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LINEAR PERTURBATIONS
OF GENERAL DISCONJUGATE EQUATIONS

W. F. TRENCH
Drexel University
Philadelphia, Pennsylvania, U.S.A.

Suppose that PyreeesP 10 4 € cla,*>], p; > 0, and

(1) /Tpdt =, 1<isn-1,

and define the quasi-derivatives

- =1 " 1<r <
(2) Lox = x; L.x b, r-IX) , 1 <r<n

(with p, * 1). We will give conditions which imply that the
equation
(3) Lou+ gq(t)u = 0

has solutions which behave as t = o 1like solutions of the equation

L x = 0.
n
Let I, = 1 and

t
Ij(t,s; qj,...,qi) = sf qj(w)Ij_l(w,s;qj_l,...,qi)dw, j 2 1.

Then a principal system [2] for L x = 0 is given by

xi(t) = Ii_l(t,a;pl,...,pi_l), 1 <i<n;

in fact,
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We also define

yi(t) = In_i(t,a;pn_l,...,pi), 1 <4i<n,
and
eri(t), 0<r<i-1,
(5) dir(t) =
1/Ir_i+1(t,a;pr,...,pi), i<r<n.
We give sufficient conditions for (3) to have a solution u,
such that
(6) Lrui = Lox; + o(dir) (t >, 0<r<n-1,

for some given i in {1,...,n}. This formulation of the question is
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due to Fink and Kusano, and the best previous result on this question

is the following special case of a theorem obtained by them in [1].

THEOREM 1, If§

(7) ITxylqlds < =,

then (3) has a solution wu; which satisgies (6).

Our results require less stringent integrability conditions. We
need the following lemma from [4].

LEMMA 1. Suppose that Q € C[to,aﬂ gon some £t = a, that
fwyith convenges (pernhaps conditionally), and that

sup | IwgiQdAi < y(t), t=21

’
=t ot 0

whene ¢ 4s nondincreasing and continuous on [toaﬁ. Degine

Kt;Q) = 71 (6,850 ,0000p, )0(8)ds,
P

0’ Let
J(£;Q) = K(£;Q) 4§ 4 = 1;

and, forn £t 2 %

on

z
J(£;9) = J pl(A)K(A;Q)dé = Il(t,to;le( ;Q))ds
tO
ioAi=2; on
JC5Q) = T, (2500w ee s P, KO 5Q0)
i 3<4i<oan.
Then
(8) LnJ(I;Q) = -Q(t), £ =2 %

0!
and

w(to)din(t)’ 0 << 4 -2,
anJ( ;1<
QW(t)din(i)’ L -1

moreoven, Lf 1lim ¥(t) = 0, then also
Lo

IA
&
IA
=

1
=

L,(J(£9) = o(d, (£)), 0 <nx<di- 2.

The following assumption applies throughout.

ASSUMPTION A. Let I«&ixiqu converge (perhaps conditionally),
and suppose that

(9) E(t) = [Ty;x;ads = 0Ce(t))
t
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with ¢ nonincreasing on [a,~), and
(10) lim ¢(t) = 0 .
t*‘)m

If t0 > a, let B(to) be the set of functions h such that
Loh,...,Ln_ h € c[to,w) and

O(dir)’ 0<r<i-2,
L.h = t 2ty .
O(Wdir), i-1<r<n-1,
with norm I | defined by
L h(E) | IL h(t)|
(11) Ihl = sup max (0<r<i-2),

N+ 3  (+) STy (o) (i-1<r<n-1)
et m(to)dir(t) Zw(t)dir(t)

Then Lemma 1 with Q = gv and VY = K¢ implies the following lemma.

LEMMA 2. I§ v € Cl£;,*) and

I 1%y qudst < Ke(t), &2 &
% A

0 ’
then
JC ;qu) € B(Zy)
and
1J¢C ;qu)ll < K .
Now define the transformation T by
(12) (Th) (t) = J(t;qxi) + J(t;qh) .

Lemma 2 and Assumption A imply that J( ;qxi) € B(to) for all ¢t > a.
We need only impose further conditions which will imply that Iquqhds
converges (perhaps conditionally) if h € B(to), and that

oo
| J y;qhds| < ||h||c(t;t0)qz(t), tz e,
t

where o¢ does not depend on h, and

(13) sup c(t;to) =8 <1
tZtO

if tO is sufficiently large.Lemma 2 will then imply that T is a
contraction mapping of B(to) into itself, and therefore that there
is an hi in B(to) such that Thi = hi' It will then follow from
(8) and (12) that wu; = x; + h; is a solution of (3). Moreover, Lemma
3 with Q = quy will imply that

o(dir), 0<r<i-=-2
(1y4) Lru. - L._X. =

i - < < -
0(¢dir), i 1<r<n 1.

The next lemma can be obtained from (9) and integration by parts,
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See [ 3] for the proof of the special case where pl= e = p_ = 1.

LEMMA 3. Let

(15) HO LY Hj(t) = tf pj_lHj_ldA, 1< 4 <4 (po = 1),
Then (9) implies that
(16) Hj = O(w/Lj_lxi), 1<3j<i,
and that the integrals
oo . .
(17) / pj(iji)des, 0<j<i-1,
all converge, Moreover, if the convergence is absolute for some j = k

with 0 < k < i - 2, then it is abselute for k < j < i - 1.

THEOREM 2. 1§
— -1 (oo - 1
(18) 1i2 (p(2)) tj pi—l‘Hi-llwdé =A<,

then (3) has a so0lution uy which satisiies (14).

Proog. Integration by parts yields
1

T i-
(19) / yiqhds = - I L PR S

t

T
j lHj(Lj_lh)lz + tf p,_H _ (L. h)ds
if h € B(to) and 2 < i <n; if i = 1, then the sum on the right
is vacuous and (19) is trivial. (Recall (2) and (15).) Now (5),(9),
(11),(18), and Lemma 3 imply that we can let T - e in (19) and infer

(13) with

i-1
_ -1
(20) oltity) = elty)(e(t)) jfllﬂj(t)le-lxi(t) +
+ 2(c¢>(t))_l f“bi_llﬂi_llods .
t

From (16), the sum on the right side of (20) is bounded on [a,®);
hence, (10) and (18) imply (13) for to sufficiently large. This
completes the proof.

With i = 1, (18) reduces to

Im (e(£))7 1 /%y laleds < % s
twoo t

which is weaker than (7), since X, =

1. The next two corollaries show
that ( 18) is also weaker. than (7) if 2 < i < n.

COROLLARY 1. I§ 2<4i<n and
(21)  [Tpp(Lx (L, X)) Tedt < e

forn some kR in {1,...,4 - 1}, Zthen (3) has a solution u; which
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satisfies (14).

Proog. From (16),

-1
(22) pk(kai)IHkl < Mpk(kai)(Lk_lxi) 0

for some constant M, so (21) implies that (17) with Jj = k

converges absolutelv. From the closing senterce of Lemma 3, this

means that
oo
! pi_llHi_llds < oo,

which obviously implies (18) with A =0.

COROLLARY 2. I§ 2 < 4 <n and

5

0 -1 2 _
(23) tf pi_l(b)(af pi_l(w)dw) 0 (8)ds = o(e(2)),
then (3) has a solution u, which satisgies (13).

Proof§. From (22) with k = i - 1 and (4), (23) implies (18) with
A = 0.

THEOREM 3. I§ 1< 4i<n -1 and

t w00

_ oo 4 -1 1
(2%)  TI® )" Tee)p, () S p (widn) 1K (s)1ds = B <5
z a
then (3) has a so0lution which satisgies (14).
Proo§.

Lemma 3 and our present assumption enable us to continue
the integration by parts in (19) by one more step, to obtain

oo 1 ' oo
J yjqhds = 2 Hj(t)Lj_lh(t) + [ pyH;(Ljh)ds.
t j=1 t
Because of (5) (with r = i) and (11), this yields
oy -1
9(tg) (o (t)) j§1|Hj(t)le_1xi(t) + 2Hi(t) +
-1 o0 S -1
2(9(t)) [Te(s)p, (s)( f p,.(w)dw) “IH,(s)|ds.
i i i
t a
Now (10) and (16) imply (20) for ty sufficiently large. This completes
the proof.

o(t;to)

+

COROLLARY 3. I§ 1< 4i<n-1 and
(25) () C T wrdw) " He% (8)ds = 0(e(t)),
z < a *
then (3) has a solution uy which satisfies (14),

Proog. From (16) with j = i, it follows that (25) implies (24)
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with B = 0.
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