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ACTIVE SCALARS AND THE EULER EQUATIONS 

P E T E R CONSTANTIN 

ABSTRACT. We describe geometric and analytic constraints for blow up in in-
viscid, incompressible fluid equations . 

1. Introduction 

The three dimensional incompressible Euler equations can be written as a 
quadratic evolution equation for a divergence-free vector, the vorticity LJ . Be­
cause of a quadratic stretching mechanism some solutions of the Euler equation 
could, in principle, evolve from smooth initial data to a singularity in finite time. 
The numerical evidence ([1], [2], [3], [4], [5]) is suggestive, but inconclusive. An 
important result ([6]) states that no singularities can occur before the magnitude 
of the vorticity becomes infinite. In the two dimensional case the vorticity vector 
does not change direction and its magnitude does not grow — no singularities 
can form from smooth initial data. In three dimensions, the magnitude \UJ\ obeys 

Dt \v\ = a\uj\ 

(Dt is the material derivative — time derivative along particle trajectories). The 
stretching factor a has an integral representation ([7], [8]): 

a(x) = -^PV- J'D(y,ttx + y),1l(x)) |w(x + y)| 
dy 

\y\ 

in terms of the magnitude of vorticity. The geometric integrand D depends on 
the direction of vorticity £ 

« - , « ) := " ( l ' i ) 

Kм)ľ 
A M S S u b j e c t C l a s s i f i c a t i o n (1991): 35B40. 
K e y w o r d s : singularity formation, incompressible viscous and inviscid fluids, Navier-Stokes 

equations. 
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y 
y = 7-7, and is given by 

\y\ 
-9(ei ,e2 ,e3) = (e2 • e 3)(Det(ei ,e 2 ,e 3)) . 

For any three unit vectors e i , e2 ,e 3 . Det(-• •) means the determinant of the 
matrix with columns • • • . It is easy to show that the contribution to a coming 
from \y\ > L are bounded uniformly a priori in terms of the kinetic energy of 
the initial velocity and L. Thus blow-up is decided by the local interactions. The 
importance of the formula lies in the fact that the geometric integrand D van­
ishes identically if any of the vectors in it are parallel or anti-parallel. Therefore 
local alignment (or anti-alignment) of vorticity depletes the nonlinearity. This 
is a generalization of the two dimensional situation where there is no stretch­
ing of vorticity. In three dimensions, the more coherent the vorticity field, the 
more stringent are the conditions for blow-up. The depletion of nonlinearity due 
to alignment can be used to devise tests for blow-up which take into account 
geometric information ([9]). 

Active scalars are solutions of certain nonlinear advection — diffusion equa­
tions. There is a great variety of such equations — enough to provide prototypi­
cal examples for much of two dimensional incompressible fluid mechanics. Active 
scalars provide a convenient class of examples for the inviscid generation of small 
scales ([7], [8]). One particular such active scalar equation ([10], [11]) has been 
investigated numerically and shown ([11], [12]) to exhibit sharp fronts, suggest­
ing finite time singularities. In this paper we explain the analogies between the 
three dimensional incompressible Euler equations and active scalars. 

2. The Euler Equations 

The Euler equations can be written as equations of evolution for a;, the 
vorticity of a three dimensional incompressible, inviscid fluid: 

(dt + u-V)u = Su;. (1) 

The divergence-free velocity of the fluid u is determined by omega through the 
Biot-Savart law: 

u(x) = --^J(v^)xuj(x + y)dy. 

(The integral is over the whole three dimensional space.) The strain matrix 5 , 
which is the symmetric part of the gradient of velocity, is given in terms of omega 
by: 

s{x)=tp-v-jM^Mx+y)">w- (2) 

26 



ACTIVE SCALARS AND THE EULER EQUATIONS 

In (2) 
. ^ y_ 

\y\ 

and the matrix M is a function of two variables, the first a unit vector, the 
second a vector, and is given by the formula: 

M(y,w) = -[y ® (y x u>) + (y x u>) <g>y] . 

The matrix M is traceless and symmetric; its mean on the unit sphere is zero 
when the second variable UJ is held fixed and M is viewed as a function of y 
alone. 

The strain matrix and the vorticity balance each other in L2. More precisely, 
the gradient matrix which can be decomposed as 

n 1 

Viz = S + -co x . 

satisfies 

í \Vu\2dx= í\u\2dx = 2 í Tr S'2dx. 

The right hand side of (1) is quadratic in UJ and, in view of the balance of the L2 

norms of S and UJ shown above, it seems possible that finite time singularities 

might occur in the vorticity. Moreover, by dimensional analysis, UJ ~ . 

The basic B e a l e - K a t o - M a j d a result [6] states that no singularities can 
occur in the solution of (1) before the time integral of the maximum modulus of 
vorticity diverges: If 

T 

/ " 
!->(-><)|ІLoodť < °°> 

0 

and if the initial vorticity is smooth and localized, then so is the solution up 
to time T . Thus, the vorticity itself needs to become infinite, at a fast enough 
rate. Then the L°° norm of the vorticity defines a frequency: it is a maximal 
instantaneous rate of rotation of the fluid particles. The Euler equations conserve 
kinetic energy: 

f , 2 [y ,2 
I \u(x,t)\ dx = \u(x,0)\ dx . 

The vorticity defines length scales, in a natural fashion. Denote by |o;|M the 
Holder seminorm 

, , \v(x)-u(y)\ 
Mn '-= S U P }—| T T T — i 

o<ix-yi<L F •" y\ 
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for 0 < /J, < 1. We can associate to this seminorm in a natural way a quantity 
with dimension of length given by 

( í l^(-i*)l \ žFFš^ w~^Mfeoifc) }• 
The L appearing in the definitions of |a;|M and t^ is a fixed reference length 
scale. One can prove the following 

THEOREM 2 . 1 . Assume that the initial vorticity cO0 is smooth and compactly 
supported. Then the solution of the Euler equation corresponding to U)Q is 
smooth ( CQ° ) on the time interval 0 <t <T if and only if 

т 

/ < -( M * ) ) ~2dt < °° 
o 

holds for some //, 0 < /i < 1. 

Therefore blow-up cannot occur in omega without the development of infinite 
spatial gradients, or in other words, without the formation of small scales. Thus, 
if blow-up occurs, then the vorticity magnitude must become infinite fast enough 
and the gradient of vorticity must grow fast, too. In order to go farther we study 
the stretching rate a 

a(x):=S(x)Z(x)-Z(x) (3) 

and the direction of the vorticity £: 

«x ) := fW. (4) 
\u>(x)\ 

The rotational region {x : |o;(o:)| > 0} is material (carried by the fluid). Both 
a and £ are defined in it. They play a crucial role; a is simply the material 
derivative of the logarithm of the vorticity magnitude: 

(dt + u-V)\u;\=a\u>\. (5) 

Prom (2) we deduce the integral representation: 

a(x) = ^P'V.jD(y,t(x + y),t(x)) | w ( * + y ) | - ^ . (6) 

where D is 

-D(ei,e2 ,e3) = (ex • e3)(Det(ei-e2,e3)) (7) 
The Det in D is the determinant of the matrix whose columns are the three unit 
column vectors ei,e2 and e3. In (6) D is computed with ei = y, e2 = £(x + y) 
and e3 = £(x). The geometric significance of D is clear: it is proportional to the 
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volume of the prism of edges equal to y, £(x + y), £(x). In particular it depends 
on £(x + y) only through P^Fx\^(x + y), the projection of f (x + y) orthogonal 
to £(x). Thus 

\D(y,£(x + yM(x))\ < \P&x)t(x + y)\. (8) 
If coscj) = £(x + y) • £(x) then the inequality above is simply 

\D\ < \sinc/)\. 

Note that | sin</>| < 2| s i n ( | ) | = \£(x + y) — £(x)\. It is important to make the 
distinction between the half-angle and the angle: obviously D = 0 if £(x + y) = 
—£(x) but \£(x + y) — £(x)\ = 2 in that case. Thus the integrand (7) vanishes 
identically not only in the parallel but also in the antiparallel case, a fact of 
physical importance. It is clear that 

T 

J\\a(;t)\\LOBdt <oo (9) 
0 

is sufficient for regularity on the time interval [0, T]. (Because of the B e a l e -
K a t o - M a j d a result and (5).) It is also obvious that | a (x) | < y/Tv S2(x). 
Now we will investigate the effect of geometry on the stretching factor a. Let 
us consider a situation in which 

.-&)(*(* + »)). < ^ (io) 

for \y\ < L , \LU\> M > 0. This can happen even if the function £ is not locally 
Lipschitz, for instance if two antiparallel vortex lines osculate. The inequality 
is assumed if both x and x + y are in the rotational region and the values of 
the vorticity exceeds a reference value M; R = R(t) may be a function of time, 
L is a fixed length unit. (I avoid taking L = 1 so that the statements will be 
dimensionally balanced.) Let us denote by 

T z / И x + y )l ì^ : = í 7 з ( í ) 

\V\<L 

Here is an example of a statement which can be proved exploiting the inequality 
(10): 

THEOREM 2.2. Assume that the initial vorticity UJQ is smooth and compactly 
supported. Assume that the solution of the Euler equation satisfies 

I ӣ3(t)щdt <oo. 
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Then the solution is smooth on for 0 < t < T. 

As a corollary we have that, if R is bounded below, then instead the L°° 
blow-up condition we have a much weaker Morrey-Campanato condition. 

If we assume that the vorticity direction is locally Lipschitz continuous in 
regions where the vorticity magnitude exceeds a reference value — a stronger 
assumption than (10) — i.e., that 

\t(x + y)-t(x)\<y}- (11) 

for \y\ < L, \UJ\ > M , then one can relax the assumption on |u;|. We denote by 

U(t) := sup\u(x,t)\, 
X 

the L°° norm of the velocity, and by 

J V i ( 0 : = - L " 3 s u p / \u{x + y)\dy 
X J 

\y\<L 

the L\oc norm of u. One can prove: 

THEOREM 2.3. Assume that the initial vorticity, UJ$ is smooth and compactly 
supported. Assume that the corresponding solution of the Euler satisfies: 

IN^(щï < OO , 

and 
т 

U(s) I ds < oo. 
P(s) 

0 

Then 

1K.*)IL- , 
sup - — ' ^ < CO . 

o<t<T - n W 
In particular, if the velocity and the L\oc norm of vorticity are bounded on 

the time interval [0,T] and p is bounded away from 0, then no singularities 
can arise. The proofs and other related blow-up tests will be presented in [9]. 

One can prove a full array of similar results. They interpolate between the 
B e a l e - K a t o - M a j d a result, which requires the highest norm of vorticity 
magnitude but no assumption on the vorticity direction and the last result which 
requires the highest norm on the vorticity direction but only L\oc norm of the 
magnitude. One can prove also results involving Holder norms of the direction, 
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so that one can evaluate the likelihood of cusps in vortex lines. All these results 
have the common feature that the more one is willing to assume regarding the 
geometric structure of the vorticity direction in regions of intense vorticity, the 
more stringent is the condition that the vorticity magnitude must satisfy to 
blow-up. The results above seem to indicate that there is a direct relationship 
between the complexity of the vortex line field and the likelihood of inviscid 
blow-up. From the discussion above we see that the direction of vorticity is very 
important. Its time evolution is given by 

Dt£ = P£(St), (12) 

where we denoted 
Dt:=dt + uV (13) 

the convective derivative, and 

/f(50 = (5-a)6 (14) 
Consider a Frenet moving frame formed with the unit vectors 

6 = 6 
6 V £ 

and 

The Frenet equations are 

6 I6VČІ ' 

6 = 6 x 6 -

where K\ is the curvature of the vortex line 

«I = I 6 V 6 I 
and K2 the torsion. (Note that £ • V is the derivative with respect to arclength 
along the vortex line.) Alignment of the direction of vorticity with any eigenvec­
tor of the strain matrix is equivalent to K\ = 0. This implies, at that instance 
of time, that the direction of vorticity satisfies Dt(£i) = 0. The time evolution 
of the Frenet frame is computed using the important commutation relation 

[ A , 6 V ] = - « 6 V (15) 

which is a consequence of the fact that vortex lines are material. The evolution 
of the Frenet frame is given by: 

/ 6 \ / 0 (3 7 \ / 6 \ 
Dt 6 = ~/3 0 a 6 

V&/ V-7 -<r 0 / V 6 / 
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where 

/ 3 : = S £ i - 6 , (16) 

7 - B 6 - & , (17) 

and 

( r : = — ( K 2 / 3 + £ - V 7 ) . (18) 
K\ 

Finally, using the Frenet equations, their evolution equations and the com­
mutation relation (15) one obtains the evolution equation for the curvature and 
torsion 

DtK = -an + 7 ^ + f • Vi/ , (19) 

where 

and 

• - ( - . ) • 

^ - ( ? ) • 

• - ( . ) • 
The minus sign in (19) is remarkable: it describes a mechanism of straight­

ening of the vortex line, as it stretches because of (5). For instance, if 

£ - V £ - = 0 , 

where 
ft 

K = R' 
then 

| AC | ds = constant. / , 

The condition £ • Vk = 0 is invariant in time, i.e., if verified initially, it holds 
for all time. It is equivalent to the requirement that, along the vortex line 

K2 = Arvi 

with A constant. The fact that the integral is conserved in time is a statement 
of average diminishing of curvature at the same rate as the arclength element 
|a;| of the vortex line increases. 
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3. Active Scalars 

Active scalars are solutions of 

dte + wve =0, (20) 

where: 
u = VLil>, (21) 

and 
V> = -4(0), (22) 

In (21) the symbol V1- represents the curl operator. In this section the spatial 
dimension is two, so that 

V 1 = J V , (23) 

where 

(ï o) 
In this paper we consider a simple linear operator of the type 

A(0)(x) = Ja(x-y)9(y)dy, (24) 

where the function a is smooth away from the origin. The strength of the sin­
gularity at the origin is important. If the function a is not too singular at the 
origin, say 

|x|6 |a(x) | < C 

for small \x\ and 0 < 8 < 1, then the equation (20) is well posed in appropriate 
Sobolev spaces. 

Perhaps the most important and familiar example of a two dimensional, 
incompressible system which can be formulated as an active scalar is that of 
the Euler equations. The scalar is 0 = u with UJ the vorticity; in this case 
a(x) = ^ log(|x|). There are quite a number of physically significant active 
scalar equations. We mention only two other examples: the infinite Prandtl num­
ber convection, [13], and a quasi-geostrophic model ([10], [11]) (corresponding 
to a = 1/r in (24)). These examples illustrate three prototypical behaviors, ex­
ponential growth, superexponential growth and blow-up (the last not proven). 
What determines whether blow-up occurs or not? The best way to understand 
this is by looking at the equation obeyed by V^O: 

(dt + u- V) V^fl = (Vu)Vx0. (25) 

This equation expresses the fact that the tangent vector to the iso-0 lines is 
stretched by the strain matrix 

s(x) = \(vu + (vuy) 
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and rotated by the the antisymmetric part of the gradient 

i ( V u - ( V u ) * ) = i u ; J . 

Equation (25) is very similar to the equation obeyed by the vorticity in the three 
dimensional Euler equation. 

The three prototypes can be easily identified in the context of the simplest 
equation of state (22)-(24). The infinite Prandtl number convection corresponds 
to a which satisfies 

| x | 2 + 6 |VVa(x ) | <C (26) 

for small |x| with 6 = — 1. For the Euler equations 6 = 0; the quasi-geostrophic 
model corresponds to the case 6 = 1. If a is homogeneous of order —6 in a 
neighborhood of the origin and if 6 > 0 then dimensional analysis predicts blow 
up in finite time. Dimensional analysis may fail to predict correctly if it does 
not take into account additional structure. Take, for instance 

a(x1,x2) = — . 
Xi 

Then not only is there no blow up, but one can integrate (20): 

0(xux2,t) = 0o(x1,x2 -v(x1)t) , 

where 6Q is the initial 6 and 

0O 

v(xi) = / \8i\ o(xi,y)dy. 

The operator \di\ is that of multiplication by |fci| in Fourier representation. 
If (26) holds for negative 6 then the prediction based on dimensional anal­

ysis is that of global existence. In this case the prediction is correct: one can 
prove that the equation has global solutions. The gradient of 9 grows at most 
exponentially. In all these models, if the spatial L°° norm of the gradient of the 
scalar is time integrable, then it is actually locally bounded in time and so are all 
higher derivatives. This analogue of the well-known B e a l e - K a t o - M a j d a 
estimate [6] can be proved using calculus inequalities. The class of examples 
(20)-(24) admits a simple Lagrangian description. If 

q\->X(q,t) 

denotes the position at time t of a particle which was initially at q then the the 
diffeomorphism X obeys an equation in function space 

ftX = U6o(X), 
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where the functional UQ0 is given by 

U6o(X)(q) = Ja(X(q) - X(q')){d0(q');X(q')}dq' 

and 
{0O;X} = (JVOO)'VX. 

Let us return to the case 6 > 0, with, for instance a — \jr and apply in 
the present context the geometric considerations of the preceding section. The 
analogue of the vorticity is V-1^; the analogue of the direction of vorticity is 

V±0 

|V-L0| ' 

and the analogue of the stretching factor a is 

a = ( ( V t i ) £ ) - £ . 

The analogue of (6) follows from (22)-(24): 

a{x) = P-V-J(t{x)-y){t(x)-t{x + y))\V±0(x + y ) \ ^ . (27) 

The direction £ evolves according to 

A£ = /3£-\ 

where ^ = J£ and 
/3 = (V«K-£-L, 

which in view of (22)-(24) implies 

P(x) = P.V-J(ax)-y)(e(x)-& + y))\V±0(x + y)\^. (28) 

The Frenet frame equations are 

< • * ( ! . ) — " ( & ) • 

where K is the curvature of a level set 

K=-(z-vz)-e-
and 

& = £, 6 = - ^ . 
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The Frenet frame evolves according to 

4!)=<"(!)• 
The commutation relation 

[ A , £ - V ] = - a £ - V (29) 

holds. Consequently, the time evolution of the curvature is 

DtK = -aK - £ • V/3. 

Note the minus sign. When the magnitude |VJ-0| grows a is positive; when a 
is positive the curvature decreases: the quantity K | V _ L 0 | obeys a conservation 
law. Its integral along any closed level set is conserved: 

£ / « -
This follows from 

A(«|V±0|) = -V ± 0 .V /3 . 

The integral of K\ V J - 0 | on a closed level set of 0 is the rotation number of that 
level set. The equation above just verifies that this rotation number does not 
change in time during a smooth evolution. If we integrate the same quantity on 
a planar region bounded by level sets we obtain also a constant of motion; it is 
the "sum" of the rotation numbers of the level sets contained in the region: 

dt 
{ж;ci<Ö(æ,t)<C2} 

í к|V--0|ti.---0. 

Although the sign of K is not constant, the conservation of the average prod­
uct «|V_L0| indicates a straightening effect, if the arclength blow-up occurs. 
Numerical evidence ([11]) for the model a = 1/r shows the formation of sharp 
straight interfaces, consistent with our present theoretical knowledge. Details 
and proofs of these results will be presented in [12]. 

4. Analogies 

We will summarize here the analogies between active scalars (a = 1/r model) 
and incompressible ideal fluids. In both cases the equation is an advection — 
stretching equation for a divergence-free function, the "vorticity" : 

Dtu> = (Vu)u;, respectively, Dt(r) = (Vu)r, with r = V J _ 0, 

36 



ACTIVE SCALARS AND THE EULER EQUATIONS 

where 

Dt = u • V . 

The adverting divergence-free velocity u is obtained from the "vorticity" via an 
integral with a singularity of order n — 1 where n is the dimension of space. 
Dimensional analysis suggests that singularities might form in finite time. A 
B e a l e - K a t o - M a j d a type result guarantees that singularities can occur 
only if the magnitude of the "vorticity" diverges. The magnitude A obeys an 
evolution equation 

DtA = OLA , 

where 

A = |a;|, respectively, A = | r | , 

a=((Vu)e)-C, 
and where £ is the unit vector in the direction of the "vorticity" 

u) = A£, T = A£. 

The solution is smooth if and only if 

i 

ot(;ť)\\dt< 00. 

The stretching factor a has a nontrivial singular integral representation as a 
Cauchy principal value integral 

a(x) = PV- jD(ў, ÍO + y), ítø))-40 + У) 
dy 

\y\n 

where the geometric factor D cancels not only after spherical average, but also 
pointwise for certain key configurations. Associated to the "vorticity" there is a 
line (vortex line, level set) tangent to it. The Frenet equations define curvatures 
K for this object. The commutation relation 

[Dt,£-V] = - a£ -V 

holds, and reflects the fact that the line is material. The commutation relation 
can be used to deduce time evolution equations for the Frenet frame and for 
the curvatures. These equations have similar structures and seem to indicate a 
nonlinear balance between the magnitude A and the curvatures K which have 
profound implications regarding the structure of singularities. 
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