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ENTROPY COMPACTIFICATION
OF THE TRANSONIC FLOW

J.NECAS
Faculty of Mathematics and Physics, Charles University
Malostranské nam. 25, 110 00 Prague 1, Czechoslovakia

1. Introduction

Let us consider a compressible, irrotational,steady, adiabatic,
isentropic and inviscid fluid in a bounded, simply connected domain
Q C RP, n = 2,3, with Lipschitz boundary. The relation between the
presure p and the density p is

a.a) Bs (1 << 2,
Po Po

where quantities with the zero index corrcspond to the speed V= o0. If
V is the velocity vector, then the condition of the irrotational flow is

1.2) rotv =0,

The flow satisfies the continuity equation
(1.3 div (p¥v) = 0

and the Euler equation of motion:

(1 .4) ¥ grad v = - % grad p .

This implies for the potential of the velocity is satisfied the

equation

(1.5) div (pVu) = 0 ,

where
1

(1.6) o = o(lvul?) = o (1 - x2l g2yt

2ag
and a is the speed of the sound. If the Mach number defined as
2
2a
M det 1Vul 55 ¢ 1 & jyu2 <0
a 1+n

the flow is subsonic and the equation (5) is elliptic. In the opposite
case the flow is supersonic and the equation (5) is hyperbolic. A flow
with subsonic and supersonic regions is called transonic.

It is important tb underline that the equation (5) does not contain
an information about the behaviour of the entropy on the shock
surfaces. The entropy condition across the shock: [Vul is decreasing.
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This can be formulated, for example, in the form
@.7) Au £ K < o ;

we shall consider in the next only physical speed, i.e. such that

Vaa
1.8) [Vul <
Vr-1
We suppose the boundary 8@ = rl U r2, u =0 on rl and p(quIz)%% =g
on Fz.

The transonic flow problem was considered numerically by many
authors. We mention here a book by R. Glowinski [1]; there are excelent
numerical results by many authors: M.O. Bristeau, R.Glowinski,

J. Periaux, P. Perrieer, O, Pironneau, G.Poirer, M.,Feistauer, A.Jameson,
K.Kozel, J.PoldSek, M.Vav¥incovd. They used entropy conditions of the
type (7), upwinding iterations and viscosity approximations. We shall
do the same in the hext. The entropy condition (7) is compactifying,
which follows from some slight generalisation of the result by F.Murat
[2] . More complete discussion of the result is in M.Feistauer, J.Ne&as
[3], M.Feistauer, J.Madel, J.Ne&as [4], J.Nedas [5]. A justification

of the finite element aporoximation is disonssed in Ph.G.Ciarlet,
J.Mandel, J.Ne&as [6].

2, Formulation of the problem, compactness bv entropy

We look for a week solution to the eauation (1.5), i.e. for
u € w'™(2), such that for v €V = {v € wh2(a); v = 0 on r;}

(2.1) foCivul?)vuvvdx = fgvds, g € L™(a0) .
Q BIY

If Fl = 0, we suppose Jgds = 0.
1Y

We can give also Dirichlet data on a part I'_ C T_, where FtC {x € 23Q;

-~ - t 2
(v,v) < 0}. For an illustration, let us consider a paralel flow:
v = (u,0,0), u-= u(x,). For w = g— let us consider w € wl’“T(o,l)),

' - 2w -
w(@) =0, Iw'l2 < satisfying with u(s) = (1 - lais)l/( D

-)(—‘_l,
(2.2) '3’ =0 in (0,1) ,
(2.3 w(Ouw 0% =a

(2.4) w/'? <K, K>0 .

So first A € [0,0.57] which is clear from teh Fig. 1; the general
solution of (2.2), (2.3), (2.,4) is sketched on the Fig. 2 and is unique,
the cauchy data in the origine being prescribed.
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Figure 1
1
v Let us mention that a uniqueness
P of the entropx solution is pro-
Cauchy 4 bably not true in more dimens-
data / ions. The existence of the
i solution will follow from some
w
s "3 posteriori" conditions
7/
\ given by an ideal computer.
Figure 2
2,5, Definition. 2a2 2a2
Let h € c'([0,501), +5F < Sg < =3, h(s) > 0 in (0,sy] and let it

satisfy here the monotony condition: h(s) + 2sh’(s) > 0. A transonic
flow is called h-entropic if ve € D+(Q) : (¢ 2 0)

(2.6) - /h(1vul?)vuvedx < K fedx, K € R
Q Q
’ -
(2.6’) Examples: . 2ag
@) his) =1, s5< o7,

- fVuVedx £ K fedx ¢ Au < K, M = o ,
Q Q

Gag
(2) h(s) = sp(s), sy < =T

M = /3 : entropy by viscosity ,

(3 h(s) = -p(s)ln (1 - X2,
2 2ag
2a0 1
S < —T To° To ° [51n (1 - IO)](l - GTO) ;

M = 1.91 : Hugoniot’s en%ropy,
6a

(1) h(s) = -p'(s)s, sy < —7 ,
natural entropy, M = 2.23., 0O
242
3o
In a formal way: the monotony condition for h and s > ey is sufficient
and necessary, for the solution satisfies the entropy condition on the

shock surface.
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2.7. Theorem (F.Murat). Let {Gn} be a sequence of functionals defined
on wl'z(m, G, = G. Let for h € D (), <Gn.h) 2 0. Then G ~ G in
(WP, wp > 2.

Idea of the proof: C ﬁlc 2, ¢ €D,(Q), ¢(x) =1 in Q. Let

h € D(Q), supp h C 2.. There is

1

@ ¢ £ h < "h“C(a)

and it follows

(2.8) ~Inl

(2.9) 1<G,,n) | < <Gn,¢)“h“C(§)’

hence G, is a sequence of Radon measures., Let u, be defined by

(2.10) J(Vu ¥h + u h)dx = (G_,h), vh € w2,
Q

@.C%. Cqa, g>n, h € wé’q(al) .

2 2 1’
Then
_ - " 1,9 ’
(2.11) " Aun + u, = Gn € [WO (Ql)]
and
2.12 a1 < c(e,) .
( ) un wl’q’(QQ) 2

— : ’
Because Wl’q(Ql)G-G-C(Ql) = {u,} is convergent in wird (7)) to u. An
usual interpolation technic as well as the estima%e

(2.13) 1 J V0 - w)¥hdxl € (] 190 wiZax? .

o\ e o\

2 1 2 1
 fivhi2ax)? < f 1viu - wl2ax)?
a\e, Q\ 2, n

1 1
.(\fan%xﬁ . 1a\g, P

Q\Q
2

N

gives the result.

2.14 Theorem.

Let E_= {u;lul < C,qu|2 <s

h wie2(Q) 0’
ve € D (Q) : - fh(quIz)Vqudx < K fedx} .
Q Q

Then Ep is compact in wl’Q(Q).

Idea of the proof: Put (G ,h) = K fhdx + fh(IVunIZ) .
Q Q

. vu,Vhdx, (G,n = R Jnax + th(qulz)Vthdx.
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It follows from the theorem 2.7: <Gn— G, u - w - 0, provided u - u.
For the pairing (Gn— G, uy- w we use the Leray-Lions trick from the
theory of monotone operators. O

3. Solution of the transonic problem by use of the alternating

functional

The equation (1.5) is the Euler’s equation to the functional

1 quI2
(31) ¢(u) = 5 JC p(t)dt)dx - Jguds.
Q 0 N
2

2 23 1,2
Let |Vul”® < ~—7+ and define w € W ’7(Q) by
(3.2) So(IVul®)VwVhdx =  fghds.

Q R

wl,? - - -

for h € (@), h = 0, on Fl. (In the case Fl- 0, I .= 0, we suppose
fwdx = 0.)

Q

Define the alternating functional by
(3.3 ¢(u) = ¢(u) - o(w(Cu)) .
Because p’(s) £ 0, we have with ¢ > 0 (for details see [3], [4], [5])

(3.4) clu - w(u)“zl 9 < ¢(u).
W T(Q)

So u is a solution of the transonic problem iff ¢(u) = 0. But if V is

the space od solutions in w1,2(9) then we have

3.4, Theorem
The alternating functional attains on Eh Nv N {u-= u, on Ft} its
minimum in some point u. If ¢(u) = 0, then u is a h-entropic solution

of the transonic problem.

Figure 4 * Figure 5
o (u) ¢ ()
l . on must fall
. in the ap-
1 I gg{zt?ai propriete
l l, / 10 energy hole
« N u u u
,J'ul> uy u, 13 2

in _general
an n-pﬁysical solution
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4. Viscosity method

Let us consider a complet system of gas: p - pressure, p-density,

T -temperature, v - velocity vector, provided:

(h1)  0<T sTsT, <%, TEWR),
(4.2)  0< o, <0, o lnos €ri@),
(4, 3) P = RpT, R is the gas-constant,
2
2a
(4.4) vewhlor3, vi? < u_g ,
(4.5)  wo= (D), A = A(D), u,x €C(R), A = 824, 8 <1, 1= o,
re= o,
(4.6) div(pv) = 0 in @, pv.v = g on 3Q,
(4.7) PV.VV + Vp = V(A div V) + 2 div(ue), in @,
oV, ov.
L
= ( = —
e {eij‘V)}’ 2eij(v) % t 3% ¢
3 i
2
2a
(4.8) v =% on 3q, 1701 1.2 5 S c 130 < —:% S
(w22 ()] "
T AT |, E(V)
-
(4.9) cydiv(p.1ln ETTT-V) =k g+ _TX— in @ ,
E(v) = A(div v)? + 2utree, c,r k € Ri R
(4.10) e g ln = - k £ o= = h on a0, Inl | <c
P L7(3Q)
Let Bn > 0, and take un: u.Bn, Anz ABn, kn= an. We let go Bn - 0 and

look for an optimal control problem: let the cost functional, where

- -
v = € + Vu, be

a1y (W) = 1E1%ax + Jle - ey (1 - 2HIT
Q Q 2a

and let us look for I(v) - 0, "3 posteriori" entropy condition:
pew i),

(4.12)  Vp.v 2 -K .

4,13 Remark

2 -
|VTI E(v)
Jhds 2 k  [f—y— dx + [ dx .
N Q T Q

-
Open problem: how to estimate the pressure p? If I(v) < *, then
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L2 estimate of p follows.

4,14 Definiton

A sequence {u }, Judx = 0, |Vu l2 <s is h - entropic, if
n g n n 0

vp € D+(Q):

(4.15) - fh(Ivu|)Hvu Vedx < K Jedx + (R_,@ ,
Q n n Q n

where

1,2
Rn -0 in [W27 ()] .

4.16 Theorem
n’ V" be a sequence to solutions of (4.1) - (4,10)

Let Tn ’ Pn r P
e . . -n .
with I(vn) - 0 and satisfying Vpnv > -K, Suppose, without the loss

of generality, that u, = u. Then {ug} is h(s) = p(s)s - entropic,

u, -y, and u is a h-entropic solution to the transonic problem,
2 6ag

Provided IVu I" = sq < 3377 -

Idea of the proof: Let ¢ € D (2), multiply (4.7) by V'o and
integrate by parts. We get

Q Jooxy 2
and then V" by Vun, the result follows. o

n
v
n i _n - _ 1 >n 2 n d¢ _
(4,17) fpnvj T viedx = 5 Joplvil vy o dx =
Q 3j Q J
op -n_ 2 -
= - == V?mdx - Ia_(div ¥ odx - [Ar_div vn.v?gﬁ—dx -
X, i n n iox,
Q i Q Q i
_ -n >n _ »>n, n 03¢ <
Zquneij(v )eij(v Jedx ZQIuneij(v )vi Eigdx <
< K feax - fr div ™D Zax - 2 Ju e TV} 2ax -
Q Qg n i dx; Qo nij iaxy
def ¢ seax + (s_, o .
Q n
But we have, because of 4.13
1
(4.18) st 5, < c8?
(W ()]’ 1
. : sn;2_n 3¢ 1 - Xx-lygn 2yx-1
and replacing in fpnlv | “vi 0 P by po( —;7lv 1)
0

Solving the system (4.,1)-(4,10) with the cost functional (4,11),
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the inequality (4.12) can be expected, but must be supposed. For to
cancel this condition, let us first formulate (4.6) in the weak
sense:

(4.19) Sovy gl— dx = fgeds .
Q Xy a0

Any approximate solution to (4,19) satisfies in fact

(4.20) Jov, 22— ax = Jgeds + (R,®

Q ax%4 ag
where the term R represents small material sources in 2 and a small
flux of the material through the 3Q. If we choose R in an appropriate

way, we get automatically (4,15) provided the cost functional
1

- - -1, - -1 .2
(.21) 3@ = fiS1fax + Jle - pg(1 - 25T 1%ax +
Q Q 2a
0
0 2
+ f[1ln T - 1ln —— ] dx
- w-1
Q P
0
1 Po
tends to zero; here T, = = — .
0 R o
For to precise the conditions, let in - 0, Bn > 0, An,un,kn as before
7 =1

and put an 0 in the way that anen -~ o, Let us suppose TO > Py .
Put in (4.,20)

1-a
(4.22)  (R_,0 = fo v® 2 ax - g, P D20 gy,
n g ni 0X, n i 9x,
i Q i
T
in =
n-1
n 3
+ Jo_(1 - IR 2L dgx + [ _edx +
n T i ox, n
Q 1 0 i Q
n
u-1
o
+ (Gn,q)> + (Hn,q1> ,
where
e | < Ka_, 2lg_ I -0,
%) ntoen et 2y
g I -0 and (H_,¢)>0ve € D, (Q),
n [Wl’2(§2)]' n’ +

4.23 Theorem.
Let h(s) = -p(s)ln (1 - il% s) (see examples (2.6")) and T P
a
0

Pne vl a sequence of solutions to (4.1)-(4,10), with J(3n) =~ 0 and
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with (4,20), (4,22). Let ns suppose without the loss of generality
uocou Suppose |Vu“12 < s, (cee (7,0"), (). Than (un] is h-entropic
ané u i- a h-entroupic solution to the travo.ic prob.em.

4,24 Remark
1- ar . A
The term [eo %o SL o Lo M i Mg et o ptiaui by
Q i
equation.

Idea of the proof tc the theorem 4.23: We have from (4,9) as
before
. o1 L2 ..o=n 2
(4.25) 8 Jozlvr ax + JiVv il Tdy £ ¢ e
n o Tn n oo,

Take ¢ € D+(Q). It follows from (4.9)

2
T v |
(4.26) -c /¢ 1lp R o9 dv =+ ) oo D edx -
v n n=1 i oo o 2
Q ¥ 1 @ T
n n
VT En(G")
-k, Jop— Vedx + [ —gw— odx .
2 n Q n
. 1 1
Multiply (4,.26) by o T and add to (4..0).
Vin oy
°o
We get
1-a
1 n, n 3¢ 1 1
—_— ( - — = - = -
(4.27) 3 ! (o, P )vi ax.dx " ffnwdx " (Gn,w
n Q i n Q n
) K lvr_ 2 E_ (V™)
- X (H ,¢y - 1 > 9dx - — f ; edx +
oy h o T n Q n
n
k VTn
+ B S T Vodx
°n @ n

and the result follows as in the theorem 4.16.
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