
EQUADIFF 8

Stephen Schecter
Riemann problem solutions that are stable to perturbation

In: Pavol Brunovský and Milan Medveď (eds.): Equadiff 8, Czech - Slovak Conference on Differential
Equations and Their Applications. Bratislava, August 24-28, 1993. Mathematical Institute, Slovak
Academy of Sciences, Bratislava, 1994. Tatra Mountains Mathematical Publications, 4. pp. 187--198.

Persistent URL: http://dml.cz/dmlcz/700122

Terms of use:
© Comenius University in Bratislava, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/700122
http://project.dml.cz


TATRA 
Tatra Mountains Math. Publ. 4 (1994), 187-198 l*WU"TOiN5 

Mathematical Publications 

RIEMANN PROBLEM SOLUTIONS THAT 
ARE STABLE TO PERTURBATION 

STEPHEN SCHECTER 

ABSTRACT. For a system of two conservation laws in one space dimension, 
we consider Riemann problem solutions that are stable to perturbation of the 
Riemann data. In other words, if the left state, right state, and flux function are 
perturbed , the new Riemann problem solution should contain the same sequence 
of wave types as the old. A large class of such solutions is identified, some of 
which contain wave types that have not previously appeared in the literature. 

A system of two conservation laws in one space dimension is a partial differ­
ential equations of the form 

Ut + F(U)x = 0 (1) 

with U G K2, F : K2 - • R2 a smooth map, t G R, and x G R. Such equa­
tions arise in the study of many physical systems, for example, gas dynamics 
[CF], three-phase flow [ShSchaMP-L], elastic strings [KK], and phase transitions 
[J, SI]. A good general reference is [Sm]. 

For both theoretical and numerical purposes, the most basic initial value 
problem for (1) is the Riemann problem, in which the initial data are piecewise 
constant with a single jump at x = 0: 

W - P " X<°0 (2) 
t UR , x > 0. 

The solution of a Riemann problem is constant on lines through the origin: 
it is a function Cl ( f ) consisting of constant parts, smoothly changing parts 
(rarefaction waves), and jumps (shock waves); see Figure 1. Shock waves occur 
when 

&-u{l)~u- + u+-,*2*u(l)' w 
A M S S u b j e c t C l a s s i f i c a t i o n (1991): 35L67. 
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FIGURE 1. A Riemann problem solution (1) in the atf-plane, and (2) in profile 
for fixed t. 

and one must decide which discontinuities ([/_, s, £/+) to allow. It is well-known 
that requiring only that U ( | ) be a weak solution of (1), (2) allows multiple 
solutions of Riemann problems, including clearly nonphysical ones. 

Various shock admissibility criteria are used to remedy this situation. Perhaps 
the most widely accepted is the viscous profile criterion [CF, G]. Suppose the 
equation (1) arises by ignoring the small viscous term in the parabolic equation 

Ut + F(U)x=sDUxx. (4) 

Then the viscous profile criterion states that the discontinuity (3) is admissible 
in solutions of (1), (2) if and only if the parabolic equation (4) has a traveling 
wave solution U ( ^ T 2 * ) with 

lim U(Q 
£—•±00 

liю £f(0 = 0. 
£—•±00 
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This amounts to requiring that the ordinary differential equation 

DU' = F(U) - F(U-) - s(U - £/_) (5) 

have a heteroclinic solution U(£) from the equilibrium U- to a second equilib­
rium U+. 

In simple cases the viscous profiles criterion coincides with the more easily 
used entropy criterion of L a x [La], and with its generalization due to L i u 
[Li]. However, the viscous profile criterion allows, for example, shock waves that 
correspond to saddle-to-saddle connections of (5), which do not satisfy Lax's or 
Liu's criterion. Recent work strongly supports admitting these nonclassical shock 
waves: they are sometimes needed to solve Riemann problems [ShSchaMP-L, Sh, 
IMP, ScheSh]; they arise, apparently stably, in numerical calculations [ZPM]; and 
they can sometimes be proved to be time-asymptotically stable solutions of (4) 
[LZ]. We therefore adopt the viscous profile shock admissibility criterion, and 
make the further simplification D = I. 

Let us discuss rarefactions and shocks in more detail. 

Let 
U = {U E R2 : DF(U) has distinct real eigenvalues} , (6) 

the "strictly hyperbolic" region. For U G U, let Ai(U) < A2(c7) denote the 
eigenvalues of DF(U), and let £i(U), ri(U) denote corresponding left and right 
eigenvectors with £i(U)rj(U) = 5y . 

A rarefaction of type Ri is a differentiate map U : [a,b] —> U such that 
U'(£) is a multiple of ri(U(£)) for a < £ < 6, and £ = A*([/(£)). The definition 
implies that if U = £/"(£) for some £ in [a, b], then 

D\i(U)n(U) =£i(U)D2F(U)(n(U), ri(U))*0. 

It also implies that if U- = U(a) and U+ = (7(6), then \i(U-) < \i(U+). We 
define the speed s of a rarefaction as follows: for a rarefaction of type R\, s = 
\\(U+); for a rarefaction of type i?2, s = \2(U-). 

For U± E U, there is a shock from C/_ to U+ with speed s provided the 
ordinary differential equation 

U = F(U) - F(UJ) - s(U - U.) (7) 

has an equilibrium at U+ and a heteroclinic solution from U- to U+. (Recall 
that we are taking D = / in (4) and (5).) 

For any equilibrium U eU of (7), note that the eigenvalues of the lineariza­
tion at U are \{(U) — s. We shall use the following terminology for equilibria 
U e U of (7): 
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Name Svmbol Eiєenvalues 

Repelleг R + + 
Repelleг-Saddle RS 0 + 
Saddle s + 
Saddle-Attгactoг SA 0 
Attractoг A — — 

For U± E U, an elementary wave with speed s from U- to U+, 

w : U- - ^ U+ , 

is a rarefaction or a shock. The type of a rarefaction (R\ or #2) has already 
been defined; a shock is of type R- S if it is represented by a heteroclinic orbit 
from a repeller to a saddle, etc. There are 16 types of shocks with U± E U (a 
shock cannot start at an attractor, nor end at a repeller). 

Associated with each elementary wave is a speed interval a: for a shock of 
speed s, a = [s, s]; for a rarefaction of type i2j, a = [A*(£i-), Xi(U±)]. If a\ 
and a2 are intervals, we write a\ < a2 if s\ < s2 for every S\ E a\ and s2 E a2. 

A Riemann problem solution for (1), (2), with UL, UR E W, is a sequence of 
elementary waves 

UoJl+UlJl+...J»>Un (8) 

with U0 = UL, Un = UR, and 

cr\ < a2 < • • • < an ; (9) 

here ai is the speed interval of the i th wave of (8). The reason the speed intervals 
must form a nondecreasing sequence can be seen from Figure 1. A sequence of 
elementary waves (8) is allowed provided it satisfies (9) and in addition no two 
successive waves are rarefactions of the same type. There is no loss of generality 
in requiring that Riemann problem solutions be allowed sequences of elementary 
waves, and we shall do so. 

We shall sometimes denote the wave sequence (8) by (w\,..., wn), where Wi 

is J7i_i -^-» Ui. 

In the literature, Riemann problem solutions are usually pictured by fixing 
UL and drawing the UR -plane, which is divided into regions in which different 
types of solutions occur. The classical work of L a x [La], which treats UR close 
to UL, leads to Figure 2. If UR = UL (the dot at the center of the picture), 
the solution is constant. If UR lies on one of the curves drawn through UL , the 
solution contains a single wave: a 1- or 2-rarefaction (R\ or i22), a 1-shock 
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S-A 

RSSA 

R 

FIGURE 2. Different Riemann problem solutions for fixed UL in a neighborhood 
of UR = UL in the LfR-plane. 

( R • £ ) , or a 2-shock (S • A). If UR lies in one of the open regions separated by 
the curves, the Riemann problem solution has two waves, as indicated. 

This figure is the starting point for the literature on Riemann problems. Far 
more complicated diagrams arise in the literature, and there is at present a desire 
among workers in the field for organizing principles that will bring some order 
to the profusion of examples. 

The approach to Riemann problem solutions that we sketch here can be 
explained in the context of Figure 2. This figure can be viewed as a bifurcation 
diagram. If UR lies in one of the open regions, the Riemann problem solution 
is stable to perturbation, in the sense that if we vary £/£,, UR, and F a little, 
the Riemann problem solution is a sequence of the same number of waves, of 
the same types. (This notion of stability is in principle independent of time-
asymptotic stability.) Points UR on the curves through UR = UL in Figure 2 
correspond to codimension one bifurcations of the Riemann problem solution. 
At the point UR = UL there is a codimension two bifurcation. 

In bifurcation theory or singularity theory, one normally analyses first the 
stable problems, then the codimension one problems, etc. From this point of 
view, the classical approach to Riemann problems, which takes as its starting 
point the codimension two Riemann problem UR = UL , is somewhat perverse. 
We therefore propose to restart the study of Riemann problem solutions at the 
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codimension zero solutions. 

In order to define stability to perturbation of a Riemann problem solution 
more precisely, let 

u* -^>u* --!+.-. ~^->u* (io) 

be a Riemann problem solution for 

Ut + F*(U)x = 0. 

Let K C K2 be a compact set such that 
(1) U* e Int K, i = 0 , . . . , n ; 

(2) For i = 1, . . . , n , the differential equation 

tj = F* ( c / ) _ F*(UU) - s?(v - <7*_l} 

has a heteroclinic solution from U*_1 to U* that lies in Int K. 

Let <^ be the space of (7fc functions F : K —> R2 , with the Cfc norm, fc > 2. 
^ is a Banach space. In the following we will think of F* as an element of 3&, 
but the results will not depend on the choices of K and k. 

We shall say that (10) is stable to perturbation if there are neighborhoods Ui 
of U*, X, of s*, T of F* , and a smooth map 

G: U0 xli xUi x • • • xln xUn x T - • M3n~2 

such that 

(PI) G(L70 , S I , C/i , . . . , 5 n , c7n, F ) = 0 implies that 

tf0 ^ 1 , Ux J1+ ... JJL, Un 

is a Riemann problem solution for 

Ut + F(U)x = 0, 

with successive waves of the same types as those of (10); 

(P2) DG(U£,sl,...,sn,Un
i,F*), restricted to the space of vectors ( t /0 ,5i , 

. . . , s n , Un, F) with {70 = [/n = 0 and F = 0 (which has dimension 3n — 2), is 
an isomorphism onto R3 n~2 . 

The map G will be said to exhibit the stability to perturbation of (10). Of 
course (P2) implies, by the implicit function theorem, that G _ 1 (0) is a graph 
over Uo x Un x T. 
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If f/* —-> f7* is an elementary wave of type 7" fov Vf \ F*((7)A. -- 0 that 

satisfies some nondegeneracy conditions, then there a r" neighborhoods Mt of 

Ul, 1 of s*, T of F * , and a map G r : Zf x J v M + X T - • R' ( r depends 

only on the type 7-1 of the wave) such that G>\\U. . >\ f;
} . F) - 0 if and only if 

t/_ —--» f7+ is an elementary wave of type T for f'/ 4- F(U)r ----- 0. d u e system 

G ^ = 0 is a set of defining equations for waves of type F. Figure 3 shows phase 

por t ra i t s for several types of shock waves, and their defining equations. 

In (10), let T(i) denote the type of the / t h wave. We consider Riemann 
problem solutions whose stability to per turbat ion is exhibited by a map G of 
t he form G = ( G j , . . . , Gn), where 

G,-(vo,«,..., s„.U,nF) = anil("i i, *;. "",•• n • 
Here GT^ — 0 is a set of defining equations for waves of type 7' in a neighbor­

hood of (£/?_-_, s%f/-*), so Gi = 0 implies tha t the ?th wave Ui^l --U t1, is of 

t he correct type . We conjecture t ha t if a Riemann problem solution is stable to 

pe r tu rba t ion , then the stability can be exhibited by a map (.! of this form. 

Suppose Gi maps into W^'1' (i.e., the number of equations required to define 

a wave of type T(i) is e(i)). Then in view of the requirement, t ha t G m a p into 

M 3 n ~ 2 , a necessary condition for G = ( G i , . . . , G n ) to exhibit, the stability to 

pe r tu rba t ion of (10) is 
n 

]Te(i) = 3 n - 2 , 
i = l 

i.e., 
n 

£ ( 3 - e ( i ) ) = 2 . (11) 
i = l 

We are therefore led to define the Riemann number of an elementary wave w to 
be 

p(w) = 3 — e(w), 

where e(w) is t he number of equat ions needed to define a wave of the type of 
w. From (11) we are led to concentrate our a t tent ion on allowed sequences of 

n 
elementary waves ( u ? i , . . . , wn) with ]P piyn) — 2 . 

i=l 

For a rarefaction, p = 1, while for a shock, p is given by Table 1. 

From the definition of an allowed sequence of elementary waves, such a se­
quence can contain only the wave successions given in Table 2. 

Some of these wave successions apparent ly do not occur in Riemann problem 
solutions t h a t are stable to per turba t ion . The wave successions in Table 3 are 
t e rmed good. 
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RS 
F(U+)-F(U-)-s(U+-U-)=0 

RSRS 
RRS F(U+)-F(U-)-s(U+-U-)=0 

F(U+)-F(U-)-s(U+-U-)=0 X1(U+)-s=0 
\!(U+)-s=0 Ai(t7_)-3=0 

<-* • >->- -<-< ě >-> 

->-•-<-

SRS SARS 
8.3 F(V+)-F(V-)-.(V+-V-)=0 ПU+)-F(V-)-s(V+-V-)=0 

F(V+)-F(V-)-.(V+-V-)=0 S(V-,.)=0 fZ~[S)~° 
S(V-,.)=0 \г(V+)-s=0 Xi(V+)-.=0 

A1(ř/_)-S=0 

FIGURE 3. Types of shocks and defining equations. The lower equilibrium is U- , 
the upper is U+. S is a "separation function" that represents the separation 
between invariant manifolds of U- and U+. 
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TABLE 1. Riemann numbers of shock waves 

fгom to RS s SA A 
R 0 1 0 1 

RS - 1 0 - 1 0 

s - 1 0 0 1 
SA - 2 - 1 - 1 0 

TABLE 2. Wave successions in allowed sequences of elementary waves 

Wi 

fil 

*RS 
*-S 

*-SA 
B2 

Wi+l Rг B5* 5 - * SA-* B2 
/ / / / 

/ / / / / 
/ / 

/ 
/ 

/ 
/ 

TABLE 3. Good wave successions 

Wi wi+1 

Ä l RS-RS, RS-S, S-*, B2 
*-RS Ri 

S-SA, SA-SA B2 
*-S S-*, R2 

R2 SA-* 

We can now state 

THEOREM 1 . Let (wi,... ,wn) be an allowed sequence of elementary waves. 
Then 

(1) ^ p K ) < 2 . 
i = l 

n 

(2) Y^P(wi) = 2 ifand onlY if 

z = l 

(a) all wave successions are good, 
and 

(b) w\ is of type R • RS, R- S or R\; wn is of type SA A, S • A, or R2. 

Theorem 1 can be proved by induction on n , using nothing more than Ta­
bles 1, 2, and 3. 
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We now give a more conceptual description of the allowed sequences of ele-
n 

mentary waves with ]T) p(wi) = 2. First we state some more definitions. 

A 1-wave group is either a single R • S wave, or a sequence of elementary 
waves of the form 

(R • RS)(R1 RS • RS) •••(R1 RS • RS) Rx (RS • S) 

where the terms in parentheses are optional. 

A transitional wave group is either a single S • S wave, or a sequence of 
elementary waves of the form 

S • RS(RX RSRS)- (i2i RS • RS) R± (RS • S), (12) 

or of the form 

(S • SA) R2 (SA SAR2)--- (SA • SA R2) SA-S, (13) 

where in cases (12) and (13) the terms in parentheses are optional. 

A 2-wave group is either a single S • A wave, or a sequence of elementary 
waves of the form 

(S • SA) R2 (SA -SAR2)--- (SA • SAR2) (SA • A), 

where the terms in parentheses are optional. 

With these definitions, we have 

THEOREM 2. Let (10) be an allowed sequence of elementary waves with 

E P W = 2. 
2 = 1 

(1) Suppose (10) includes no SA • RS waves. Then (10) consists of one 1-wave 
group, followed by an arbitrary number of transitional wave groups (in any 
order), followed by one 2-wave group. 

(2) Suppose (10) includes m > 1 SA • RS waves. Then they separate m + 1 
wave sequences <7o> • • • ? 9m • Each gi is exactly as in (1), except: 

(a) If i < m, the last wave in the group is R2 . 

(b) If i > 0, the first wave in the group is i? i . 

n 
The condition ]T) p(wi) = 2 simply ensures that the map G = ( G i , . . . , G n ) 

i=i 
maps into R 3 n ~ 2 . In order to ensure that G also satisfies (PI) and (P2), we 
impose three additional types of conditions: 

(1) On each wave we impose certain wave nondegeneracy conditions. 
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(2) In the absence of SARS waves, we impose one wave group interaction 
condition on how the different wave groups are related. If there are 
m > 1 SA • RS waves, we impose m + 1 wave group interaction con­
ditions, one on each of the m + 1 wave sequences c/(),..., gm . Roughly 
speaking, these conditions say that certain wave curves are transverse. 

(3) If Wi is a * • S wave and Wi+i is an S • * wave, we require that 
Si < Si+i . 

Then we have 

THEOREM 3. Let (10) be an allowed sequence of elementary waves with 
n 

^2 p(wi) = 2. Assume: 
i=l 

(HI) Each wave satisfies the appropriate wave nondegeneracy conditions. 

(H2) The wave group interaction conditions are satisfied. 

(H3) If Wi is a * • S wave and itji+i is an S • * wave, then Si < Si+\. 

Then (10) is stable to perturbation. 

Proofs of Theorems 1, 2, and 3 will be given in a forthcoming paper with 
Brad P 1 o h r and Dan M a r c h e s i n . 

The classical approach to Riemann problems implicitly poses the following 
question: if step 1 is to understand the codimension two bifurcation at UR = Ui, 
what is step 2? The literature provides various possible answers: (1) extend the 
wave curves (i.e., the codimension one bifurcation curves in Figure 1) through 
various subsequent codimension two bifurcations [W]; (2) identify classes of 
flux functions F for which some analog of Lax's construction works [SmJ, Li]; 
(3) study "interesting" examples [ShSchaMP-L]. Of course, there is no obvious 
step 2. 

In contrast, our approach does have an obvious step 2: analyze how the 
Riemann problem solution bifurcates when exactly one of the assumptions that 
lead to stability is violated. This program provides an organized approach to 
understanding codimension one Riemann problem solutions, such as the one-
wave solutions in Figure 2.1 am presently working on this program with P 1 o h r 
and M a r c h e s i n ; here we only remark that many of the codimension one 
situations can lead to two solutions or no solution of nearby Riemann problems. 
The significance of such multiple solutions is a completely open problem. 
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