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ATTRACTORS OF NON-AUTONOMOUS 
PARTIAL DIFFERENTIAL EQUATIONS 

AND THEIR DIMENSION 

M A R K I. VISHIK — VLADIMIR V. CHEPYZHOV 

ABSTRACT. We have studied uniform attractors of non-autonomous nonlinear 
partial differential equation with almost periodic (a.p.) symbols. We have proved 
the at t ractor existence theorem for the 2D Navier-Stokes system with a.p. in time 
external forces, for the reaction-diffusion system and for the dissipative hyperbolic 
equation with a.p. in time terms. When symbols are quasiperiodic (q.p.) in time 
functions, we present the upper bounds for the Hausdorff dimension of uniform 
at t ractors of above problems arising in mathematical physics. 

Introduction 

Dynamical systems corresponding to autonomous evolution equations and 
their attractors have been studied intensively in mathematical literature espe­
cially in the last decade (see, for examples, books [14], [2] and the literature cited 
there). The non-autonomous infinite-dimensional dynamical systems are less un­
derstood. Such systems have been considered in the works [13], [6], [8], and oth­
ers. Some general constructions and notions (for example, processes and skew 
product flows) have been presented in these works with applications mostly to 
ordinary differential equations and some functional equations. The book [10] con­
tains the systematic study of attractors anduniform attractors of processes, i.e., 
two-parametric families of operators describing non-autonomous system with 
applications to some classes of partial differential equations. 

In the paper we present a rather simple approach to the investigation of 
non-autonomous infinite-dimensional systems. We think, that this method is 
well-suited to the analysis of problems arising in mathematical physics. Using 
this method, we have proven attractor existence theorems for the classes of 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): 58F12, 58F39. 
K e y w o r d s : non-autonomous dynamical systems, nonlinear partial differential equations, 

uniform at tractors, Hausdorff dimension. 
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non-autonomous evolution equations that have terms as general as the terms of 
the corresponding classes of autonomous evolution equations. Also, the method 
permits to estimate the Hausdorff dimension of attractors of non-autonomous 
evolution equations. The approach is based on the analysis of a functional pa­
rameter of an equation called time symbol. 

1. Uniform attractors of families of processes 

Let E be a Banach space, and a two-parametric family of mappings 
{U(t, T)} = {U(t, T ) , t > T, T e R} acts on E: U(t, T ) : E *-> E,t > T, 
T G R . 

DEFINITION 1. A two-parameter family of mappings {Ua(t, T ) } is said to be 
a process in E if the following conditions hold: 

i) Ua(t, s) • Ua(s, T) = Ua(t, T), Vt > s > T, T G R , 

ii) Ua(T, T) = I is the identity operator, T E R . 

By B(E) we denote the collection of sets bounded in E. Consider a family of 
processes {Ua(t, T ) } depending on a functional parameter a G E . The param­
eter a is said to be the symbol of the process {Ua(t, T ) } and the set E is said 
to be the symbol space. In the sequel, E is assumed to be a complete metric 
space. 

DEFINITION 2. A set Bo G E is said to be uniformly (w.r.t. a G E ) absorbing 
for the family of processes {Ua(t, T ) } , a G E , if for any T G R and any B G 

B(E) there exists T = T(T, B)>T such that IJ Ua(t, T)B C B0 \/t>T. 

DEFINITION 3 . A set P belonging to E is said to be uniformly (w.r.t. a G E) 
attracting for the family of processes {Ua(t, T ) } , a G E , if sup dist# (Ua(t, T) 

B, P) -* 0 (t -> +oo) for any r G R and any B G B(E). Recall that 
distjc;(X, Y) = sup d i s t i l , Y) = sup inf \\x — V\\E • 

xex xex y£y 

A family of processes possessing a compact uniformly absorbing set is said to 
be uniformly compact, and one possessing a compact uniformly attracting set, 
uniformly asymptotically compact. 

DEFINITION 4. A closed set Az C E is said to be the uniform (w.r.t. a G E) 
attractor of the family of processes {Ua(t, r ) } , a G E , if it is uniformly (w.r.t. 
a G E ) attracting (attracting property), and it is contained in any closed uni-
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formly (w.r.t. a G E) attracting set A^ of the family of processes {Ua(t, r)} , 
a G E : AT, Q A!E (property of minimality). 

THEOREM 1. If a family of processes {Ua(t, r)} , a G E , is uniformly asymp­
totically (w.r.t. a G E) compact then it possesses the uniform (w.r.t. a G E) 
compact attractor AY, • 

2. On the reduction of families of processes to semigroups 

Let a family of processes {Ua(t, T ) } , a G E , acts in a Banach space E. 
Suppose that the symbol space E is a complete metric space, and a certain 
invariant semigroup {T(t)}t>Q (T(h)T(t2) = T(ti+t2), Vtx A2 > 0, T(0) = / ) 

acts on it: T(t)E = S Vt > 0. Let us assume that the following translation 
identity is valid: 

U„(t + s, r + s) = UT{s)a(t, r) V C / G E , ^ > T , T G R , 8>0. (2.1) 

Let us construct the semigroup {S(t)} acting on the extended phase space 
E x E and corresponding to the family of process {Ua(t, r)} , a G E, under the 
condition (2.1): 

S(t)(u, a) = (Ua(t, 0)u, T(t)a), t > 0, (u, a) G E x E . (2.2) 

PROPOSITION 1. The family of mappings {S(t)} acting in E x E by the for­
mula (2.2), under the conditions (2.1), forms a semigroup on ExT,: S(ti)S(t2) = 
S(t!+t2), Vti , t 2 > 0 , S(0) = I. 

EXAMPLE 1. Non -autonomous evolution equation wi th a.p. symbol. 
Consider a family of non-autonomous evolution equations depending on a func­
tional parameter a(t) G C&(R, M), where C^R, M) denotes the space of 
bounded continuous functions on R with values in a certain complete metric 
space M. These equations have the form: 

dtu = Aa{t)(u), t G R , (2.3) 

where, for any fixed t G R , Aa{t)(u) is a nonlinear operator acting from a Banach 
space Ex into a Banach space E0: Aa{t)(.): Ex »-> E0. Usually the space E\ 
is dense in E0. A functional parameter a(t) belongs to a certain closed set E , 
E c C6(R, M). The element a(t) is called the time symbol of the equation 
(2.3) or simply the symbol. The set E is called the symbol space. 
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Let T(h) be a translation operator along the time-axis: 

T(h)a(t) = a(t + h), / i G R . 

We assume, that for any a(t) G £ the function T(h)a(t) = a(t + h) belongs 
to £ for any / i G R . This implies that the symbol space £ is strictly invariant 
under the action of the translation group {T(h), /i G R} : T(/ i)£ = £ V/i > 0. 
We supplement the equation (2.3) with the initial conditions at t = T, r G R : 

u\t=T =uT, uT e E, (2.4) 

where E is a Banach space, E\ C E C E0. Let us assume that for any symbol 
a(t) G E the problem (2.3), (2.4) is uniquely solvable for any r G R and arbitrary 
uT G E. We shall specify the meaning of the expression "the function u(t) is a 
solution of (2.3)" in each particular case. Let also u(t) G E for any t > r. Thus, 
u(t) can be represented in the form: u(t) = Ua(t, T)UT , a = a(t) G £ , uT G E, 
T G R, t > T . It is easy to show, that the two-parametric family of mappings 
{U,j(t, T) , t > T, T G R} forms a process corresponding to the problem (2.3), 
(2.4) with the time symbol a(t) = a G £ , Ua(t, T ) : E I-> E, t > r, r G R. The 
problem (2.3), (2.4) with an arbitrary symbol a G £ generates the family of 
processes {Ua(t, T), t>T, r G R } , a G £ . This family satisfies the translation 
identity (2.1). The translation identity follows from the uniqueness of the solution 
u(t) of the problem (2.3), (2.4). 

In this paper we study equation (2.3) with almost periodic (a.p.) in time t 
symbols a(t). Values of a(t) belong to a complete metric space M. It is well-
known, according to Bochner-Amerio criterion, that a.p. function a(t) possesses 
the following characteristic property: the set of all its translations {a(t + h) = 
T(h)a(t), / I G R } forms a precompact set in C&(R, M) (see, for example, [1]). 
The closure in C0(R, M) of this set is said to be the hull H(a) of the function 
a(t): 

-Cb(ҖM) 
H(a) = {a(t + h) = T(h)a(t), h G R} ' CC Cb(R, M). 

In the sequel, a symbol space E coincides with a hull H(a0) of some fixed a.p. 

function a0 = a0(t), E = H(a0). If a function a0(t) is a.p., then any function 

a(t) G H(a0) is a.p. too. Evidently, the argument translation group {T(h), 

h G R} is strictly invariant on E = H(a0). By Proposition 1, the semigroup 

{£(£)} corresponds to the family of processes {Ua(t, T ) } , a G H(a0). The 

semigroup {£(£)} acts on E x H(a0) by the formula: 

S(h)(u0, a) = (l/*(ti , 0)u0, *(t + h)), u0eE,ae H(a0), (2.5) 

where Ua(t, 0)u0 = u(t) is a solution of (2.3) with the symbol a(t) and the 
initial condition u\t=0 = u0 G E. 
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E X A M P L E 2. 

Non -autonomous evolution equation with quasiper iodic (q.p.) symbol-

Consider Example 1 with ao(t) = </?(ait, ..., akt) - <p(at), where a = 
( a i , . . . , ak) G Rfc, (^(CJI, . . . , LUi + 27T, . . . , u>k) = ^(u^, . . . ,a;,- uk) is a 

27T-periodic function in each argument u>i, UJ = (uj\, ..., uk) G Tk\ <p G 
C(Tk, Ad). Here Tfc is fc-dimensional torus. We assume that a* (i = 1, . . . , k) 
are rationally independent numbers (otherwise, one can reduce the number of 
variables Ui). Consider the symbol space E = H(a0). It can be shown, that 
H(a0) = {(p(at + w0), tOo G Tk} . We can consider symbol space Tk instead 
of H(a0) taking in mind the continuous mapping from Tk into H(a0): u)0 H-> 
(f(at+u0). The translation group of the torus Tk , T(t)uj0 = [uvo+at] (mod 2ir)k, 
corresponds to the argument translation group on H(a0). Obviously, T(t)Tk = 
Tk Vt > 0. The semigroup {S(t)} acts on E x Tk by the formula: 

S(t)(u0, u>o) = ( ^ ( t , 0)tiO, [u;0 + at] (mod 27r)fc), t*0 G £ , u;0 G Tk, (2.6) 

where ix(t) = £la,0(t, 0)w0 is a solution of (2.3) with q.p. symbol a(t) = ^(cYt+c^o) 
and the initial conditions u\t=o ~ uo E E. 

Let us return to general families of processes. 

DEFINITION 5. A family of processes { [ / - ( t , r ) } , ( T G E , acting in E is said 
to be ( F x E , E)-continuous, if for any fixed t and T , t > T , T G R the mapping 
(?/, cr) i—> £/<--(£, T)W is continuous from E xY, into 1?. 

DEFINITION 6. A curve i/(s), s G K, is said to be a complete trajectory of 
the process {U(t, r ) } , if U(t, r)w(r) = u(t) Vt > r , r E R . 

DEFINITION 7. The kernel K of the process {U(t, T ) } consists of all bounded 

complete trajectories of the process {U(t, T ) } : K = {u(.) \ u(t), t £ R, u(.) is 

a complete trajectory of {U(t, T ) } , j l ^ t ) ^ < M u Vt G R} . The set K(s) = 

{u(s) | u(.) G /C} C £7 is said to be the kernel section at time t = 5, s G R. 

Consider two projectors I11 and II2 from B x E onto J? and E respectively: 
Ui(u, a) = ifc, E ^ M , <J) = CT. 

THEOREM 2. Let a family of processes {c7a(t, T ) } , a G E, acting in the 

space E be uniformly (w.r.t. a G E) asymptotically compact and (E x E, E)-

continuous. Also let E be a compact metric space, {T(t)} be a continuous 

invariant (T(t)E = E Vt > 0) semigroup on E satisfying the translation iden­

tity (2.1). Then the semigroup {S(t)} corresponding to the family of processes 
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{Ua(t, T ) } , a G E , and acting on E x E (see (2.2)) possesses the compact 

attractor A, which is strictly invariant with respect to {S(t)}: S(t)A = A 

Vt > 0. Moreover, 

i) IIi ,4 = A\ = w4s is the uniform (w.r.t. a G E ) attractor of the family 

of processes {Ua(t, T ) } , cr G E ; 

ii) n2^ = ^2 = S; 
iii) •*= [J M 0 ) x W ; 

iv) .Ai = ^4E = (J /C<r(0). Here Ka(0) is the section at time t = 0 of the 
crGS 

kernel KG of the process {Ua(t, T ) } with the symbol a G E . 

COROLLARY 1. Under the conditions of Theorem 2, for any a G E the kernel 

of the process {Ua(t, T ) } is not empty. It means, that there exists at least one 

bounded complete trajectory of the process {Ua(t, T ) } for any a G E . 

COROLLARY 2. Let a0(t) be a.p. (or q.p.) function and {Ua(t, r)}, a G 
W(<70), be a family of processes generated by the problem (2.3), (2.4), where 
a G ft(cro) = E . Assume that {Ua(t, r)}, a G H(a0), is uniformly (w.r.t. 
a G E ) asymptotically compact and (E xH(a0), E)-continuous family of pro­
cesses. Then the set 

Ax = A* = (J MO) 
o-G'ri(<To) 

is the uniform attractor of the family {Ua(t, T ) } , <J G W(cr0), where /C<--(0) is 

the kernel section at time t = 0 of the process {Ua(t, T ) } . 

3. Examples of non-autonomous evolution 
equations and systems having uniform attractors 

a) Navier—Stokes sys tem wi th an a.p. external force. 
Consider 2D Navier-Stokes system after excluding the pressure: 

dtu + vLu + B(u, u) = <p(t), x = (xx, x2) G O c c K 2 , 

2 

<p(t) = <p(x, t), L = - I I A , B(u, u) = U^2uidXiu, u\dQ = 0 , (3#1) 
i = l 

u = u(x,t) = (UW(x,t),uM(x,t)), <p = ( < ^ ( 1 W 2 ) ) . (See [15], [11]). By 

H (Hx) we denote the closure in the (L2(ft))2 ((H^tt))2) norm || • || (|| -1^) of 
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the set Vo = {v: v G (CQ?(Q)) , (v> v) = 0 } , by II we denote the orthogonal 

projector on H (in (Z/2(il)) ) and its different extensions. The function ip(t) = 
<p(-, t) is assumed to belong to C&(R, H). The initial conditions are posed at 
t = T, T G R : 

u\t=T = UT, uT € H . (3.2) 

The problem (3.1), (3.2) has a unique solution u(t) G Ct([r, +oo), H) fl 
L 2 ( ( r , T), ffi) VT > r, t > T, and ftu G L2((r , T), H~i), where H_! = 
(i?i)*. Now assume that </?(£) in (3.1) is a.p. function with values in H. Let 
H(<p) be the hull of <p in Cfc(R, .ff). Consider the family of Cauchy problems 
(3.1), (3.2) where <p(x, t) is replaced by any function g(x, t) G H(<p). Obvi­
ously, for all g G H(<p) the problem (3.1), (3.2) has a unique solution u(t). 
Thus, the family of processes {Ug(t, T ) } , g G H(<p), acting in FT, corresponds 
to the problem. The time symbol a(t) of the equation (3.1) is the function 
g(x, £), g(-, t) = cr(t). The symbol space E is H(<p). By the assumption, 
£ = ^(y?) CC C&(R, # ) . The family of processes is uniformly (w.r.t. g G H(<p)) 
compact, and (H x H(<p), iif)-continuous (see [3], [4]). Now let {S(t)} be the 
semigroup acting on H x H(<p) according to the formula (2.5), the family of 
processes {Ug(t, T ) } , g G H(<p), satisfies all the conditions of Theorem 3.2. It 
follows that the semigroup {£(£)} possesses the compact in H x H(<p) attrac-
tor A. Moreover, the set Hi A = A\ = A-H^) (lli(u, g) — u) is the uniform 
(w.r.t. g G H(<p)) attractor of the family of processes {Ug(t, T ) } , g e H(<p), 
and U2A = H(<p) (n 2 v u ; g) = g). Finally, by Corollary 2, 

Az= |J Kg(0), E = W(v), 

where /Cp is the kernel of the process {Ug(t, T ) } . 

b) Non-autonomous reaction-diffusion system with a.p. te rms. 

Consider the following system: 

dtu = aAu - f(u, t) + <p(x, t), u\dn = 0, x G Jl CC Rn , (3.3) 

(or with the boundary conditions du/di/\en = 0), where a = {a^}^ '""* N is 

IV x IV-matrix with a positive symmetric part a + a* > /32I, (3 > 0, u = M(#, £), 

u = (it1, . . . , i t^ ) , <p = (991, . . . , c ^ ) , / = (f1, . . . , / ^ ) . It is assumed that 

<p(-, t) is a bounded continuous function of £ G R with values in H = (L2(n)) > 
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<p(-,t) e Loo(K, (L2(Q)f). Also let / , fuj e O(R"xR, R " ) , (j = 1, . . . , N), 
and let the following conditions hold: 

l2\u\p-C2<(f(u,t),u)<ll\u\P + C1, ji>0,p>2, (3.4) 

(fu(u,t)v,v)>-C3(v,v) VveRN, (3.5) 

| / > , * ) | < O 4 ( M p - 2 + l)> (3-6) 

for any t € R, u e R^ . Note that (3.6) implies: 

l / toOl^CBfl t t r 1 - ! - - ) . (3-7) 

We supplement the system (3.3) with the initial conditions: 

u\t=T=uT, uT e H = (L2(n))N. (3.8) 

Problem (3.3), (3.8) has (for all uT) a unique solution u(t) belonging to 

O6([r,oo), H) n L2((T, T), {Hl(Q))N) n LP((T, T), (LP(V))N) . 

Thus, there exists the process {Uao(t, r ) } , acting in the space H = (L2(Q)) 
and corresponding to problem (3.3), (3.8): Uao(t, r ) : H \-+ H, t > r , r E R. 
System (3.3) has the time symbol a0(t) = (f(u, t) , (p(x, t)) . Suppose that a0(t) 
is a.p. function with values in the complete metric space M determined be­
low. Let ip(x, t) be an a.p. function with values in H, and H((p) be the hull 
of this function. Let us define the Banach space Mi of functions tp(u) = 
(^(u), . . . , tl>N(u)), u = (u1, ...,uN) G RN, with the following weighted 
norm: 

|*(-«)| , |V>M| 
të 

-P r fStr + TJfřSb • (3-9) 

We assume that f(u, t) is a.p. function with values in Mi, /(•, t) G (^(R, M±). 
Then the symbol a0(t) = (f(u, t), (p(x, t)) is a.p. function with values in 
M = Mi x H. Consider the symbol space E = H(a0) = H((f, (p)) . Now 
consider the family of systems (3.3), (3.8) where a0 = (/, <p) is replaced by any 
symbol a = (h, g) G H(a0) = E . Obviously, if functions f(u, t) and (p(x, t) 
satisfy the conditions (3.4), (3.5), (3.6), then any pair (h(u, t), g(x, t)) from 
E satisfy these conditions with the same constants Ci and 7-?. This follows 
directly from (3.6), (3.7) and the norm (3.9). Thus, the problem (3.3), (3.8) is 
correct and it generates the family of processes {Ua(t, r ) } , a G H(a0), acting 
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in H. The family of processes {Ua(t, r ) } , a G E, is uniformly compact, and 
(H x E, /f)-continuous (see [3], [4]). Thus, all the requirements of Theorem 2 
are fulfilled for the family of processes {Ua(t, r ) } , a G E, corresponding to 
problem (3.3) and, therefore, 

i) the semigroup {£(£)} corresponding to this family of processes has 
the compact attractor A, A CC H x E; 

ii) JliA = A\ = Az is the uniform (w.r.t. a G E) attractor of the family 
of processes {Ua(t, r ) } , a G E; 

iii) *4i = *4E = U ^o-(O)» where /C .̂ is the kernel of {£/<-.(£, r ) } ; 
crGS 

iv) for any <r G E the kernel /Ĉ - is nonempty. 

c) Non-autonomous non l inear dissipative hyperbolic equation w i th 
a.p. terms. 

The hyperbolic equations of the form 

d2u + jdtu = Au- f(u, t) + <p(x, t), u\dn =0, x G f t C C R 3 , (3.10) 

where 7 > 0, are considered. We assume that f(u, t) G C2(R x K) and the 
following conditions hold: 

F(u, t)= J f(v, t) dv, F(u, t) > -mu2 - Cm , (3.11) 
J 
0 

f(u, t)u - cF(u, t) + mu2 > -Cm , (3.12) 

where m> 0, c > 0, m is sufficiently small, 

\f'u(u, t)\ < C(l + \u\)P, \f't(u, t)\ < C(l + \u\Y+\ (3.13) 

F{(t,u)<62F(t,u) + C, (3.14) 

where 6 is sufficiently small, V(t, u ) E K x l . 

The case p < 2 for the autonomous equation (3.10) has been studied in [9], 
[7] and in works of other authors. The case p = 2 has been considered in [2], and 
others. We shall discuss here the case p < 2. We assume that (f G C&(R, L2(f-)) * 
The initial conditions are posed at t = r : 

u\t=T = uT(x), dtu\t=T = pT(x), TER- (3.15) 
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We shall write y(t) = (u(t), dtu(t)) = (u(t), p(t)) , yT = (uT, pT) = y(T) for 
brevity. By E we denote the space of vector functions y(x) = (u(x), p(x)) 
with finite energy norm | | y | | | = ||u||f + |M|2 , E = H^(tl) x L 2 (n ) , y(t) G E, 
t > T . The unique solvability of problem (3.10), (3.15) in the energetic space 
E and properties of its solutions are established similarly to the autonomous 
case (see [12], [2], [14]). If yT € E then the problem (3.10), (3.15) has a unique 
solution y(t) G ^ ( [ r , +oo), E) . This implies that the process {Uao(t, r ) } given 
by the identity U„0(t, T)yT = y(t) is defined in E, v/here a0(t) = (f(u, t), 
(p(x, t)) is the symbol of the equation (3.10). As usually, we assume that a0(t) 
is a.p. function with values in a suitable metric space M. To define M consider 
the Banach space M2 of functions (tp(u), ^(u)), u G R, with the following 
weighted Banach norm: 

\\<H\ 1 r ww fhK-0| + k-(")| , \M*)\\ 

We suppose that ( / ( • , t), / / ( • , t)) is an a.p. function of t with values in M2 • 
We suppose also that <p(-, t) is a.p. function with values in Z^C^-) • Then a0(t) = 
(f(u, t), cp(x, t)) is a.p. function with values in M2 x I/2(^) • Le^ H(a0) be the 
hull of function a0. Consider the symbol space £ = H(a0). The problem (3.10), 
(3.15) with a symbol a(t) = (/i(-, t), g(-, t)) G S has a unique solution in 
the energetic space for any a G S , because the function h(u, t) satisfies the 
conditions (3.11)-(3.14) with the same constants and g(-, t) G C&(R, ./-^(f-O) • 
Hence, the family of processes {U^t, T)} , a G E , acting in E, is defined, 
U(t, r ) : E .-> E, t > r , r G R. The family of processes {Ua(t, r ) } , a G S , 
corresponding to (3.10), (3.15) is uniformly (w.r.t. a G E ) asymptotically com­
pact and (H x S, .ff)-continuous. The proof is given in [3] and [4]. It is analogous 
to that of given in [7] for autonomous case. A new point is the condition (3.14). 
It follows that for the family of processes {Ua(t, T)} , a G S , and for the corre­
sponding semigroup {£(£)} Theorem 2 and Corollary 2 are applicable. 

4. Hausdorff dimension estimates for attractors of 
non-autonomous dynamical systems with q.p. symbols 

Consider Example 2. The symbol space of the system can be identify with 
fc-dimensional torus Tk. The system is: 

dtu = A(u, at + u0), u0 G Tk, u\t=T = uT, uT G H, t>T, T eR, (4.1) 
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Here A(u, u;) is the family of nonlinear operators depending on u G Tk with 
the domain H\ and with values in HQ , where H\ C H C H0 are Hilbert spaces. 
Operators A(u, u) are 27r-periodic with respect to each u3r. A(u, u)\, ..., 
Uj + 2ir, . . . , uJk) = A(u, u)\, . . . , ujj, ..., u)k), J = 1, . . . , A:. It is assumed 
that the problem (4.1) is well posed and, consequently, there exists a unique so­
lution u(t) G H, t > T (in a suitable functional space) for any symbol UJQ G Tk 

and arbitrary r G R, uT G H. Hence, a family of processes {U^t, T)} , 
UJQ G Tk, corresponds to (4.1). It was proved in sec.2 that this family gener­
ates the semigroup {S(t)}, S(t): H x Tk i-» H x Tk acting by the formula 
(2.6). Evidently the semigroup {S(t)} can be constructed using the following 
autonomous dynamical system: 

dtu = A(u, u), dtu) = a, u\t=0 = u0 , v\t=Q = UQ , u0 G H, UJQ G Tk. 

We assume that the family of processes {UUQ(t, r ) } , UJQ G Tk, is uniformly 
(w.r.t. UJQ G Tk) asymptotically compact and (H x Tk, FT)-continuous. There­
fore, by Theorem 2, the semigroup {£(£)} possesses the compact (in H xTk) 
attractor A. The projection A\ of A onto H, A\ = U\A = A^, is the uni­
form (w.r.t. u o G T f c ) attractor of the family of processes {U^t, T)} , U>Q G Tk . 
Obviously 

dim .>4Tfc < dim A, 

where dim A^k is the Hausdorff dimension in H of the uniform attractor A^k 
and dim ,4 is the Hausdorff dimension in HxTk of the attractor A. Therefore, 
in order to estimate dim AT* , it is sufficient to get an upper bound for dim A. 

a) 2 D Navier—Stokes equations with q.p. exte rnal force. 
We consider the family of Navier-Stokes systems (3.1) where <p(x, t) = $(x, at+ 
LJ0), a = (a\, ...,ak) G Rk, LJQ G Tk, *(x, u) G C(Tk, H), * w . (x , u) G 
C(Tk, H), u) = (u)\, . . . , UJk), <&(x, u\, ..., Uk) is a 27r-periodic function with 
respect to each u)j(j = 1, . . . , k). The following upper bound is valid for the 
Hausdorff dimension of the uniform attractor A^k of the corresponding family 
of processes {t/w0(t, r ) } , UJQ G Tk : 

/ k \ i / 3 / 1 \ 
dim AT* <k + C2[^) +C3^) (4.2) 

where C2 and C3 depend only on \Q\, g and g^\, 

||ФL(-,a,)||=sup(aФ^(.,a;)||2) 
u>ЄT* \JГi 3 J 

1/2 
l i - * - / / \ I I I V > II .• , . l l V I 

g= sup 
w€Tfe 

g_i = sup ||G(-, w)|| , 
wer* 1 
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R e m a r k 1. In the autonomous case k = 0 the estimate (4.2) becomes the 
well-known upper bound c/v2 for the Hausdorff dimension of the attractor of 
the autonomous Navier-Stokes system ([5], [14]). 

R e m a r k 2. It is easy to construct an example of Navier-Stokes system with 
quasi-periodic external force ip(x, t) such that dim A\ > k. This implies that 
dim A\ can increase when k is growing, while the Reynolds numbers remains 
bounded. Another examples have shown that dim A\ can be infinite for an 
almost periodic external force </?(#, t) having an infinite series of rationally in­
dependent frequencies. 

b ) Reaction-diffusion sy s tem with q.p. terms-
Consider the particular case of the system (3.3), where f(u, t) = F(u, cOn + at) 
and y(x, t) = $(u, cOo + at). Here F(u, u) and $(?/, tOn) are 27r-periodic with 
respect to each argument Uj, j = 1, . . . , fc, and F, F'u, F^. G C{RN x Tk, 

RN), $ , &u. G C(Tk, (L2(Q))N). Let the conditions (3.4)-(3.7) be valid with 

/ replaced by F and t G R by CO G Tk. Let also (for simplicity) p < 2n/(n — 2) 
for n > 3 and p is arbitrary positive for n = 2. We require also the following 
inequalities: 

\K(U, U)\ < C(l + |u |(n+2)/(n-2)) ( „ > 2 ) ? 

\F(u + z, a> + p) - F(u, u>) - Fu(u, u)z - F'„(u, u)p\ < 

<c(\u\+\z\+ir(\zr
6+\^6), 

|*(x , u> + p)- $ (* , u>) - *£,(*, u)n\ < i/)(x)\ii\1+6, 

px < 4 / ( r a - 2 ) , Vu, z G R^ , a; G T f c , /JL G R* , and x G ft. Here 6 > 0, 8 is 
sufficiently small and "0 £ £2 (ft)- These conditions guaranties the quasidiffer-

entiability of the semigroup {S(t)} on the attractor A in (L2(Q)) x Tk . 

As we already know, the family of Cauchy problems (3.3) generates the family 

of processes {Uu0(t, T)}, tOo G T fc,acting in the space (L2(iT)) . The corre­

sponding semigroup {£(£)} possesses the compact attractor A CC (L2(Q,)) x 

Tk. The following estimate holds: 

dim ATk < dim A < k + C2k
n/^n+2) + C3 . (4.3) 

where C2 and C$ do not depend on k. 

R e m a r k 3. Examples show that the main terms k in the estimates (4.2) and 
(4.3) are exact, under the condition that all other parameters controlling the 
norms of terms are bounded. 
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c) Non l inea r hype rbol ic equation with q.p. in t ime t e r m s . 

Consider the particular case of the problem (3.10) with q.p. in time functions 
f(u, t) = f0(u, cvo + ott) and ip(x, t) = tpo(x< too + cxt). a = (oi (\k.) are 
rationally independent real numbers, fo(u, u) and y?o(rr. u/) are 27r-periodic 
with respect to each Uj, j = 1, . . . , k, UJ = (ui\, . . . , UJ^). We assume that 
fo(u, u>) G C2(R x Tfc, R), ip0(x, u) G Cl(Tk, L2(Q)), and /0(u, v) satisfies 
the conditions (3.11)-(3.14) with slight modifications. Besides, for u, ul G K. 
a;, a;1 G T f c , we suppose that: 

| / o u K " ) - fLiu\ u')\ < C(\u\2~6 + k l | 2 - * + 1) (\u - u1! ' + |* - u;1 |*) , 

| / a > > " ) - / 0 t > \ a;1)! < C(|t*|3-« + lu1!3- ' + 1) (\u - u*\* + \u - a ;Y) . 

\(p0(x, u + fi)- <p0(z, W) - (v?ow(x, a;), / /) | < C | ^ ( X ) | | / A | 

M = (/^l? •••> ^k) E Rk, 0 < 6 < 1, i/>(x) G L2(il). The family of equations 

(3.10) generates the family of processes {U^0(t, r ) } , a;0 G Tk, acting in the 

energy space E. Using the usual scheme, one can construct a semigroup {S(t)} 

acting in the extended phase-space £ = E xTk, S(t): £ \-> £. The family of 

processes {EIu,0(£, T ) } , U)O £ Tk, possesses the compact uniform (w.r.t. uo G 

Tk) attractor A\ CC E consisting of all bounded in E complete trajectories 

y(t) = (u(t), dtu(t)) , t G K, of the equation (3.10) with an arbitrary symbol 

u0€Tk (see [3], [4]). 

We can show that the uniform attractor A\ of the equation (3.10) with q.p. 
symbol has finite Hausdorff dimension. The estimate for dim Ai depending on 
the number k of rationally independent frequencies (a i , . . . , a&) of the q.p. 
symbol: 

d i rndl < Cifc + C2fc1/3 + C3 . (4.4) 

R e m a r k 4. For the hyperbolic equation the main term in the estimate (4.4) 
equals to dk (Ci > 1) while in (4.2) and (4.3) C1 = l. 
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