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SOME NEW METHODS F O R NUMERICAL SOLUTION 
OF INITIAL VALUE PROBLEMS 

by MILAN PRÁGER, JIŘÍ TAUFER and EMIL VITÁSEK 

§1. I N T R O D U C T I O N 

When solving many technical problems leading to initial-value problerns for 
ordinary differential equations (typical examples are stiff problems) by finite-differ­
ence methods it is important not to aim only at high asymptotic accuracy but also 
to satisfy other requirements. One of such requirements is Dahlquist's 4-stability 
which has often proved very useful. It is well known, however, th^t in the class of 
basic methods for numerical solution of initial-value problems (as the linear multistep 
methods, the Runge-Kutta-type methods) there exist no A-stable methods of order 
higher than 2 (cf. DAHLQUIST [1963]). This to a great extent riegafcive result made 
us to be concerned with as larger class of methods that wquld contain ̂ -stable methods 
of arbitrarily high order. Because it is also well known that the 4-sfable linear mul­
tistep methods are necessarily implicit (cf. again DAHLQUIST [1963]), our methods 
will bear more implicit character in the sense that instead of computing the approxi­
mate solution in one point from the (known) approximate solutions in / preceding 
points (as it is in the case of linear /-step method) we will compute the approximate 
solutions in k successive points simultaneously from some (generaly nonlinear) 
system of equations supposing the solution is known in / successive points. From 
this reason these methods will be called over implicit methods. 

In the lecture, the necessary and sufficient conditions for the convergence of 
overimplicit methods will be given and the existence of A-stable methods of arbitrarily 
high order will be studied. Before passing to the main subject of this lecture we would 
like to note that the overimplicit methods can be used not only for the solution of 
stiff problems but also for construction of numerical methods for solving partial 
differential equations of parabolic type which are of arbitrarily high order of accuracy 
with respect to the time mesh-size. This fact can be most easily comprehended assum­
ing that the parabolic equation is solved by transformation on the system of ordinary 
differential equations (discretizating only the space variables) and observing that 
the resulting system of ordinary differential equations is the more stiff the more fine 
is the space mesh. 

§2. O V E R I M P L I C I T M U L T I S T E P M E T H O D S 

For the sake of simplicity, we will deal only with one differential equation of the 
first order 

y'=f(x,y) in <a,Z>> (2.1) 
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with the initial condition 
y{a) = ř/ (2.2) 

Let us note, however, that all what follows is true also for systems of ordinary dif­
ferential equations. The right-hand term of the given differential equation is assumed 
to be defined, continuous and satisfying the Lipschitz condition with respect to 
y (with a constant independent of x) in the strip a^x^b, —oo<y<ooso that 
the solution of the problem (2A) and (2.2) exists and is unique in the whole interval 
<a, b}. The approximate solution will be sought in points xt = a + ih, i = 0, 1,..., 
(or in some of them) where h > 0 is the mesh-size. One step of the method under 
consideration consists— as it was already mentioned—in computing the approximate 
solutions y„+i, .-.jyn+fc in the points xn+1, ..., xn+k (assuming the approximate 
solutions yn-i+i, •..- yn in the points x„_/+1, ..., xn to be known) simultaneously 
from the system 

(2.3) ~Уn+í + B "yn-i + Г = hc fn+í + ҺD /n-Z+1 

-Уn + k- -yn -fn + k- -fn -

where fi = /(x/, j>y), C is a square matrix of order k and B, D are k x / matrices. 
The fact that the function /(x, y) satisfies the Lipschitz condition guarantees the 

existence and the uniqueness of the solution of (2.3) for any sufficiently small h 
so that one step of our method is really defined. In order to describe the whole method 
it is necessary, moreover, to indicate how to continue in the following step i.e. to 
indicate how to choose the new / initial values. The method will proceed in advance 
obviously only in that case when the new initial values will be chosen from the values 
yn-i+2, •••5yn+k- Because this may be obviously done in different ways, specify the 
new initial values as yn_l+l+s, ...9yn+s where s is an integer, 1 ^ s ^ k. Hence, 
our method is characterized not only by the matrices B, C, D but also by the parame­
ter s. Let us note that if s< k it is necessary to forget the values yn+s+1, ...,yn+k 

computed in one step of the method and to recompute them in the following step. 
For the sake of simplicity of the notation, we will always denote the approximate 
solution in the point Xj by only one symbol yj even though this value need not be 
the same in different phases of the computation. This licence cannot cause any misun­
derstanding. 

§3. CONVERGENCE OF O V E R I M P L I C I T METHODS 

Before formulating the main result of this section it is necessary to introduce some 
concepts and notations. 

Definition 3.1. The method (2.3) given by matrices B = {bu}, C = {cl7}, D = 
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= {dtj} will be said to be oforder p (p positive integer) if the following k(p + 1) condi­
tions are satisfied: 

1 + i bi} - 0, 1 - £ *>,// - j) = I c0- + S dy. (3-1) 
j = i J=I J = I j = i 

iv + (-irEM'-j)' = v[ £ ctJr
l + (-i)v_1 s -.// -jr'i 

j=i 1=i j = i 
v - 2, ...,p; i = 1, ...,k. 

Definition 3.2. The method (2.3) wi// be said consistent if it is of order at least one. 

Remark 3.1. Let us draw the reader's attention to the fact that both the consistence 
and the order of the method depend only on the matrices B, C, D and do not depend 
on the parameter s. 

Definition 3.3. Let yeC1 and let 

y(x + Һ) + B y(x- (/-- 1)Л)- - ҺC У(x + h) 

У{x + Щ] ly{x) J Ь'(x + kh). 

- ҺD [>'(* - (/ - 1) ҺŢ\ - L(y(x); h). 

У(x) 

(3.2) 

The vector L(y(x); h) with components Lt(y(x); h) will be called the local error of the 
method. 

The conditions (3.1) express that the local error of the method (2.3) is of the order 
hp+1. More precisely, it holds 

Lemma 3.1. Let there be given the method (2.3) of order p; let y(x) e C r + 1 « a , b» 
and let Y = max | j ( p + 1 ) ( x ) | . Then there exists a constant K such that 

\Lt(y(x);h)\<KYhp+1 (3.3) 

for i = 1, ..., k and for any x e (a, b) for which the expression L(y(x); h) has sense. 
Because we are dealing with the multistep method it can be expected that the 

convergence will be guaranteed not only by the assumption that the local error is 
small but that some other conditions similar to Dahlquist's stability conditions will 
have to be fulfilled (cf., for example, HENRICI [1962]). In order to be able to formulate 
them, let us introduce some further notation. 

Thus, let the method (2.3) be given and let firstly / ^ s. Let us define in this case 
the matrix R by the equation 

R = [0<, s-ь'.,0.,л- s] (3.4) 

249 



where Omn is m x n null matrix1) and 7, is the unit matrix of order /. Further, 
define the matrix £ by the equation 

£ = -RB. 

Secondly, let / > s and define the matrix S by the equation 

Further, let 

-m-> 
Construct the matrix 

B(1) = [0M i + 1 ) s_ i ;B] 

and divide the matrix SBW into i + 1 square blocks By in such a way that 

, SB«>--[B0 , . . . ,B: j . 
Finaly, construct the matrix 

, • O -

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

- Ms , s 's ^S,S ' 

£ = 

L-ßn 

os 

л 
- ß , 

(3.10) 

After introd ucing these matrices we are able to define the stability of the overimplic-
it method (2.3). 

Definition 3.4. The overimplicit method (2.3) will be said to be stable if it exists a 
constant F su ch that for any n 

II E"|| ^r3) (3 . i i ) 

where £ is defined by (3.5) or (3.10). 

Remark 3.2. The condition (3.11) can be alternatively expressed in such a way 
that the matrix £ has eigenvalues smaller or equal to 1 in magnitude and that only 
linear elementary divisors correspond to eigenvalues of magnitude equal to 1. 

Remark 3.3. Let us draw the reader's attention to the fact that only the matrix 
B and the parameter s are concerned in Definition 3.4. 

x) If some index of the matrix Om n is zero then this matrix does not occur in (3.4) at all. 
2) The symbol [a] denotes the integral part of the number a. 
3) Here one can take an arbitrary norm of a matrix as a linear mapping; let us consider for the 

definiteness the spectral norm. 
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Now we can formulate the basic theorems concerning the convergence of the 
overimplicit method. 

Theorem 3.1. A stable and consistent overimplicit method is convergent. 

Remark 3.4. Using the standard procedure consisting in the investigation of 
special differential equations, it could be proved that the conditions of Theorem 3.1 
are also necessary. 

Theorem 3.2. Let there be given a stable overimplicit method of order p g: 1. Let 
the solution of the given differential equation (2.1) have continuous derivatives up to 
order p + l. Finally, let the initial conditions by which the approximate solution is 
determined be given with the accuracy of order 0(hp). Then the discretization error is 
also of order 0(hp). 

§ 4. A-STABILITY OF OVERIMPLICIT METHODS 

In order to be able to speak precisely, let us remind the definition of Dahlquist's 
A-stability. 

Definition 4.1. A numerical method for solving initial-value problems for ordinary 
differential equations is said to be A-stable if any solution of the difference equation 
which arises by application of the given method on the differential equation y' = Ay 
where A is a complex constant with negative real part converges to zero for n -> oo. 

Now it can be proved 

Theorem 4.1. In the class of overimplicit methods there exist A-stable methods of 
arbitrarily high order. 

This theorem can be simplest proved in such a way that one shows that the class 
of overimplicit methods is large enough to contain methods which, having been 
applied on a linear differential equation with constant coefficients, lead to arbitrary 
rational approximation of the corresponding exponential function. Then one uses 
the well-known fact that for the Pade approximation P(z) of ez where z is an arbitrary 
complex number with negative real part it holds | P(z) | < 1. The proof of Theorem 
4.1 is, however, not constructive and from that reason we turn now our attention to 
construction of concrete methods which are in some sense natural and we will study 
their A-stability. If we recall the basic idea of the multistep methods of Adams type 
we are led naturally to the subset of the class of overimplicit methods of the form: 

Xn + i 

Í 
Xn 

Уn+i - У. = j -*(*) dж, / = 1,...,k (4.1) 

where P(x) is the interpolation polynomial of degree k which has the valuesf,+1 in the 
points xn+i9 i = 0, ..., k. 
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In these methods / = 1 and, consequently, these methods do not need any starting 
procedures. We will call them overimplicit methods of Adams type. The formula (4A) 
can be rewritten in the form 

k 

yn+i - yn = h X yuf(xn+j> yn+j), i = 1, ..., fc, (4.2) 
/=o 

where 

?u = ilj(t)dt (4.3) 
o 

and lj(t) is the elementary Lagrange interpolation polynomial for the points t = 
= 0, ..., k i.e. the polynomial of degree k which has in the points f = 0, ..., ky 

t ^ j the values 0 and in the point t = j the value 1. It is seen immediately that an 
overimplicit method of Adams type is of order k + 1 and that it is stable for any s. 
As far as the convergence is concerned, Theorems 3.1 and 3.2 can be applied. 

In what follows we shall study the A-stability of the method (4.2) in the case s = k. 
In this case, the course of computation will be such that from given y0 one computes 
yx,..., yk, in the further step from yk it will be computed yk+1,..., ylk etc. Thus, only 
yrkir = 1, 2, . . . , will play the essential role and the other values of the approximate 
solution will be only auxiliary. It can be expected that when applying this method 
on a linear differential equation (so that the system (4.2) will be also linear) it will 
be possible to eliminate these auxiliary values and to derive some one-step method 
in which y(r+i)k will be computed from yrk. 

Thus, let the linear differential equation 

y' = Ay (4.4) 

where A is a (complex) constant be given. After elementary using of Cramer rule 
the above mentioned method for solving the equation (4.4) can be written in the 
form 

yW = ̂ Q$-y*' r = 0 ' 1 » - <4-5> 

where z = Ah and 
Q(z) = det (/ - zC) (4.6) 

with 
> n ••• 7ifc" 

C = 

Jki ••• JkkS 

From the formula (4.5) it follows immediately 

Theorem 4.2. An overimplicit method of Ada ms type with s = k is A-stable if and 
only if all roots of the polynomial Q(z) given by (4.6) lie in the right-hand halfplane. 
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Further, it can be easily shown that the coefficients of the polynomial Q(z) can 
be computed explicitely. Namely, if we denote the coefficients of Q(z) by q,-, 

qj = K(k-j+ l)\pk-j+i (4.8) 

where Kis a constant depending only on k and pj are the coefficients of the polynomial 
which has the roots in the points 1, ..., k. Consequently, Theorem 4.2 and the formula 
(4.8) enable us to determine if the method under consideration is A-stable or not. 
It has been shown in such a way that the above methods up to k = 8 are A-stable, 
for k = 9, 10, they are not A-stable, but we have no definite results for general k yet. 

Finally, we would like to mention that the problems presented above do not 
exhaust by far all aspects of the overimplicit methods. Many problems continue 
to be open, for example, the properties of the overimplicit methods the local errors 
of which are in different lines different, the exact description of the connection of 
overimplicit methods with Pade approximations etc. 
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