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SHAPE OPTIMIZATION IN CONTACT
PROBLEMS

J. HASLINGER Section D
Faculty of Mathemaltics and Physics, Charles University
Malostranské nam. 2/25, Prague 1, 110 00 Czechoslovakia

Introduction

Ootimization of design is a fundamental goal of everv engineer
who strives to create a component, device or svstem to meet a need.
Designers seek to evolve the "best" desian in terms of weight, costs,
reliability.This objective is verv important especially nowadavs
because of resource scarcitv, increasing costs of materials, eneraqy,
etc.

As the analytical solutions of such problems are not available in
general,the development of efficient numerical methods for practical
applications was necessary.An important progress was made in last 20
years together with development of finite element method and mathema-
tical programming techniques with special reference to the structural
design problems.A great number of papers has been already written on
this topic.Representative survev of latter results can be found in [1].
Optimal shape design from mathematical point of view has been widely
studied by french school of applied mathematics ([2],[3]). In most of
papers the case when the physical system is described by elliptic
equations is presen;ed.On the other hand there is a lot of problems in
mechanics,whose variational forms are inequalities ([4],[5]) so that
the study of optimal shapes and their approximations for this kind of
state problem is natural.

The present contribution is concerned with the existence and the
approximation of a solution to the contour design problem for a planar
deformable body unilaterallv supported bv a riagid foundation.We shall
discuss the followina phvsical situations:

o

1 the bodv is elastic., nosfriction;
o

2 the bodv is elastic., the influence of friction between it and the
foundation is taken into account;
3° the bodv is elastic-perfectlv plastic,obeying Henkv'’s law, no

friction.
In all these cases the total potential enerqgv of the bodv will be mi-
nimized. In the engineering literature,design problems for elastic
bodies in contact are discussed ([6],[7]) but a rigorous analysis of
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these problems remains to be undertaken.

1. Setting of the problem

First we shall discuss 1° and 2°.Let us assume a plane elastic
body @& C R2 (see fig.1l) unilaterally supported by a rigid foundation
{(xl,xz)lx2 < 0} and subiected to a bodv force F = (Fl' F2) and to
surface tractions P = (Pl'PZ) on a vortion of the boundarv,

Let the boundary 3Q be decomposed as
‘& follows

—— =T UT_UT
Y QR Tu P C(q) ,

with T , T, and Fc(a) non-overlapping
parts of 3Q,T and Fc(u) non-empty.
Contact part Fc(u) will be given bv
the graph of a function a € U.g (will
be svecified later). As Q devends on
a., we shall write Q(a) in what fol-
lows. In order to give variational

formulation of contact problems we
introduce a Hilbert space V(a) of virtual displacements:

V(a) = (v = (vy,vy)) € (H(2())%lvy = 0 on Ty, i = 1,2)

and its closed convex subset K(a) of admissible displacements:

K(a) = {v € V(a)lvz(xl.u(xl)) 2 —alx ) v x, € (a, D} .
The total votential enerav functional Ja : V(o) - R! is now agiven bv

A1) J,(v) = 1201w ,ev)) - (LW, + G, (0

a,a N

where

(T(V)'E(V)>a = Q(m‘)(Fividx + I‘J’Pivids

P
with F € (£3(2)%,2 > ata), P € (127012, I DT va € U_. and
’ ' P ' p P ad
. . d
Ja,q(V) g rc(a{‘vll s ,

where g > 0 is a given constant, g = 0 for frictionless case.Above the
standard notations and conventions of elasticity are used.
By a vardlational formulation of the contact problem (with or with-
out friction) we mean the problem
find u(a) € K(a) such that
(P(a)) {

Ju(u(a)) < Ja(v) vv € K(a) .

Let

U:d: {a € co'l((a,b))IO < a(xl)

’
<
Co,la (xl)l <cC
meas Q(a)

C2}

1> vx € (a,p,

n o IA



if g = 0 and
2

v - eectta,p)io < alx)) < cp la’(x )l < ¢C

rr
2d < ™ (xl)ISC

1°? 27

vx, € (a,b), meas Q(a) = C3}

if g > 0. C .,C, are positive constants chosen in such a way that

o'*" 3
U;d # ¢, § = 1,2, Now the shape optimization problem reads as follows:

find o € UJd such that
(Pj) { a

E(a*) < E(a) va € U; = 1,2,

dl j
where

E(a) = J (ula))
and u(a) € K(a) solves (P(a)) on Q(a). As the existence of a solu-

tion of (Pj), j = 1,2 is concerned, it holds

Theorem 1.1 There exists at least one solution o¥ of (Pj), j =
= 1,2. For the proof we refer to [8] if j = 1 and [9] if j = 2.

Let us pass to 3° .We shall assume that the material of the
deformable body is elasto-perfectly plastic, obevina Henkv’'s law. It it
known that the formulation in terms of stresses is more suitable that
in displacements. This motivates the definition of optimal shape
design problem.

Let U_ .= Ul

ad” “ad a°
before. We introduce the following notations:

and o € Ua K(a) will have the same meaning as

S(a) = {1 € (LZ(Q(a)))4ITi.= Ty; ae. in 2(a),
(r,s(v))a > <L’V)a vv € K(a)l,

B(a) = {r € (L2(2(a)N?1£(x(x)) £ 1 ave. in (o)}

and
2
Sa(r) = 1/2IITIIO,Q(M s
where f : R4* Rl is convex and continuous,
2
(B (t,1) J e, T T, 4%
0,0(a) Q(a) Q(a) ijkl ij k1
cijkl are coefficients of inverse Hooke’s law.
Let Sad C U,q be the set of all a, satisfying
o € Uad iff S(a) N B(a) # ¢ .

Next we shall suppose that G;d * ¢.
Shape optimization problem for elasto-penfectly plastic bodv is
defined as follows:
f£ind «* € U_. such that
(p3) { ad

E(a*) < E(a) voa € Uag ,
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where E(a) = Sq(c(a)) and o(a) is a solution of

(P(u))p o(a) € S(a) N B(a) = Su(o(u)) < Su(T) v1 € S(a) N B(a).

1
It holds:

Theorem 1.2 Let Ga # ¢. Then (P3) has at least one solution o¥,

d
For the proof see [10].

2. Approximation of optimal shape design problems

Here we deal with the approximation of (Pl) only.

Let a = aj < a, <...<ag = b be a partition of (a,b) and

Ulh

_ 1
aq - (» € c(<a,b>)1(11‘31-1‘_1li € pl(<ai_lai))} NU_g

where Pl denotes the set of linear functions. For any oh € U;g we

define

2
Q(ah) = {(xl,xz) € R7| ac< x, < b, uh(xl) < xy < Y},

i.e. the variable contact part of the boundary is now approximated by

a piecewise linear arc Fc(ah). By Th(ah), a, € Uig we denote the

h
triangulation of Q(ah). Finally let

Ky (ap) = (v € (c('@T@‘)‘)ﬂlvthie (P, (T2 w1y €T, ()

v, = 0onT

h u’ v2h(ai,uh(ai)) > —ah(ai) vi}

The approximation of (Pl) is now defined as follows:

find o* € UM such that
h ad
(P1)
" E (o¥) € E (a ) va € U
h "h™ = "h 'h h ad '

where Ej (o)) = J&h(uh(ah)) and uy (e ) € K (a) is usual Ritz-Galerkin

aporoximation of (P(ay)) on K, (ay). Under certain regularity

1h
- €

h(ah)}, h 0+, @y Uad'

following relation between (Pl) and (Pl)h can be established:

h

d e
solves the approximate state problem on Q(aﬁ). Then there exists a

assumptions, concerning the family {T the

Theorem 2.1 Let a* € U2 be a solution of (Pl). and let u®(a®)
h a h h h

subsequence {uﬁ } C {aﬁ}. an element a® € Uéd and u*(a®) such that
]

¥ = a* (uniformly) in CO((a,b)) for hy = 0+
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(af ) = u*(a¥) (weakly) in (Hl(Gm(a*))2
j 3
for h. - O+ and for any'm 2 m,. where a* is a solution of (P1l) ,

u®(a®*) € K(a®) is the corresponding state on 2(a¥) and

Gm(m*) = {(xl,xz) € Rzl X, € (a,b, u*(xl) + 1/m < X, < vl

For the proof see [11].
Sensitivitv analysis for (P1),(P2),(P3) as well as numerical

results can be found in [11], [9] and [10], respectively.
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