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ON A THEOREM OF BRUNOVSKY FOR PERIODIC 
OPTIMAL CONTROL 

by LAWRENCE MARKUS 

CONTROL OF LIMIT CYCLES AND APPLICATIONS TO 
CARDIOLOGY 

In control theory we consider a process or plant or dynamical system described 
by a differential system 

x = f(x9 u) 

where x is the real state n-vector at time t, and the coefficient f is an n-vector function 
of the present state x and the control rn-vector u. For simplicity we assume the process 
is autonomous (time-independent) and that f is continuous with continuous first 
derivatives for all x e Rn and u e Rm, that is 

f:RnxRm-> Rn 

is in class C1. 
We might seek to control x(t) between given initial and final states in some fixed 

duration 0 ^ t <L T9 

x(0) = x0, x(T)=xi9 

by choosing a control function u(t) from some admissible function class (say 
ueLj[09 T], that is, u(t) is a bounded measurable function on 0 g t S T). Hence 
x(t) is a solution of the two-point boundary value problem, with separated end 
conditions, 

x =f(x, u(t)), x(0) = x0 , x(T) = xl . 

This constitutes the basic problem of controllability in control theory. 
Among all solutions x(t) to this boundary value problem, that is for all admissible 

control functions, we might try to select and describe the optimal solution x*(f) 
for the optimal controller u*(f) which minimizes some given cost or performance 
functional C(u). This leads to the central problem of optimal control theory, for 
which there is a vast literature. 

We now turn to a new type of control problem which corresponds to a boundary 
value problem with periodic conditions rather than separated conditions. That is, 
we again consider the plant or control dynamics 

x = f(x, u), 

but the admissible controllers u(t) are now required to be periodic functions, with 
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some period T, Under certain assumptions, each periodic controller u(t) leads to a 
periodic response x(t) of 

x = f(x, u(t)), 

where x(t) = x(t + T) for all real t. That is, x(t) is a periodic solution or, in the 
terminology of oscillation theory, x(t) is a limit cycle. We do not prescribe any initial 
or final states except for the periodicity boundary condition 

x(0) = x(F). 

We might proceed further to select and describe that limit cycle x*(l), which 
minimizes or maximizes some performance functional C(u). In particular, we shall 
let C(u) be the amplitude of the limit cycle x(t), and find the optimal controller 
u*(t) to maximize this amplitude. 

From the purely mathematical point of view more general types of boundary 
conditions could be utilized, or the periodic functions could be generalized to almost 
periodic functions. 

While various extensions of our theory could be pursued, we shall concentrate 
on the control of a limit cycle. This mathematical problem was motivated by some 
engineering instrumentation of cardiac assist devices related to heart surgery. For 
instance, a heart pump must be designed to assist the heart maintain its natural 
amplitude of systolic and diastolic pressures. Further design improvements would 
force the controlled heart to maintain a circulatory regime very near to the natural 
healthy action. Unfortunately the dynamics of the human circulatory system are 
known too poorly for a useful application of any very sophisticated mathematical 
or engineering theory. Thus this study can be considered as an introduction to 
a developing engineering-medical field that could become of great practical signifi­
cance. 

LINEAR DYNAMICS: GEOMETRY OF LIMIT CYCLE 

CONTROL 

We consider a linear control system 

x = Ax + Bu 

where the state x is a real (column) n-vector, the control u is a real m-vector, and A 
and B are real constant matrices. For each bounded measurable control u(t), we 
have the solution x(t) initiating at the state x0 as prescribed by the Lagrange formula 
of variations of parameters, 

t 

x(t) = eAtx0 + e^f J Q~AS Bu(s) ds . 
o 
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If u(t) is periodic, say u(t) = u(t + T) for almost all real times t, then x(t) has the 
same period Fjust in case x(F) = x(0), that is, 

T 

x0 = tAT x0 + tAT J e~As Bu(s) ds . 
o 

Hence there exists a unique response x(t) with period T, and this initiates at 

T 

x0 = (I - e / i r ) - 1 e A r J e - ^ B u ( s ) d s , 
o 

provided the matrix (I — QAT) is invertible. We shall assume, for simplicity, that 
T = 1 and the matrix A has no pure imaginary eigenvalues, ReX(A) ^ 0. Then 
I — eA is invertible, and the initial point x0[u] for the unique periodic response x(t) 
to the periodic control u(t) is given by 

i 

x0[u] = (I - eA) ~X eA J e~As Bu(s) ds . 
o 

The problem of optimal control of the amplitude of the limit cycle now depends 
on finding the admissible controller u*(t) for which x0[u*] leads to the periodic 
response x*(t) having the maximal amplitude. We shall restrain the periodic control 
inputs u(t) by the condition 

u(t) e Q for all t, 

where Q is a given compact convex subset of the real m-vector space Rm. For instance > 
Q could be the cube of unit radius centred at the origin, say \ul \ = 1 for i = 1, ..., m. 
Hence an admissible controller u(t) is a measurable vector in Q having period of one. 

The amplitude of the response x(t) will be taken to be the maximum value of the 
first component x*(t) of the vector x(t). That is 

C(u) = — m ax x 1 ^ ) 
O ^ r ^ T 

and we seek to minimize the cost C(u). Of course, other costs could be studied, for 
instance the norm 

| |x ( t ) | | = m a x [ | x 1 ( t ) | + - + |x" (0 | ] . 
o ^ t ^ T 

Definition. Consider the linear control dynamics in Rn 

x = Ax + Bu 

with compact convex restraint set Q a Rm. For each measurable controller u(t) e Q 
with period 1, there is a unique initial point x0[u] for the response of period 1 (assum­
ing A has no pure imaginary eigenvalues). Define the subset of Rn 

K = {x0[u] | for all admissible controllers u(t)} . 
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The set K corresponds to the attainable set in the usual controllability problem 
(separated boundary conditions), and the letter K corresponds to the conditions 
of compactness and convexity. 

Theorem 1. Consider the linear control dynamics in Rn 

x = Ax + Bu (KeA(A) ?- 0) 

with compact convex restraint set Q cz Rm. 
Let K = {xoM | "(0 = u(t + \)eQ almost all te R1}. 
Then 

i) K is a compact convex subset of Rn, and 
ii) K is the union of all periodic responses x(t). 

Proof. Consider the map 
I 

u -> x0[u] = (/ - c4)-1
 QA J t'M Bu(s) ds . 

The set of admissible control functions $ is convex, since Q is convex. Also the map 
u -» x0[u] is linear, and so K is convex. 

The function set f can be embedded in some closed ball B2 of the Hilbert space 
^[O, 1]. We recall that B2 is weakly compact and any sequence ukef has a weakly 
convergent subsequence 

uki -* u*. 

Consider points x0[ufc] e K, and select a subsequence corresponding to controllers 
uki converging weakly to u*. If u* e f, then it follows that x0[wfc.] -> x0[

w*] e &-
Of course, we can define u*(t) eL2 [0, 1] to have period one on R1. But we must 

still verify that the values of u*(t) lie in Q for almost all times t. Recall that the weak 
limit of positive functions is positive (almost everywhere), and use this result to 
conclude that u*(t) lies a.e. in any half-space of Rn that contains Q. But Q is the 
intersection of a countable number of closed half-spaces, and hence u*(l) lies in Q 
almost everywhere for t e R1. 

Thus u*ef is an admissible controller, and x0[u*] e K. Hence K is compact, 
and the first conclusion of the theorem has been demonstrated. 

The second conclusion follows from the autonomous nature of the control dynam­
ics. For let u(t)ef yield the initial state x0[u] on the periodic response x(t). Then, 
for each positive number T, the controller u(t + T) yields the periodic response 
x(t + T) with initial state x(0 + T). Thus the entire set {x(l) | 0 ^ t = 1} lies within 
K, as required. Q.E.D. 

We next turn to an examination of the boundary dK of the set K cz Rn, and we 
shall state the appropriate form of the maximal principle fpr our problem. 
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Theorem 2. Consider the linear control dynamics in Rn 

x = Ax + Bu (KeA(A) # 0) 

with compact convex restraint set Q a Rm. 
Then an admissible controller u*(t + 1) = u*(l) (a.e.) in Q yields a point x0[u*] e CK 
if and only if: 

i) there exists a nontrivial solution q*(t) of rj = — r\A which satisfies the maximal 
principle 

ii) f/*(t)Bu*(t) = max77*(t)Bu, almost always. 
ueQ 

This theorem was proved by P. BRUNOVSKY and it appears in the doctoral disser­
tation of Dr. D. SPYKER [2], In this paper we shall generalise these results to certain 
nonlinear dynamical systems. 

NONLINEAR DYNAMICS: CONTROL OF LIMIT CYCLES 

Consider a nonlinear control system in Rn 

x = f(x, u) 

where u(t) = u(t + 1) is a periodic control vector lying in a compact set Q c Rm. 
Suppose there exists a unique periodic response x(t) = x(t + 1) lying in some (often) 
compact constraint set A c jRM. We shall seek an optimal controller u*(f) for which 
the response x*(l) assumes the maximal amplitude, in the sense that the first compo­
nent x*x(t) achieves the maximum possible value at t = 1. 

Examples from the literature on nonlinear vibrations are illustrative. For instance 
consider the scalar oscillator 

x + x + x + x3 = u(t). 

In the (x, y) phase plane R2 this,system becomes 

x = y 

y = — x — x3 — y + u(t), 

and we seek periodic solutions (x(t), y(t)) in a small disc A : x2 + y2 ^ Q2 when 
the periodic control u(t) is restricted to a small interval Q : | u | ^ a. The general 
theory of perturbations assures us that for a fixed small Q > 0 there exist suitably 
small a > 0 such that each 1-periodic controller in Q produces a unique 1-periodic 
response in A. 

A more general type of controlled oscillator is described by the vector system in Rn 

x = f{x) + Bu(t), 

for a constant n x m matrix B. Assume that some basic equation (with u = u0(t)) 
has a periodic solution x = cp(t) with <p(t) = cp(t + 1) giving the shortest period. 
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Also assume that this periodic solution of the free equation is stable, or at least that 
the Poincare map 

x0 -* x(l, xo) 

(where x(l, x0) is the solution of x = f(x) + Bu0(t) initiating at x0) does not have 1 
dx 

as a characteristic multiplier, that is, the matrix P = —— (1, cp(o)) has no eigenvalue 1. 
Gxo 

Then we fix a compact tubular neighborhood A of {x = cp(t)} and thereafter 
a small closed neighborhood Q of {u = u0(t)}. The general theory of perturbations 
assures us that each 1-periodic controller in Q produces a unique 1-periodic response 
in A. 

Theorem 3. Consider the control system in R" 

x = f(x, u) = f(x) + B(x) u 

where f(x, u) e C1 for (x, u) in a compact set AxQ a Rnx Rm and Q is convex. 

Assume that each measurable controller 

u(t) = u(t + l)eQ (a.e.) 

yields some I-periodic response xu(t) e A. Let the cost of u(t) be given by 

C(u) = g{xu-\ + l (f°(x„) + G(xu) u) d/, 

where g is a continuous functional on the function space C[0, 1] andf°(x, u) = f°(x) + 

+ G(x) u is continuous in Rn+m. 

Then there exists an optimal controller u*(t) minimizing (or maximizing) the cost 
at C(u*). 

P roof . Since Q and A are compact, and f°(x , u) and g are continuous, we see 
that inf C(u) = m is finite. Take a sequence u(k)(t) of controllers, with corresponding 
responses x(k)(t), so C(u(k)) \ m. Using subsequences we can assume (with usual 
arguments such as those in the text Lee-Markus p. 260 [1]) 

u{k)(t) - u*(t) weakly in L2[0, 1]. 

x(k)(t) => x*(t) uniformly in C[0, 2] 

and also, weakly, 

f(x(/0(t), uik)(t)) - f ( x * ( r ) , u*(0) 

f°(x(fc)(0, u(k)(t)) - f ° ( x * ( l ) , u*(0). 

Now x(k)(t) is the response to u(k)(t) so 

t 

x(k\t) = xik\0) + J U(xik\s)) + B(x(k\s)) u«\sy] ds 
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and 

x*(t) = x*(0) + J [f(x*(s)) + B(x*(s)) u*(s)] ds. 
o 

Thus x*(t) = x*(t + 1) e A is a periodic response to the controller u*(t). Using 
the convexity of Q we can show easily that u*(t) e Q is an admissible controller. 

Further calculations with the cost functional yield 

C(u(fc)) = £[x(fc)] + j [f°(x(k)) + G(xik)) u(k)(t)] dt. 
0 

As k -> oo we compute C(u(A)) \ u? and 

i 

lim C(u(fc)) = g[x*] + J [f°(x*) + G(x*) u*(0] dt. 
fc-*oo 0 

Thus 

C(u*) = rn, 

and u*(t) is an optimal controller, as required. Q.E.D. 

Remark. If we define the cost functional 

C(u) = g[x ] = —max xl(t), 
O ^ f ^ l 

then an optimal controller u*(t) that minimizes C(u) will maximize the amplitude, 
in the above sense. 

We next turn to the maximal principle as a necessary condition for an optimal 
control of the amplitude of a limit cycle for a nonlinear dynamical system. The 
concepts and methods are similar to those used in the standard formulation of the 
maximal principle for the control of a trajectory between given endpoints, see text 
Lee-Markus pp. 246 — 256. We use the notations and calculations of this text with 
no further explanation. 

Theorem 4. Consider the control system in Rn 

x = f(x,u) in C1mRn+m. 

Use all measurable controllers u(t) = u(t + 1) lying in the compact restraint set 
Q cz Rm (a.e.), some of which have l-periodic responses x(t) in Rn. Let u*(t) be an 
optimal controller with response x*(t) maximizing the amplitude x**(t) at x*X(l). 

Assume that x*(t) has a Poincare map such that 

= дx (t,x0) 
has no eigenvalue of 1 

f = i 
x 0 = x*(0) 

dx0 

(where x(t, x0) is general solution ofx = f(x, u*(0) initiating at x0). 

65 
5 Equadiff III 



Then there exists a nontrivial row n-vector n*(t) satisfying the adjoint variational 
equation 

i) r,= -r,^L(x*(t),u*(t)), 

and the maximal principle 

ii) n*it)f(x*(t), M*(0) = max n*(t)f(x*(t), u) (a.e.) 
ueQ 

with the terminal condition 

iii) ^*(l)-=(1,0,0, . . . , 0 ) ( I - P ) - 1 . 

Remarks. Before discussing the proof of the maximal principle we consider the 
special case of an autonomous linear system in Rn 

x = Ax + Bu. 
Here n*(t) satisfies 

n = —nA, since A = -x—, 
ox 

and the maximal principle becomes 

n*(t)[Ax*(t) + Bu*(t)] = m<ixn*(t)[Ax*(t) + Bu], 
ueS2 

or more simply 
n*(t)Bu*(t) = m&xn*(t)Bu. 

The terminal condition on n*(t) is found by computing P = eA from the formula 

t 

x(t, x0) = cAt x0 + J QAit~s) Bu*(s) ds. 
0 

Clearly P has no eigenvalue 1 just in case A has no eigenvalue that is an integral 
multiple of the pure imaginary 2ni. In this situation the above theorem on the maxi­
mal principle reduces to earlier results for linear systems. 

Just as for the earlier linear analysis, the general form of the maximal principle 
for nonlinear dynamics can often be used to display the bang-bang character of the 
optimal controller u*(t) and to guide in the computation of u*(t). 

PROOF OF MAXIMAL P R I N C I P L E 

We shall only sketch the main ideas in the proof of the theorem, the details follow­
ing the pattern offered in the text Lee-Markus. 

If x*(t) is an optimal response, with x*x(l) achieving the maximal amplitude, 
then 

(1, 0, 0, ..., 0) x*(l) = max (1, 0, 0, ..., 0) x(l), 
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where x(t) is any 1-periodic response to any admissible controller u(t). In other words, 
the hyperplane x1 = x*!(l) contains all the possible points x(l) on one side. This 
is the basic geometric fact which yields the maximal principle as an analytical inter­
pretation. 

We shall perturb u*(t) to a new admissible controller un(t, e) with periodic response 
x*(t, e) (as defined below) and for e = 0 the perturbed controller and response reduce 
to u*(0 and x*(t). Then we can assert that 

(1,0,0, ..., 0)x*(l) = (1,0,0, ... ,0)x*(l,£) 

for every perturbation n. 
ax* 

We approximate x*(l, s) — x*(l) by a vector -^JL~ (I, 0) based at x*(l), and 

write the maximal principle as 

- (1 ,0 ,0 , . . . , 0 ) ^ ( 1 , 0 ) ^ 0 . 

Our approximation and the resulting conclusions will be valid for suitably small 
e > 0. 

We shall define a perturbation by data n = {tl9 ll9 ux) where tt is an instant on 
0 _ ^ _ 1, /x = 0, and ux is an arbitrary point in the set Q. Essentially we shall 
change u*(t) to the value uu near t = tx, and keep u*(l) unchanged otherwise. More 
exactly 

. . . fиҷ on řj -liЄ ^ t < ři 
и ( . , e , í 1 , / 1 , и 1 ) - - | м i t ø t) elsewhere on 0 ^ t ^ 1. 

We abbreviate this controller by un(t, s) and the corresponding periodic response 
x*(l, ^). 

The significance of this type of perturbation is that, at the time tt, the solution 
initiating at xo is jerked or displaced (to first order in e) by the vector 

v(h) = U(x*(h)> *i) ~ ./Wi), "*(>i))] h • 
If this vector is then transported along the flow of the system x ='f(x, u*(0), we 
have the final displacement v(l) = Altlv(tx), where Atu is the fundamental solution 
matrix of the variational system 

^ = ^ ( x * ( f ) , M * w ) ' .̂<> = /-

It is the displacement vector v(l) that enters into the standard formulation of the 
maximal principle, where the initial point xo is fixed. But in our situation of limit 
cycle control a more intricate analysis is required. 

In order to locate the periodic response to un(t, &) we shall compute the initial 
point x0(e, n) by the implicit function relation 

xn0>9 xo> e ) — -^o = 0 . 
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Here xn(t9 x0, e) = x(l, x0, e, tx, l{, uX) is the solution of x =/(x , u-c(f, e)) initiating 
at the point x0. Upon solving this implicit relation for x0(e, n)9 with x0(0, n) = x0, 
we obtain the periodic solution 

x*(t, e) = xn(t9 x0(e, 7c), s). 

By definition x0(e9n) = x*(l, e) so we can compute the perturbation in the 
dx dx* 

amplitude using either —— (0, n) or equally well —~ (1, 0). If we differentiate the 
implicit relation for x0(s, n) we obtain at e = 0, 

c ( i ,4)%(o,«) + %(1,x*0,o) - % ( 0 , «) = o, 
3x0

 v ' u / 5e v ' ' ' de ^ ' ~ ° ' ~ ' fe 
or 

^ ( 0 / * ) = (J-PY 1 4^(1 ,4 ,0) . 

The standard discussion of the maximal principle notes that 

fir 

v{l) m _£J-_(1> x*; o) = AUiif(x*(t1), ut) ~f(x*(tt), u*(tl))-\ lx. 

Thus our present form of the maximal principle is 

- ( 1 , 0, 0, ..., 0) (I - P)"1 Altltf(x*(fi), ui) ~f(x*(h)9 u*^))] ^ 0. 

If we transport the vector rj(\) = (1, 0, 0, ..., 0) (I — P)"1 back along the flow 
according to the adjoint variational oquation 

n = -n%(x*(t),u*(t)), 

then we can conclude that (since rj(t) v(t) = constant) 

-it+ttdtflxty&UJ -f(x*(tx)9 u*(tt)y] r> 0, 

or 
n*(h)Kx*(tt)9 w*(tx)) = n*(h)f(x*(h\ ud 

at each instant tt and for each value uY e Q. This is the required formulation of the 
maximal principle for our problem. 

Finally let us comment on some of the technical difficulties encountered in complet­
ing the details of the above proof sketch. 

It is easy to see that xn(t9 x0, e) = x(l, x0, 8, ti9ll9 ux) is continuous jointly in all 
arguments, since 

J | u(t, Єj_, tL, 1i, uO - u(t, є2, t2, l2, u2) | dł -> 0 
o 
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as ( e l 5 / j , li9 uj) -> (e^, / 2 , /->, u2)- It is slightly harder to verify that ---"—(/, x0, 
Ox0 

e, / 1 ? /1 ? uj) is also continuous in (/, x0, e, tx, Ii9 ux). However this last assertion 

follows from the observation that Z(/) = ~ — (/, x0, e, tx, ^ , ux) is the fundamental 
Ox0 

solution matrix of 

Z = — ( x ( / , x0,e, ti9 /-, u-), u(/, e, / l 5 / ] , u 1 ) ) Z 

with Z(0) = / Incidentally this calculation validates our use of the implicit function 

theorem to define x0(e, ti9 li9 u{) = x0(e, n) which is continuous in all arguments 

jointly. A m o r e refined study shows tha t —-— ( 1 , x0, 0) exists, and so — — (0, n) is 

Oe Oe 

just as computed above. 

As in the standard development of the maximal principle we need to take tx as 

a Lebesgue time for u*(/) andf(x*(/), u*(/)) so that the perturbation 

^( i ,x*,o) = ^^/Txn/iXu]) -f(x*(/i),u*(/i))]/i 
da 

5x* 
is correct. Also the use of —r-̂ - (1,0) to approximate x*(l, e) — x*(l) must be justified 

Oe 

as in the standard maximal principle. We omit any further study of the details of the 

proof. 
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