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SPATIALLY NONHOMOGENEOUS 
PATTERN GENERATED BY 

HOMOCLINIC/EQUILIBRIUM BIFURCATIONS 

X I A O - B I A O LIN 

ABSTRACT. Assume tha t an ODE system has a homoclinic solution asymptotic 
to a hyperbolic equilibrium E. Breaking of the homoclinic solution creates stable 
period solutions [8]. After adding diffusion, E becomes nonhyperbolic, and sta­
ble spatially nonhomogeneous (SN) periodic solutions can be generated . When 
Neumann boundary conditions are imposed, simple or double SN periodic solu­
tions can be generated depending on the twistedness of the homoclinic solution. 
Systems with spatially periodic boundary conditions are also studied. 

Consider a diffusively perturbed system 

U' = DUxx + F(U,k), 0 < x < 1, Ux(0,t) = Ux(l,t) = 0, (1) 

where D = diag{di,d2}. When d\ and d2 are large, all the solutions of (1) 
approach spatially homogeneous (SH) solutions as t —> oo, [2] and [4]. We show 
when decreasing d\ and e^, spatially nonhomogeneous (SN) stable periodic 
solutions can be generated from a SH homoclinic solution. 

For the unperturbed ODE system, assume that F: R2 x R -» R2 is C°°. 
When the parameter k = fen» the unperturbed ODE has a homoclinic solution 
q(t) asymptotic to a hyperbolic equilibrium E. The Jacobian matrix at E 

(=: -D 
satisfies ad — be < 0 and a + d > 0. Let M(k) be the gap between WU(E) 
and W3(E), measured on a cross section of q(t). Assume that the Melnikov 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): 35K57, 58F39. 
K e y w o r d s : reaction-diffusion equations, predator-prey, homoclinic and periodic bifurca­

tions, stability. 
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function dA^k
k-~ ¥" 0. Breaking of the homoclinic orbit creates a periodic orbit 

on one side of fcn, [8]. Assume that for fc E (fco — e, fcn), a long period solution 
p(t, fc) bifurcates from q(t). All these hypotheses are satisfied by an example of 
F r e e d m a n and W o 1 k o w i c z [9] which motivates this study. See [7]. 

The diffusively perturbed system is studied in intermediate spaces DA(9), 0 < 
0 < 1, where X = [L2(0, l ) ] 2 , DA = {[H2(0, l ) ] 2 with boundary conditions}. 
The existence of a solution U G Cl([0,r]: DA(9)) n C ( [ 0 , T ] : DA(0 + 1)) that 
depends Cr on (d\,d2,k) and the initial condition UQ E DA(6 + 1) for any 
r > 0 is known [3]. We also can show the existence of a center stable (unstable) 
manifold and an invariant foliation of it by strongly stable (unstable) fibers. If 
the equilibrium is hyperbolic with a simple unstable eigenvalue, then the lin­
earization around q(t) has exponential dichotomies in (—oo, — CJ] and \u, oo), 
[6]. Melnikov-Silnikov type function G(d\,d2,k,T) can be constructed which 
measures the jump U(T) — U(0) of a piecewise continuous period T solution. 
The zero of G corresponds to a true periodic solution of period T. The function 
G is a continuation of M. Therefore dM/dk ^ 0 implies dG/dk ^ 0. Thus for 
each T > t*(d\,d2), there exists a unique fc = k*(di,d2,T) such that there is 
a unique period T solution near q(t). The above theorem was proved for ODE 
and delay equations [5]. The proof for parabolic equations is almost identical. 
Since the SH periodic solution persists under diffusive perturbations, we have 
proved the following theorem. 

THEOREM 1. If E is hyperbolic in DA(9 + 1) with one simple unstable eigen­
value, then for each T > t*(di, d2), the SH period T solution is the only period 
T solution near q(t). 

The loss of hyperbolicity of E occurs in the first Fourier mode 

{(t/.COS7T£,t!COS7rx) | (u, v) E R 2 } , 

when (a+7r2di)(d+7r2d2) = be, di > 0, d2> 0. In the (di,d2)-p\ane, the above 
defines a curve V. The bifurcation to stable SN periodic solutions occurs when 
(di,d2) is near T. Let A be the eigenvalue with the real part closest to zero. 
We make a change of variable in a neighborhood of T: (d\,d2) —• (£,m). Let 
m = X. Let £ be the arc length on V when m = 0, and £ = C be an orthogonal 
family of curves to A = C. This change of variable is valid in a neighborhood of 

T, since we can show that VA = ( J^-, J ^ J ^ 0 when A = 0. 

To understand the bifurcation when m « 0, we need two more notions: 

i) The weak stability of E on WC(E). 

ii) Twistedness of the homoclinic orbit q(t). 
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When m = 0, the linearization at E has one simple positive eigenvalue, 
one simple zero eigenvalue and the rest of the eigenvalues are stable. Write 
DA(Q + 1) = X x Y x Z, where X, Y, Z are the unstable, stable and center 
eigenspaces respectively. In a special coordinates, we assume that the flow on 
WC(E) is 

x = 0, y = 0, z' = mz — cz3 + h.o.t., c > 0 . 

The assumption c > 0 means that E is weakly stable on WC(E). When m > 0, 
a pair of SN equilibria E\, E2 bifurcates from E. Notice that the solutions of 
(1) are invariant under a reflection of the domain: RU(t, x) = U(t, 1 — x). This 
causes the flow on WC(E) is odd in z. 

There is a solution <j)(t) to the linear variational equation around q(t) such 
that 4>(t) —• 4>c as t —> —oo, [7]. Here <f>c is a unit eigenvector corresponding to 
the zero eigenvalue. One can show that cj)(t) —> c*(f>c as t —> oo. c* is a function 
of t. We say that the homoclinic solution is nontwisted, twisted, or degenerate 
if c* > 0, < 0, or = 0. In fact, </)(t) is tangent to WCU(E), and is transverse to 
q'(t). We are in fact talking about the twistedness of a strip of WCU(E) around 
the orbit of q(t). 

We say that U(t, x) is a simple periodic solution if it stays near the homoclinic 
orbit and hits a cross section S once. We say that U(t,x) is a double periodic 
solution if it hits £ twice and U(t + T, x) = U(t, 1 — x), where 2T is the period. 

To find a simple or double period solution, we construct inner and outer map­
pings similar to the method of S i 1 n i k o v ' s . The inner mapping is defined in 
a neighborhood of E and spends time to. It is written as a boundary value 
problem that generates Silnikov's method to nonhyperbolic equilibria [1], The 
outer mapping is near the outer loop of q(t) and spends time t\. T = to + t\. 
Using the hyperbolicity in the (x, y) direction, by a Lyapunov-Schmidt reduc­
tion, we are led to two bifurcation equations and two variables k and z. The 
first equation G\(t,m,k,T,z) = 0 is the continuation of the gap condition in 
DA(0 + 1)? a r-d its solution is k = k*(t, m, T, z). The second equation 

z = G2(t, m, T, z), for a simple period T solution, 

z = —G2(t 7Ti, T, z), for a double period 2T solution, 

asserts that the z variable has to match after cycling around a periodic so­
lution. The z variable cannot be reduced by the Lyapunov-Schmidt method 
since E is not hyperbolic in the z direction. Observe that the outer mapping 
is almost linear with z(£i)/z(0) « c*(t). If we choose z = e, m <C £2, the 
inner mapping satisfies z(to)/z(0) <C 1. Thus |G?21 < N - The greatest ratio of 
stretching in z occurs when z « 0, and is denoted by H(t, m, T ) . We can see 
that z = G2(t, m, T, z) (or -G2(t, m, T, z)) has a solution if H(£, m, T) > 1 (or 
H(t,m,T) < - l ) . 

149 



XIAO—BIAO LIN 

THEOREM 2. Assume that c*(t0) ^ 0. We can show 

^H(t,m,T)^0, 

H(t,m,T)~ernTc*(t). 

There exist two families of curves H(t,m,T) = ± 1 in the (t,m)~plane near 
m = 0. For each (t0, m0) G V, m0 = 0, there is an open set O C 1R2 containing 
(t0, m0), the size of which depends on t 0 . O is divided by each curve into two 
parts~-\H(t,m,T)\ < 1 or > 1. 

i) If c*(t0) > 0, / 1. then there exist exactly two stable simple period T 
SN solutions if H(t, m, T) > 1; no such solution if H(t, m, T) < 1. 

ii) If c*(t0) < 0, T-= — 1, then there exists a unique stable double period 2T 
SN solution if H(t, m, T) < - 1 ; no such solution if - 1 < H(t, m, T). 

iii) If c*(t0) = 1, then 
H(t, m,T) > 1 + 6 -=-> there exist exactly two stable simple period T 
SN solutions; 
H(t,m,T) < 1 — 6 =-> no such solution; 
1 + 6 > H(t, TO, T) > 1 ==-> there exist at least two simple period 
T SN solutions. (The uniqueness and stability of such solutions are 
unknown.) 

iv) If c*(t0) = - 1 , then 
H(t,m,T) < — 1 — 8 => there exists exactly one stable double period 
2T SN solution; 
H(t, TO, T) > — 1 + 6 =-> no such solution; 
— 1 — 6 < H(t,m,T) < — 1 => there exists at least one double period 
IT SN solution. (The uniqueness and stability of such solutions are 
unknown.) 

v) The SH period T solution loses stability when the SN solutions are 
known to be stable. 

The above results also show the bifurcation to a pair of SN homoclinic solu­
tions asymptotic to E\ and E2 if c*(t0) > 0 or a pair of heteroclinic solutions 
between Ei and E2 if c*(t0) < 0 when crossing Y. They are special cases with 
T = 00. Except for the stability result, the proof of Theorem 2 can be found 
in [7]. To show the uniqueness or nonexistence of solutions, consider z > 0 
only. (The bifurcation function is odd.) Observe that the solution 3>(t, z0) to 
the equation zf = mz — cz3 + h.o.t satisfies 

9 *(t0,zo) < Q 

дz0 ZQ 
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The return map in the z direction is almost like z(T) = $(t0,z0) • c*(£). Thus 

jr- zr~^ < 0. This shows that if lim ------ > 1, then ^- = 1 admits a unique 

solution 0 < 20 < e; otherwise there is no such solution. In the real situation 
the reduction has some error. Therefore the argument does not work well when 
c*(£0) = 0 or ± 1 . See [7]. 

We now indicate how the stability of SN solutions can be proved. Consider 

20 > 0 only. Again the return map in the z direction satisfies ^r~^ < 0. 

Assume that z(T)/z0 = 1. We have ^ P * o - z(T) < 0. Thus 0 < ^ g p < 

—— = 1. This shows that the return map is stable in the z direction. It is easy 
to show that the return map is stable in the other directions transverse to the 
periodic orbit using the roughness of exponential dichotomies. 

The next theorem shows that for a given large T , one can move (di-c^) 
across T along a narrow strip near c*(£0) = 0 without creating any simple 
period T or double period 2T SN solutions [7]. 

THEOREM 3. Assume that c*(£0) = 0 and ^c*(£0) ^ 0. There exist constants 

e > 0 and t > 0 such that functions £*(m), \m\ < e and 6(T) = c e ~ m T , T > t 

for some c>0 can be defined. If \£ - £*(m)\ < 6(T), \m\ < e and T >t, then 

there is no simple period T or double period 2T SN solution to (2.1), inside a 

(6(T))1/2 neighborhood of the orbit of q(t). 

We now consider equation (1) for x £ R with spatially periodic boundary 
conditions V(t,x + 2) = V(t,x). Let U(t,x), 0 < x < 1, be a solution satisfying 
the Neumann boundary conditions at x = 0, 1. Define 

s, „\ J ^ ( ^ x ) ' 0 < x < 1, 
V0 
70(t,x) = í 

U(t,-x), - l < æ < l . 

Then extend V0 to x G R periodically with period 2. Define V$(t, x) = V0(t,x + 

o. 
THEOREM 4. All the simple period T and double period 2T solutions of 
the diffusively perturbed system with spatially periodic boundary conditions 
of period 2 have the form V^(t,x), where V£ is defined from U, which is a 
corresponding solution satisfying the Neumann boundary conditions at x = 0, 1. 

P r o o f . The eigen vectors corresponding to the zero eigenvalue span a two 
dimensional space that is invariant under the reflection (r, 6) —> (r, —6) and 
rotations (r, 6) —> (r, 0 + £) in polar coordinates. Let V(t, x) be a solution 
satisfying periodic boundary conditions. Then after reflection, or rotation of the 
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domain by £, RV(t,x) -= V(t, — x) and R^V(t,x) =• V(t,x+£) are still solutions 
with the periodic boundary conditions. If V is a simple period T SN solution, 
then it is associated to a solution z = (r, 0) of the two dimensional bifurcation 
equation z = G2(£,rn,T,z) which respects the 0(2) symmetry. The solution 
R-QV is then associated to z = (r, 0) . We can see that R(R-$V) = R-QV 
since z — (r, 0) is invariant with respect to the reflection. The restriction of 
R-oV to [0,1] is a solution to the PDE with the Neumann boundary conditions 
at x = 0, 1. This proves the theorem. • 
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