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OSCILLATION THEORY OF SELF-ADJOINT 
EQUATIONS AND SOME ITS APPLICATIONS 

O N D R E J DOSLY 

ABSTRACT. Oscillation properties of self-adjoint, even order, differential equa­
tions are investigated using the variational method. The results are used to study 
spectral properties of singular differential operators. 

1. Introduction 

In this contribution we deal with oscillation properties of the self-adjoint, two 
term equation 

(-ir(r(t)y^){n)+p(t)y = 0, (1) 

where t G I = (a, 6), —oo < a < b < oo, r - 1 , p G L\oc(I), r(t) > 0. The 
literature covering the oscillation theory of self-adjoint equations is voluminous 
(recall at least the monographs [3, 12, 13, 18, 19]), so rather here the author's 
view on some aspects of the problem is presented. 

First recall necessary definitions. Two points t\, £2 G / are said to be conju­
gate relative to (1) if there exists a nontrivial solution of this equation for which 
yW(£i) = 0 = 2/2 (*2)» i = 0, . . . , n — 1. Equation (1) is said to be conjugate 
on an interval IQ C I if there exists a pair of points of IQ which are conjugate 
relative to (1), in the opposite case (1) is said to be disconjugate on I0 . Equation 
(1) is said to be oscillatory at b if for any c G / (1) is conjugate on (c, b), in the 
opposite case it is said to be nonoscillatory at 6. 

These definitions are motivated by the calculus of variations. The following 
variational lemma elucidates this motivation and it is also the basic tool in the 
proof of the below given oscillation criteria. 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): 34C10. 
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LEMMA 1. ([12]) Equation (1) is conjugate on an interval I0 = (c, d) C I if 

and only if there exists a nontrivial function y E VV2'n(Io) with supp y C Io 
such that 

d 

dt<0. I(y;c,d) = J [r(t)(y(n\t))2 + p(t)y\t) 
C 

Now recall relation between general self-adjoint equation 

B-i) f c(p f c(*)y ( f e )) ( f c ) = o (2) 
fc=0 

and linear Hamiltonian systems (further LHS). Let y be a solution of (2) and set 

u= (y ,- . . , i / ( n " 1 ) )> vn = Pny{n\ vn_k = - < _ f c + 1 +pn-ky(n~k\ k = l , . . . , 
n — 1. Then (u, v) is a solution of the LHS 

u' = Au + B(t)v, v' = C(t)u-Aтv, (3) 

where 

B ( t ) = d i a g j O , . . . ^ ^ - 1 ^ ) } , 

C(t) = diag{po(t), . . . , p n - i ( t ) } , 

for j = i + 1, i = 1 , . . . , n — 1, 

elsewhere. ^ - { o ! 
(4) 

In this case we say that the solution (u, v) is generated by y. Simultaneously 
with (3) consider its matrix analogy 

U' = AU + B(t)V, V7 = C(t)U - A T V, (5) 

where U, V are n x n matrices. A solution (U, V) of (5) is said to be isotropic 
if V)T(t)\l(t) - VT(t)U(t) = 0. An isotropic solution (U 6, V6) of (5) is said to 
be principal at b if U& is nonsingular near b and 

tMm ( | U " 1 W B( 5 ) U T - X ( 5 ) d s ) = 0. 

Let (U, V) be a solution of (2.3) which is linearly independent of (U&, V&) (i.e., 
(Ub,Vfc), (U,V) form the base of the solution space of (5)), then (U,V) is 
said to be nonprincipal at b. The system y\,..., yn of solutions of (2) is said 
to form the principal (nonprincipal) system at b if the solution (U, V) of the 
corresponding LHS (5) whose columns are generated by j / i , . . . ,y„ is principal 
(nonprincipal) at b. The principal (nonprincipal) system of solutions at b exists 
whenever (2) is nonoscillatory at 6. 
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2. Osc i l la t ion cr i ter ia 

In view of Lemma 1, for oscillation of (1) at b, the function p has to be "suf­
ficiently negative" near b. What does it mean precisely is given in the following 
three oscillation criteria. In these criteria equation (1) is essentially regarded as 
a perturbation of the one-term equation 

(K*)y(n)) (n) = o, (6) 

and negativity of p is "measured" by means of solutions of (6). 

THEOREM 1. ([9]) Let y1,..., yn be the principal system of solutions at b of 
(6), c = (cu...,cn)

T eRn and h = c1y1 + • • • + cnyn. If 

b 

I p(t)h2(t)dt =-oo, (7) 

then equation (1) is oscillatory at b. 

Condition (7) is far from being necessary for oscillation of (1) as shows the 
simple example of the second order equation —y" — \it~2y = 0, /x > \. The 
following two theorems deal with the case when the integral in (7) is convergent 
(like in the above example) or is divergent but at least one of solutions in the 
linear combination which define h is not from principal system. 

THEOREM 2. ([5]) Let y1,..., yn, c and h be the same as in Theorem 1. If 

fp(s)h*(s)ds 
limsup < —1, (8) 

*~* cT(jU-1(s)B(s)l)T-1(s)dsy
1c 

where U = (Uij) = [y^ ' j is the Wronski matrix of j / i , . . . , yn and B is given 

by (4), then (1) is oscillatory at b. 

THEOREM 3. ([5]) Let y i , . . . ,yn be a nonprincipal system of solutions at b 
of (6), c = ( c x , . . . , c n ) T GKn, /i = ciyi + --- + cn£n . If 

}p(s)h2(s)ds 
limsup L£±l—\J. < _ i ? (9) 

t_6 / ? ~ ~ \ - l c т ( / U-l(s)B(s)ÎJт-Ңs)dsJ c 

41 



ONDftEJ DO§LY 

where U = (Uij) = (jjj ') is the Wronski matrix of y i , . . . , yn and B is given 
by (4). then (1) is oscillatory at b. 

Note that these oscillation criteria — in contrast to the majority of recent 
ones, see [11, 15] — do not require any sign restriction on the function p. 

P r o o f o f T h e o r e m s . Let t0 e I he arbitrary. According to Lemma 1 
it suffices to find a nontrivial function y £ VV2'n(£0,b), supp y C (t0,b), for 
which I(y;t0,b) < 0. Chose t0 < t\ < t2 < t3 < b sufficiently close to b and 
define 

' 0, t e [ M o ] , 

/(«), «e[*o,ii] , 
y(*) = I h(t), te[tut2], 

»(*), te [t2,*3], 
- 0 , «G[*3,6), 

where / , g are the solutions of (6) satisfying the boundary conditions 

/ ( i )(*o) = 0, fi)(t1) = h^(t1), g^(t2) = h^(t2), g^(t3) = 0, 

After some calculation we get 

I(y,t0,t3) = 

t± t2 *3 

= J r(t)(f^(t))2 dt + J r(t)(h^(t))2 dt + j r(t)(g^(t))2 dt + 
*o 

+ 

* 2 

íp(t)f2(t) dt + íp(t) h2(t) dt + jp(t) g2(t) dt = 
to t\ t2 

t\ __- ŕз _-, 

= cт ( / U-^BU71-1^) c + cT(í U^BU^-1^) c + 
ío t2 

ti t2 t3 

+ íp(t)f2(t) dt + /p(ť) /г2(ř) dt + jp(ť) 5
2(í) dt. 

,n. 

(10) 

First suppose that p(t) < 0 near 6. Since j / i , . . . , yn is principal system at 6, 

we have limcT(f \J~lB\JT~1ds)~1c = 0. Now in the setting of Theorem 1, in 
t—>b 
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view of (7), t2 can be chosen such that 

ti t2 

I(y, to, b)<cT( f l)-1B\)T-1da J c + f p{t) h2(t) dt + e<0, 

to ti 

/ *3 X - l 

whereby t3 > t2 is such that c T ( / U~1Bl)T~1ds J c < e. 
t2 

In case of Theorem 2, we write (10) in the form 

. . _ i ~ . _ — _ i , \ 

c x 
to 

l(y;to,b)<cT(JU1 BUT-1ds) i 

Í 2 

JP(t)hҢt)dt 

1 + 

cҶ/u-^BlF-Чs) *c 

— ŕ — + —% — 
c г ( / U - 1 B U г - 1 „ ) ^c c т ( / U - - B U ~ - - „ ) \ 

If (8) holds, ty approaches 6 and t$ > t2 > t\ are sufficiently close to &, the 
expression in the square brackets in the last inequality is negative. 

t\ 0 £3 0 

" ' " \ 2 , . p / , N / t - w f \ \ 2 To prove Theorem 3, in computation of / r(t) ( / ( n ) (t)) dt, / r(*) (gW (t)) dt 
to t2 

we replace the matrix U by U and (10) by 

*з _ ! 

/(y;ío,ò)<cт(У>Ű-1BŰт-1љ) 
Í2 

C X 

* 2 

JP(t)h2(t)dt 
- 1 

c^Г/u-^вu^љ) 

cтЏü-ìBÜт-ЧsŢ^c cг(/Û-1BÖ- ,- : l„)~1c 
+ 1 

If £2 goes to fe, (9) implies I(y;t0,b) < 0. 

If p oscillates near b and hence the last two integrals in (10) cannot be 
neglected, we proceed as follows. If the functions f/h, g/h are monotonic on 
(to, ti), (t2, t%), respectively, by the second mean value theorem of integral cal­
culus there exist £i G ( to , t i ) , £2 6 (t2,t3)

 s u ° h that 

t\ ti t\ *3 £2 

fpfdt= fph2(f/h)2dt = fph2dt, fpg2dt= fph2dt. 

to t2 
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*2 *3 £2 

Consequently, in Theorem 1 J ph2dt + J pg2dt = J ph2dt and (7) again implies 

I(y;tojb) < 0. In the proofs of Theorems 2, 3 we proceed similarly. 

Monotonicity of (f/h), (g/h) is proved via the transformation y = hu which 
transforms (2) into an equation with the property that u' = (y/h)' has at most 
2n — 2 zeros (counting multiplicity) on / . Since ( / / / i ) ' , (g/h)' have zero points 
of multiplicity n — 1 at £n, ti and £2,^3, respectively, we have (f/h)' 7-= 0, 
£ £ ( to , t i ) , (g/h)' / 0, f G (£2,^3)- This implies required monotonicity and 
completes the proof. • 

3. Modifications and examples 

i) Let us pass from the two-term equation (1) to the general self-adjoint 
equation 

M(y)+p(t)y = 0, (11) 

where M(y) = ]£ (—l)k(pk(t)y^) • We shall show how to extend Theorem 2 
k=o 

to this more general situation, Theorems 1 and 3 extend in a similar way. 

THEOREM 4. ([5]) Suppose that equation M(y) = 0 is nonoscillatory at b 
and 2 /1 , . . . , yn is its principal system of solutions at b. If p(t) < 0 near b and 

}p(s)h*(s)ds 
lim inf * < - 1 , (12) 

cT(/U-1(a)B(a)Ur-1(a)«ls) \ 

where c, h. U are the same as in Theorem 2 and B = diag { 0 , . . . , 0, p " 1 } . then 
equation (11) is oscillatory at b. Moreover, if there exists d G I such that every 
solution of M(y) = 0 has at most 2n — 1 zeros on (d, b) and lim inf in (J2) 
is replaced by lim sup, the statement remains valid without any sign restriction 
on the function p. 

ii) In all previous criteria the test function h was a solution of (6) or of 
M(y) = 0. It is natural to ask whether some other test functions may be used. 
The answer is affirmative as it is shown in [8]. If p(t) < 0 near 6, a relatively 
large class of functions h may be used. If no sign restriction on p is assumed, 
we need the same assumption in equation M(y) = 0 as in the second part of 
Theorem 4 (this requirement equation (6) automatically satisfies). Moreover, 
the test function must in a certain way compare with solutions of equation 
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M(y) = 0. This modification enables us to prove several oscillation criteria 
originally proved only for nonpositive functions p , particularly those given in 
[11, 15], without sign restriction on p. 

iii) The method used in the proofs of oscillation criteria from the previous 
section may be used to study sufficient conditions for the existence of at least 
two conjugate points in a given interval. This problem was, among others, inves­
tigated in [2, 4, 6, 7, 16, 17, 20]. Typical result is given in the following theorem. 

THEOREM 5. ([4]) Suppose that y i , . . . , j / m , 1 < m < n, are solutions of (6) 
which are contained both at principal systems of solutions at a and b. If there 
exist c i , . . . , c m G R such that 

0 

I p(t)h2(t)dt<0, 

where h = CIT/I + • • • + c m y m ? then there exists at least one pair of points of 
I = (a, b) which are conjugate relative to (1). 

E X A M P L E S . 

1. Consider the equation 

(-i)(n¥2n)+p(t)y = o (13) 

as a perturbation of the Euler equation y(2n) — fint~
2ny = 0, where fin = 

P (^f1) is the so-called Kneser constant and P(X) = A(A - 1) • • • (A - 2n + 1). 
Applying Theorem 4 with h(t) = t~~~ and b = oo, we have 

COROLLARY 1. ([10]) Suppose that 

oo 

limsuplgt fs2n-1(p(s) + ( - l ) n ^ ) ds < -Kn, 
t—>oo J ^ S / 

t 

where 

then (13) is oscillatory at oo. 

2. Let OL $ { 0 , 1 , . . . , 2n — 1} and consider the equation 

(-l)n(tayW)(n)+p(t) = 0. (14) 

Mbdification of Theorem 2 from the part ii) of this section gives 
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C O R O L L A R Y 2. ([8, 11]) Let a + a < 2n - 1. If 

7 (a/2)2M)2 

l i m s u p * 2 " - 1 - " - * / p(s)s°dt < -£„,„,<- - 0
K n y *' , 

t-+oo J 2 n - l - a - a 
t 

-Bn,c*,o- being a nonnegative real constant depending on n ,a ,c r , then (14) is 
oscillatory at oo. 

Note that under the additional assumption p(t) < 0 for large t this statement 
was proved in [11], where also the precise value of Bn^^a may be found. The 
method introduced in [8] enables to drop this assumption. 

3 . As an example of application of Theorem 5, consider the equation (13) 
on I -= K = (—00,00). Since y-[ — l , . . . , y n — tn~l form principal system of 
y{2n) _ Q ^Q^^ a^ _ 0 0 a n ( j OQ (j e ? n — m ) 5 w e have 

COROLLARY 3 . If there exist c i , . . . , cn e K such that 

p(t)(a +c2t + '" + cnt
n~1)2 dt<0 I 

then there exists at least one pair of points in K which are conjugate relative 
to (13). 

Observe that Theorem 5 does not apply to (13) considered on I ~ (0, 00) 
since principal systems of y(2nI — 0 at 0 and 00 have no common solution. 
However, using the idea of Example 1, we have 

C O R O L L A R Y 4 . Suppose 

"*3B-1(P(0 + ( - I ) B ^ ) * < O 
0 

then there exists at least one pair of points in I which are conjugate relative 
to (13). 

/ • 

4. Application 

In this section we mention one application of oscillation theory of self-adjoint 
equations in spectral theory of singular differential operators. Let w G Lioc(a, b) 
be a positive weight function and consider the operator 

^y) = ~^-{r(t)y(n))(n\ t€l=[a,b) 
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b 
in the weighted Hilbert space 1^(1) = {y\ J wy2 dt < 00}. We suppose that a 

a 

is the regular point (i.e., a > —00 and r~l,w are integrable near a) and b is 
the singular point. 

We say that operator £ has property BD if every self-adjoint extension of the 
minimal differential operator generated by £ has spectrum discrete and bounded 
below. For investigation of this property the following statement plays crucial 
role. 

LEMMA. ([12]) Operator £ has property BD if and only if the equation £(y) = 
Xy is nonoscillatory at b for every A G R . 

For the sake of comparison, recall the classical result of T k a c h e n k o 
and L e w i s . 

THEOREM 6. ([12, 14]) Let b = 00 and w = 1. Operator £ has property BD 
if and only if 

00 

lim t2n-
í—>CO 

t 

1 /V 1 (s )ds = 0. (15) 

Application of Theorem 2 gives the following necessary condition for property 
BD of the general one-term operator £. 

THEOREM 7. Let y i , - . . , y n be the principal system of solutions at b of 

the equation (w~1(t)y^) n = 0, U be their Wronski matrix and B = 
diag { 0 , . . . , 0, w}. If £ has property BD then 

b _ 2 

Jr~1(s)(c1y1(s)-i \-cnyn(s)) ds 

lim - — — = 0 (16) 

*~*6 cT(fU-1(s)B(s)liT-1(s)ds} \ 

for every c = ( c i , . . . , c n ) T e W1. 

Setting 6 = 00, w = 1, 3/1 = 1 , . . . , yn = tn"1
J c = e\ = ( 1 , 0 , . . . ,0)T , it is 

not difficult to verify that (15) is a special case of (16). In [1, 5] it was proved 
that for certain class of weight functions (16) is also sufficient for property BD, 
however, for genera) weight functions w this problem remains open. 
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