d ^ [ u ( x ) ] J = l l T U o 

X - + oo x - » ^ J X-* + °° 

( x ) - l i m u ( x ) 
X-+co 

Remark. The proof of Theorem 1 makes only use of the conservation 

property of the underlying partial differential equation (1). Thus the 

accordance of the limits (4) will be obtained analogously for other 

hyperbolic problems when they are given in conservation form. For in­

stance, this holds for the EULER equations. 

Theorem 2 (Global uniqueness). There exists at most one continuous 

solution u(x), x G ]R, of (3). 

Proof. Assuminq that there exist two different continuous solutions 

u( x ) . v ( x ) . x G E , so the continuous function w ( x ) : = u ( x ) - v ( x ) , x 6 E ; 

does not vanish everywhere. Note that because of Theorem 1 it holds 

l i m w ( x ) = l i m u ( x ) - l i m v ( x ) = 0 (5) 
X-+oo x —+°° x—+°° 

Let now x G l be a point with w(x ) 4= 0 . If w(x) has at least one zero 
o ^ o 7 

in the open interval (-°°.x ), then for continuity there exists a maxi-
o 

mum zero in this interval and we denote it by a< x ; if, however, there 
i o' ' ' 

are no zeroes in (-», x ), we put a = -«. Analoqously let b > x denote ' o ' ^ v i 0 

the minimum zero for w(x) in (x ») or stand for °°, respectively. To-

gether with (5) we get 

lim w(x) = lim w(x) = 0 . (6) 
x-*a x-b 

Observing the continuity and piecewise continuous differentiability 
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of [ u( x ) ] 2 , [ v ( x ) ] 2 , x e 1R , i t f o l l o w s from H ) and (b) by i m p r o p e r 

i n t e g r a t i o n t h a t 

Г w ( x ) d x = | { u ( x ) - v ( x ) } dx A [ u ( x ) ] 2 - A [ v ( x ) ] 2 \> dx 
d x d x • 

= - ^ [LU(X) ]
2
 - [ v(x) ] 

This is a contradiction to w ( x ) -f 0 , x f= ( a , b ) 

,b 

^|w(x)(u(x)+v(x)) 

Theorem 3 (Local unigueness ) . Let ( a , b ) := JR be an arbitrary finite 

or infinite open interval and let the above ordinary differential equa­

tion problem be formulated analogously for (a,b) instead of IR . Let 

further u ( x ) , x G ( a , b ) , be a positive continuous (nega_iY?_^2
n
lA

n
^9

u
5) 

solution of (3) which has a positive_limit for x - a (negatiye__imit 

for x - b ) . Then there does not exist another continuous solution of (3) 

with the same limit for x - a ( x - b ) . 

Proof only for the first case. Assume that there exists a contin­

uous solution v(x), xG (a,b), different from u(x), xG (a,b), but with 

the same limit for x - a . Then the difference w(x) :=u(x)-v(x),xG(a,b) 

forms a continuous function satisfying 

lim w(x) 

x—a 
0 (7) 

Next we are able to find a point x G (a,b) with properties 

w(x ) 4= 0 , u ( x ) + v ( x ) > 0 . (8) 

o
 T

 ' o o -= 

Indeed, if u(x) +
(
 v ( x ) , xG (a.b), has no zeroes, from continuity and 

lim {u(x)+v(x)} = 2 lim u(x) > 0 

x-a x-a 

it follows that u ( x ) + v ( x ) > 0 , x G (a ,b) , and so it is trivial to find 

x G(a,b) satisfying (8): if, however, u(x)+v(x), x G ( a , b ) , has a zero 
o ^ ' ' ' 

x G (a,b), so this zero immediately fulfills the second condition in 
o

 J 

(8) and the first condition follows from v(x ) =-u(x ) as 

o o 
w(x ) = u(x ) 

o o 
v ( x ) = 2 u ( x ) > 0 

Now we denote by a* < x the maximum zero for w(x) in the open interval 

(a,x ) if there exists a zero at all, otherwise we put a* = a. So in any 

case when observing (7), we get 

lim w(x) = 0 

x-a* 

Then by improper integration, it follows from (3) and (9) that 

(9) 
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[ w(x)dx = [ {u(x)-v(x)}dx = - j [" | A [ u ( x ) ]- _^L[ v(x) ]
2 j dx 

a * a * a * 

= ----w(x)(u(x)+v(x)) = - --- w ( x ) ( u ( x )+v(x )) 2 L J a *
 2 ° ° ° 

here because of (8), we have the contadiction, that the left hand side 

has the sign of w(x ) ̂  0 whilst the right hand side either has the oppo­

site sign or vanishes. 

Remark 1. Theorem 3 gives a hint how to proceed for solving the 

differential equation (3) uniquely. So if starting at some point with 

a positive or negative initial value, one has to integrate to the right 

or to the left, respectively. On the other hand, the sign of the exact 

solution analogously indicates the direction of the characteristics. 

So it turns out that local uniqueness for the ROTHE solution is assured 

by integrating into the direction of characteristics. 

Remark 2. As it can be seen from the example u ( x ) = 1 , x G 1R , the 

sign condition in Theorem 3 plays a significant role. So the solution 

u(x) = 1, x G 1R , is the only one of (3) with limit 1 for x — -<», but 

there exist an infinite number of further solutions with limit 1 for 

x - °°; indeed, with an arbitrary real constant C, such a solution u(x), 

x6 3R, may be obtained as the inverse of the monotonously decreasing 

function 

x ( u ) = - h { u + l n ( u - 1 ) } + C , u G ( 1 , °°) 

We shall make use of the foregoing theorems when discussing the 

following four examples. 

Examole 1 (MUNZ [8]). If u (x), xG 1, is the step function with 
o ' 

value 2 for negative or 1 for positive x, respectively, the exact solu­

tion u(x,t),(x,t)G3Rx[0,<»), of the evolution problem (1) and (2) is 

given as a shock wave at x =--t with value 2 left or 1 right of the 

shock, respectively. Assume that for an arbitrary time step a ROTHE 

solution exists which, for convenience, will be denoted by u (x) ,x G ]R; 
1 o 

besides the general properties mentioned above let this solution be 

monotonously nonincreasing with lower bound 1, let it have the value 2 

for xG (-»f0) , and let it be continuous for xG (0,«) . Note that for 

such solution the limits for x — + °° exist and that everything holds for 

the given initial function. The next ROTHE step u(x), x G 3R , then may 

be computed from (3) as a continuous solution with value 2 for xG (-«,0 ) ; 

for xG[0,°o) the solution follows by means of the initial condition 

u(0) = 2 in connection with the lower function u (x) and the upper 
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function 2. This especially yields 

1 < u ( x ). < u ( x ) , x G ( 0 , « ) (10) 

= o =
 4 

From the differential equation (3) toqether with i\0) it to>lK>ws that 

u'(x) < 0 , x G ( 0 , °° ) ; so u(x), x G 1R , is monotonously ru>iiiiinr,ir. m q ,md 

because of (10) , it has the lower bound 1 . Thooiem '? ,is we 1 1 .is the 

first case of Theorem 3 say that there JS no fur tine emit lnmni;; solu­

tion, so the next ROTHE step is well-defined. Finally by induction, all 

ROTHE solutions are uniquely determined. Because of Theorem 1 , f <-> r every 

ROTHE solution the limit 2 for x - -<*> or 1 foi x - °° is obtained, respec­

tively . 

Example 2 (MUNZ [8]). Here u (x), x G IR , is eons I do rod as a step 
E: o ' 

function with value 1 for neqative or 2 for positive x, respectively. 

The exact solution is a rarefaction wave with values — for t «' x •' 2t 

0 < t < °° and value 1 left or 2 right of the wave, respect tvoly. As it 

turns out quite similarely to Example 1, the ROTHE method again e,in 

be carried out uniquely. 

Example 3 (MARTENSEN [7]). The initial values u (x), xP 1R, are-

given as -1 for negative or 1 for positive x, respectively. The exact 

solution is a rarefaction wave with values — for -t < x < t, 0 < t <°° and 

value -1 left or 1 right of the wave, respectively. Evidently Theorem 3 

is not applicable with respect to both the infinities, rf beginning 

with the first time step, the ROTHE solutions u(x), xG TR , are further 

asked to be continuous, monotonously increasing, and skew-symmetric 

with respect to the origin, then such solutions can be constructed 

successively b.y means of a fixed point method. Uniqueness is now as­

sured by Theorem 2 . As a secondary result it turns out that rill the 

ROTHE solutions (contrarily to their sguares) are not from each side-

different iable at the origin. 

Example 4 (MUNZ [9]). If u (x), x6 E, has the value 2 for nega-
o 

tive or -1 for positive x, respectively, the exact solution is obtained 

as a shock wave at x = --• t with value 2 left or -1 right of the shock, 

respectively. For the piecewiese continuous ROTHE solution u(x), x G TR , 

beginning with the first time step, the further supposition is made 

that the square [u(x)]
2
, x G TR , remains continuous when passing through 

a discontinuity; in such a way there is made use of the conservation 

property governing the ROTHE differential eguation (3). In particular, 

with a well-defined discontinuity x* G ( 0 ,« ) , the ROTHE solution u ( x ) , x G 3F, 

is obtained with constant value 2 for xG (-°°,0), as a monotonously de­

creasing solution of the differential eguation (3) for xG [0,x*] satis­

fying the initial condition u(0) = 2 and the free boundary condition 
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u ( x* ) = 1 , and with constant value -1 for x 6 (x*(»)i Here Theorem 3 

leads to local uniqueness for the left interval (_<» x*) a s well as for 

the right one (x*,»); furthermore by means of Theorem 3, this ROTHE 

solution turns out to be the only one with exactly one discontinuity 

whilst a continuous solution does not exist. With regard to the com­

plete ROTHE method, the discontinuities form a monotonously increasing 

sequence. 

For the examples mentioned before numerical computations have been 

done by standard methods, where the results have shown a high accuracy 

in comparison with the exact solutions [7,8,9], Recently for such non­

linear hyperbolic problems the L -convergence of the ROTHE method with 

respect to any compactum in the upper (x.t)-plane has been proved [9]. 

The pointwise convergence, however, remains still as an open question. 
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