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PERIODIC SOLUTIONS OF x=f(x,x) 

by MILO§ RAB 

Recently several authors ([1], [2], [3], [4]) have found sufficient conditions for 
the existence of periodic solutions of the period co of the differential equation 

x+f(x)x2n + g(x) = fip(t) 

wheref g and p are continuous for all x and t, p(t + co) = p(t) and ju is a sufficiently 
small parameter. Their investigations were based on a lemma due to I. BERNSTEIN 

and A. HALANAY [5]: 

In the system 
dx 
— = X(x) + fiY(x, x, t, fi), XGR2 

let X, Ybe continuous vector-functions, Y co-periodic and let every initial-value problem 
dx 

be unique in a neighbourhood U of the origin. If the degenerate system —-— = X(x) 

has in U a periodic solution with the period co # co, then the former system has at 
least an co-periodic solution, provided \ fi\ is sufficiently small. 

A similar approach can be applied to a more general equation 

x = f(x, x) + iig(x, x, t, n) 

where f, g are continuous functions, f(x, —x) =f(x, x) and g is periodic. Using the 
above lemma, the problem is to show the existence of periodic solutions of 

x = f(x, x) (1) 

with different periods. The purpose of this paper is to establish some sufficient 
conditions for the existence of periodic solutions of (1) and to derive the estimates 
of their periods. 

Consider the phase-plane with coordinates x and y = x. Then the equation (1) 
is equivalent to the system 

x = y, 

y=Kx,y). (2) 

In what follows, let us suppose 

(})f(x, y) e C°(I x Rt) where I = (a, b) is an open bounded or unbounded interval 
containing the origin andRx = (-co, oo). 
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(u) The solutions of z = 2f(x, ^ ) are uniquely determined by initial conditions in 
the halfplane z ^ O1). 

("0 A*, -y) = f(x, y) on I x Pi . 
(iv) xf(x, 0) < Ofor x ^ 0. 

First of all note that the orbits of (2) are symmetric with respect to the x-axis. 
In fact, if (x(t),y(t)) is a solution of (2), then (x(-t), -y(-t)) is a solution as well. 
From the first equation (2) one can also see that the point A(x(t), y(t)) of an orbit F 
of (2) moves from left to right if A is in the half-plane y > 0 and in an opposite 
direction in the half-plane y < 0. Especially, if F is closed, A moves in a clockwise 
direction. 

From this consideration it follows immediately that each part of any trajectory 
F : x = cp(t), y = \j/(t) of (2) situated in the half-plane y = 0 may be written in the 
form y = u(x) where u(x) = ^[(p~1(x)]. In the half-plane y > 0 the function u(x) 

is differentiate and in view of ——• = -j— = y ~j— & holds 
dt dx dt J dx 

uu' = f(x, u). (3) 

If y = u(x) is an orbit of (2) for x e [c, d] <z (a, b) such that u(x) > 0 for x e (c, d) 
and u(c) = u(d) = 0, then u(x) ~ V2f(c, 0) (x - c) for x -> c+ and u(x) - V2f(d, 0). 
. Vx - d for x -> d_ by (iv) and (3). Every solution x(t) of (1) satisfying at any 
time t0 initial conditions x(t0) = x0, x(t0) = x0 where x0 = u(x0) is periodic and 
its period co is given by the formula 

= 2 f-ÜІ. 
J Ф) 

co = 2 | —Дr . (4) 

Theorem 1. Under the assumptions (i) — (iv) every solution of (1) satisfying small 
enough initial conditions is periodic. 

Proof. Consider a point A(0, n^, ni > 0 and the solution x = (Pi(t), y = ^i(t) 
of (2) satisfying initial conditions <px(0) = 0, 1/̂ (0) = nx. Then there is a closed 
interval \_t1, t2\ tx < 0 < t2, in which this solution exists and i/tx(l) > 0. Denote 
c = (p^lO, d = (Pi(t2) so that c < 0, d > 0. Let x = <p2(0> y = ^i(0 ^Q ^ e solution 
of (2) satisfying cp2(0) = c, ^2(0) = 0. Since ^2(0) = f(c, 0) > 0 by (iv), it follows 
that the orbit F : x = <p2(l), y = 1A2W i s situated for t > 0 in the half-plane j > 0 
and cannot meet the x-axis for x ^ 0. But with respect to the uniqueness this orbit 
cannot meet the orbit x = (Pi(t), y = *Ai(0 so that it is forced to cross the line x = 0 
in a point B(0, n2), 0 < n2 < nx. If this orbit meets the real axis at a point of (0, d], 

x) I am very grateful to Prof. J. Butler for his advice referring to this hypothesis in the pre­
print of this paper. 
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the proof is complete. Otherwise consider the solution x = cp3(t), y = \jj3(t), (p3(0) = 
= d, ^3(0) = 0 for / ^ 0. The orbit representing this solution neither meets the 
x-axis for x ^ 0 nor the orbit x = q>i(t), y = ^i(l) so that it is forced to cross the 
x-axis at any point belonging to the interval (c, 0) to prove the theorem. 

Theorem 2. Let the assumptions (i) — (iv) be satisfied. If there is a positive function 
y(x) e C°(a, b) such that either 

(5) 
y(x) DRy(x) -f(x, y(x)) ^ 0 for a < x < 0, 1 

y(x) DLy(x) -f(x, y(xj) < 0 for 0<x<Ъ,] 

or 
y(x) DRy(x) - f(x, y(x)) ^ 0 for a<x < b, (6) 

or 
y(x) DLy(x) -f(x, y(x)) S 0 for a<x< b,1) (7) 

then there exists at least one periodic solution of (I) with the period 

co > 2 min 1Í 
0 ь 

ás 
y(s) ' y(s) 

(8) 

Remark. If both integrals in (8) are divergent, the last inequality is to be read 
"co is arbitrarily large". 

Proof. Let us consider the vector field determined by (2) on the curves y = 0 
and y = y(x) in the phase plane. For the sake of brevity denote I_ = (a, 0], I+ = 
= [0, b). 

Suppose (5). We shall prove that there exists an orbit F : y = uL(x) of (2) defined 
on an interval containing I_, uL(x) > 0 on I_ and such that every trajectory x = 
= cp(t), y = \p(t) of (2) starting at a point A(0, u0), 0 < u0 < uL(0) crosses the x-axis 
at a point c, a < c < 0. 

In order to prove this let £ e I_ and let (cp(t), \j/(t)) be the solution of (2) determined 
by the initial conditions cp(0) = €, ^(0) = 0. In view of (iv) the trajectory r^ : x = 
= cp(t), y = \l/(t) enters the second quadrant with the increasing time and cp(t) < 0, 
0 < ij/(t) < y[<p(0] for l > 0 sufficiently small. For this reason we may write Fs-
in a right neighbourhood of ^ in the form y = u(x) and u(x) is a solution of (3). 
Moreover, in view of (iv) and (5) it follows by a well known comparison theorem 
(see, e.g. P. HARTMAN [7] pp. 28, (b)) 0 < u(x) < y(x) for a < x = 0. Especially 
u(0) = rj, 0 < rj < y(0). Let us denote rj0 = l.u.b. {rj : the orbit y = u(x) of (2) 
starting at the point (0, rj) cuts the x-axis at a point c e (a, 0). Evidently rj0 ^ 7(0) 
and the orbit F : y = uL(x), uL(0) = rj has the desired properties. 

x) Here DRy(x), DLy(x) denote right and left derivatives of y(x). 
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Replacing x by — x, the above assertion can be modified for the interval I+ as 
follows: there exists an orbit y = uR(x) of (2) defined on an interval containing I+ r 

uR(x) > 0 on I+ and such that every trajectory x = cp(t), y = \j/(t) of (2) starting 
at a point (0, (0), 0 < Co < WR(0) crosses the x-axis at a point d, 0 < d < b. 

With respect to the uniqueness it is evidently either uL(x) = uR(x) on I or uL(x) < 
< uR(x) or uL(x) > uR(x) on a common interval of existence. For the sake of defi-
niteness suppose uL(x) 5_ uR(x) and define 

[b if M 
n ~ jthe fi) 

L(x) is positive on I+, 
first zero of uL(x) on the right of the origin. 

The solution x(t) of (1), x(0) = 0, x(0) = uL(0) is defined at least on an interval1 

(t l 9 t2) where 

_ ґ ds _ Г ds 

Let 0 < Xn t uL(0) and let F„ : x = (pn(t), y = \\jn(t) be the trajectory of (2), cpn(0) = 
= 0, il/n(0) = Xn. Then F„ is a periodic orbit of (2) crossing the x-axis at an, bnr 

a < an < bn < rj. The corresponding solution xn(t), xn(0) = 0, xn(0) = Xn is periodic 
and its period wn is given by 

-гf---ds 

It holds 

Č ds C ás Č ds_ f ds 
J"tosy

> JňiyT J w > J y(S) = 

> mm ІJ Ï W J ľ(-)} 
for n -> oo. Hence for « sufficiently large the period con of x„(t) satisfies (8). 

If uL(x) > uR(x), one proceeds in a similar way to prove the assertion under the 
assumption (5). 

Suppose (6). In this case there exists an orbit F : y = uL(x) with the same proper­
ties on I_ as above. By (6) F cannot meet the curve y = y(x) for x > 0 so that it cuts 
either the x-axis at a d e (0, b) or the function uL(x) is positive on I. In the latter case 
one constructs the orbit y = uR(x) as above; then we have uR(x) < uL(x) and the 
proof can be finished as in the case 1. 

Suppose (7). Making the transformation x = — X, this case is reduced to the 
preceding one. 

The proof is complete. 
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Theorem 3. Suppose (i) — (iv). Suppose that there are functions H(x), K(x). h(x), 
k(x) with the following properties 

H(x) e C°(I_), K(x) e C°[0, oo), K(x) > 0, (9) 
0 oo 

k>dsS|^r <10> 
a 0 

f(x, y) < H(x) K(y) for x e /_ , y ^ 0, (11) 

h(x) e C°(/+), Kx) e C°[0, oo), k(x) > 0, (12) 
o 

b 0 

(13) 

h(x) k(y) = f(x, j ) for X G / + , J ^ 0. (14) 

Then for every co0 

o /* 
0 < c O 0 < 2 m i n k u . b . ( 7 ^ , l.u.b. -n4-r\ (15) 

U<«<0 J ^aW 0<p<b J W ) J 
a 0 

where Ua(x), V^O*) are defined by 

x Vx(x) x Vp(x) 

J"( s>d !-Jw- j"<s>ds=j'lil- <16> 
a 0 fi 0 

there exisls a periodic solution with the period to > co0. 

Proof. First of all note that H(x) > 0 for x e (a, 0) as it follows in view of (iv) 
from (11) for y = 0. Therefore, the function Ua(x) defined by (16) exists on the whole 
interval [a, 0] in view of (10) is positive on (a, 0], Ua(x) e C1 and 

ufa{x)==H(x)K(Ua(x)) ( 1 ? ) 

Let x = cp(t), y — \j/(t) be the solution of (2) satisfying initial conditions cp(0) = a, 
^(0) = 0. From (iv) it follows that this solution may be written for all t > 0 at 
which \j/(t) > 0 in the form y = u(x). It is evidently u(a) = Ua(a) = 0; it will be 
shown 

0 < u(x) = Ua(x) for a < x = 0. 

The first part of these inequalities is clear by (iv). To prove u(x) ^ Ua(x) compare (3) 
with (17) on the interval (a, 0]. By (11) and from the Comparison theorem it follows 
that the inequality 0 < u(£) = Ua(0 at a £, e (a, 0) implies u(x) = Ua(x) for x e [£, 0]. 
Hence it is sufficient to prove this inequality in a neighbourhood of a. 
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Since the functions u(x), Ua(x) have positive derivatives in a right neighbourhood 

of a, there exist here inverse functions y = u_1(x), Y = U_1(x), resp. and it holds 

dy x d Y x _-, . TT-i/n\ 

~~ = 76~~P d~ = ~~~7~W' B ( 0 ) = u" ( 0 ) = a-
In view of (11) it is u_1(x) = U~1(x) in a right neighbourhood of 0. But this implies 

u(x) g Ua(x) in a certain right neighbourhood of a and the assertion is proved. 

In the same way one deduces from (12), (13), (14) that the orbit y = v(x) of (2) 

starting at the point (/?, 0), 0 < P < b satisfies the inequalities 0 < v(x) = Vp(x) 

for 0 <; x < /?. At least one of the orbits y = u(x), y — v(x) crosses twice the x-axis 

and that is sufficient for the existence of a periodic solution of (1) satisfying (15). 

The proof is complete. 

Note. One can often use as a "comparison equation" x + g(x) = 0 the properties 

of which have been described in many papers (see, e.g., references in [6]). 

Theorem 4. Suppose (i) - (iv) and 

f(x9 y) = 0 for 0 < x < b, y > 0. (18) 

Suppose the existence of H(x), K(x) satisfying (9), (10), (11). Then for every co0 

0 

0 < c a 0 < 2 1 . u . b . { m i n f - ^ , — ^ - 1 , (19) 
a<a<0 { J Ua(s) Ua(0) J 

a 

where Ua(x) is defined by (16) and 0 < jS < b there exists a periodic solution with the 

period OJ > co0. 

Proof. As in Theorem 3 the assumptions (i) - (iv) with (9), (10), (11) imply that 

the orbit Ft : x = cp{(t), y = ^ ( t ) , (p^O) = a, *Ai(0) = 0 can be written for t > 0 

for which i/tt(t) > 0 in the form y = u(x) and 0 < u(x) <; Ua(x) for a < x ^ 0. 

Since for x > 0 the inequality u(x) > 0 implies by (18) u(x) nonincreasing, two 

possibilities can occur: the orbit T1 either cuts the x-axis a a point c e (0, b) or it is 

u(x) > 0 on (a, b). In the former case the solution x = cp^t), y = xj/^t), <Pi(0) = a, 

^i(0) = 0 is co-periodic and it holds 

o o 
ds 

= 2 Г J Ł > 2 Ґ * > Л 
J Чs) J «(«) J U*(s) 

In the latter case, consider the trajectory F2 : x = q>2(t), y = tyi(t)i (Pii®) = P> 

i/t2(0) = 0 where /? e (0, b) for t < 0. In view of (iv) this trajectory enters the first 

quadrant and wih respect to (iv) and (ii) it is forced to cut the j-axis at a point 

^ > 0. Let *70 = l.u.b. {*7 : the orbit y = un(x) of (2) passing through the point 

(0, ^, 0 < ^ < ^0 cuts the x-axis for x e (0, b)}. Then every orbit y = u^(x) of (2) 
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passing through (0, n), 0 < n < rj0 cuts the x-axis at a„, b„ and a„ I c _r a, b„ T b 
if *7 t no • Hence for any b„ > fl the solution x(t) of (1), x(0) = 0, x(0) = rj is periodic 
with the period 

bn 0 b,, 

. ds o) = 2 — _ 
J «Ф) 

•i! í. 
j W ! , ( S ) 0 

ds 
«,(0) 

> 2 
ľ«,(0) 

2- ll.(0) 

Theorem is proved. 

Theoгeю 5. Suppose i (0, ( )> ( í), 

/(*, 0) > 0 /or a < x < 0, (20) 

/(x, y) nonincreasing with respect to y for 0 < x < b, y > 0. (21) 

Moreover, suppose that there exists a positive function y(x) e C°(a, 0] 

y(x) DRy(x) - f(x, y(x)) = 0 for a<x<0 (22) 
and that 

2g.ì.Ъ.lf(s,0)ds<-y2(0). (23) 
0<JC<ЬO 

Then every solution x(t) of (1) determined by initial conditions x(0) = £, x(0) = 0, 
£ e /_ is periodic and there are periodic solutions with the period a> 

0 

dѕ ^ > 2 J ^ . (24) 
7(s) * 

Proof. To prove this theorem consider the orbit F of (2) passing through the 
point (0, y(0)). We will prove that F is forced to cross the x-axis at a point d,del+. 
To prove this, assume that F is situated over the x-axis. Then F may be written in 
the form y = u(x), u(x) > 0 for x e I+. Since the function/(x, y) is nonincreasing, 
we conclude that u(x) (which is a solution of (2)) is defined on the whole interval 

Xl 

[0, b). But with respect to (23) there is a x1, 0 < xl < b such that 2 J/(s, 0) ds < 
0 

< —^(O) and we have 
Xl 

,2/r.\ ^ „2(„ \ ,,2/ - ľ
2 ( 0 ) = -u2(0) < u2(Xl) - и2(0) = 2 j u(s) u'(s) ds = 

0 

= 2 )'f(s, u(s)) dsй2 ]f(s, 0) dѕ < - ľ
2(0). 

0 

This contradiction proves the assertion. 
Now, let 0 < cn i a and let F„ : x = cpn(t), y = \j/n(t) be the trajectory of (2), 

cpn(0) — cn, iA„(0) = 0. In view of (22) and the preceding consideration, F„ is a periodic 
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orbit of (2) crossing the x-axis at c„, d„, cn < dn < d and the part of Fn between cn 

and dn can be written in the form y = u„(x). Since the sequence {dn} is increasing 
and bounded, there exists lim dn, say d0. The period con of xn(t) is given by the formula 

0 dn 0 

ds 
y(s) °-=2íш=2í-ѓ)+2ïш>2í^+ 

+ 2 

o 
d„ 0 d0 0 

ľ__£_ ? f____ 9 ľ____ ? ľ____ 
J Ф ) "* J ľO) J Ф ) J ľ(s) ' 
0 a 0 a 

From this relation it follows the exitence of a periodic solution xN(t), xN(0) = aN, 
xN(0) — 0 with the period CDN satisfying (24). The proof is complete. 

Theorem 6. Suppose (i), (/_), ("0 fl^d (20), (21). Suppose further that there are 
functions H(x), K(x) satisfying (9), (10), (11). If there is an a, a < a < 0 such that the 
function Ua(x) defined by (16) satisfies 

2íî-.-Ь. f/(ѕ, 
0<х<Ь J 

0 ) d ѕ < - U 2 ( 0 ) , 

then the solution x(t) of(l), x(0) = a, x(0) = 0 is periodic with the period co 

0 
dѕ <°>2{ifh' W 

J l!«(s) 
a 

Proof. From the first part of the proof of Theorem 3 it follows that the trajectory 
x = <p(t), j ; = i/t(t) satisfying initial contitions <p(0) = a, i/̂ (0) = 0 is situated above 
the x-axis for such t for which \j/(t) > 0 so that it cuts the j-axis at a point (0, n), 
0 < rj < Ua(0). Moreover, an easy modification of introductory part of the proof 
of Theorem 5 assures that this trajectory crosses the x-axis at a point d, 0 < d < b 
so that the solution x(t) of (1), x(0) = a, x (0) = 0 is periodic and its period co satisfies 
(25). 

The following theorem concerns two differential equations 
x=f(x,x), i = l , 2 (26,) 

and states sufficient conditions under which the existence of periodic solutions of 
the equation (262) implies the existence of periodic solutions of (26x). 

Theorem 7. (Comparison theorem). Let the functions f, i = 1,2 satisfy (i) — (iv). 
Suppose further that (262) has aperiodic solution and that either 

ft(x,y) <Lf2(x,y)orf1(x,y) <Lf2(x,y)for xel and y ^ 0. Then (26x) also has a 
periodic solution. 
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Proof. In the phase-plane consider the system 

* = y, y =f(x,y). (27,-) 

Let F2 : x = <p2(t), y = ^ 2 ( 0 be a periodic orbit of (272). Then there are values 
tl < t2 such that ^2( t i ) = ^2(^2) = 0, <p2(ti) < 0 < <p2(l2) and \j/2(t) > 0 for 
t! < l < t2. If the first inequality is satisfied, let rX : x = <Pi(l), y = *M0 be a 
solution of (27X) satisfying initial conditions <pX(0) = cp2(t\), $\(0) = 0. The traj­
ectory Fj enters the second quadrant for increasing t and neither can meet the orbit 
F2 nor the negative x-axis as it follows from an easy modification of the proof of 
Theorem 3. Hence T1 is forced to cross the positive x-axis and in view of (iii), Fx 

is a periodic orbit of (272), too. 
If the second inequality is satisfied, we investigate the orbit F3 : x = <p3(t), y = 

= ij/3(t), (p3(0) = (p2(t2), iA3(0) = 0, which corresponds to a periodic solution of 
(271). Theorem is proved. Replacing x by — x we obtain easily the following modifi­
cations of Theorems 4,5 and 6. 

Theorem 8. Suppose (i) — (iv) and f(x, y) = 0 for a < x < 0, y > 0. Suppose 
the existence ofh(x), k(x) satisfying (12), (13), (14). Then for every co0 

fi 

0 < co0 < 2 
\<p<b 

0 

where V#(x) is defined by (16) and 0 < a < —a, there exists a periodic solution with 

the period co > co0 . 

Theorem 9. Suppose (i), (ii), (iii) andf(x, 0) < Ofor 0 < x < b,f(x, y) nondecreas-

ing with respect to y for a < x < 0, y > 0. Moreover, suppose that there exists a posi­

tive function y(x) e C°(0, b], y(x) DLy(x) - f ( x , y(x)) = 0 for 0 < x = b and that 
0 

2 l.u.b. \f(s, 0) ds > y2(0). Then every solution x(t) of (1) determined by inital 
a<x<0x 

conditions x(0) = £, x(0) = 0, £ e 1+ is periodic and there are periodic solutions with 

the period 
b 

~ ds 

Zl.u.b. min< -—— - -rn^f, 
o<p<b U Vp(s) Vfi(0)\ 

a>> 2 
K*) ' 

Theorem 10. Suppose (i), (ii), (iii),f(x, 0) < Ofor 0 < x < b andf(x, y) nondecreas-
ing with respect to y for a < x < b, y > 0. Suppose further that there are functions 
h(x), k(x) satisfying (12), (13), (14). If there is a /?, 0 < /? < b such that the function 
Vo(x) defined by (16) satisfies 

:i.u.b. í/(s, 
a<x<0 J 

0 

2/ s,0)(Ь>Kj(0), 
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then the solution x(t) of(\), x(0) = /?, x(0) = 0 is periodic with the period a 

ds 
(ú > 2 Í V,(s) 

0 

P E R I O D I C SOLUTIONS OF x + f(x) x2n + g(x) = 0 

WITH ARBITRARILY LARGE P E R I O D S 

In this section several applications of preceding theorems to the differential 
equation 

x+f(x)x2n + g(x) = 0 (28) 

are given. Let us suppose f(x), g(x) to be continuous on (—00, 00). Moreover, let 
any initial problem for the equation z9 + 2f(x) zn + g(x) = 0 be unique. The 
assumption 

xg(x) > 0 for x # 0 (29) 

is sufficient for the existence of periodic solutions of (28) in view of Theorem L 
We say the equation (28) has the property P if it has solutions with arbitrarily large 

X 

periods. For the sake of brevity denote G(x) = J g(s) ds. 
0 

Corollary 1. Suppose (29), xf(x) < 0 for x # 0, g(x)jf(x) bounded in a neighbour-
hood of the origin and that there is a constant A such that x\x +f(x) x2n + g(x)] ^ 0 
for I x I > A. Then (28) has the property P. 

Proof. Consider the vector-field determined by the equation yy' + f(x)y2n + 
+ g(x) = 0 in the half plane y > 0. The points at which y' — 0 lie on the curves 
x = 0 and y2n = —g(x)lf(x). The latter curve is defined for all x 7- 0 and is evidently 

bounded for 0 < | x \ <; A. Let B = l.u.b. 2\!~g(x)\f(x) and put M = max (A, B). 
O<\X\<:A 

Setting y(x) = M for | x \ = M and y(x) = \x\ for | x | > M, the assumption (5) 
is satisfied and Corollary 1 follows immediately from Theorem 2. 

Corollary 2. Suppose (29), f(x) < 0 for all x and that there is a constant M > 0 
such that x + f(x) x2n + g(x) ^ Ofor x > M. Then (28) has the property P. 

Proof. If we choose y(x) = M for x < M and y(x) = x for x ^ M, the condition 
(7) is satisfied and Corollary 2 follows from Theorem 2. 

Corollary 3. Suppose (29), f(x) > 0 for all x and that there is a constant M > 0 
such that x + f(x) x2n + g(x) ^0forx< -M. Then (28) has the property P. 

Proof. Choosing y(x) = —x for x ^ —M and y(x) = M for x > —M the 
assumptions of Theorem 2 are fulfilled with (6). This corollary was proved by G. VIL-
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LARI in [2]. It generalizes a former result of S. SEDZIWY [1]. Another application of 
Theorem 2 can be obtained if we put y(x) = h(x) for x = 0 and h(x) = h(0) for 
x > 0. 

Suppose (29), f(x) > 0 for all x and that there is a function h(x) e C\ — GO, 0] 
such that h(x) > 0, h(x) h'(x) + f(x) h2n(x) + g(x) = 0, 

o 

\w)"°- m 
— 00 

This is a result of J. W. HEIDEL [4]. In the original version [3] the assumption 
(30) was missed. 

Corollary 4. Suppose (29), xf(x) g Ofor all x and 

o 

l im [G(x) - G(s)]"1/2 ds = OO, (31) 
JC-+ - 0 0 J 

X 

X 

l im [G(x) - G(s)Y'h ds = 00. (32) 
x-+oo J 

0 

Then (28) has the property P. 

Proof. This is a consequence of Theorem 3 choosing H(x) = — g(x) for x :g 0, 
h(x) = -g(x) for x = 0, K(x) = k(x) = 1 for all x. Note that (31), (32) are, e.g., 
satisfied if G(x) ~ kx2 + m, k > 0, m = 0 for x -» + oo. 

Corollary 5. Suppose (29), (31) andf(x) = Ofor all x. Then (28) has the property P. 

Proof. This is a consequence of Theorem 4 choosing H(x) = —g(x) for x g 0 
and K(x) = 1 for x = 0. 

Note that these conditions are more general than those of G. VILLARI [2], where 
instead of (31) it is assumed lim G(x) = c < oo. 

x-* — 00 

Corollary 6. Suppose g(x) < 0 for x < 0, f(x) _ 0 for x > 0 and that there is a 
constant M > 0 such that f(x) M2n + g(x) = 0 for x < 0 and 2 l.u.b. G(x) > M2. 

x>0 

Then (28) has the property P. 

Proof. This corollary is a consequence of Theorem 5 for y(x) = M. 

Corollary 7. Suppose g(x) < 0 for x < 0, (31), f(x) = 0 for all x, l.u.b. G(x) > C 
x>0 

if lim G(x) = C, l.u.b. G(x) = oo if lim G(x) = OO. Then (28) has the property P. 
x-> — oo jc>0 x-+— 00 
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Proof . This corollary is a consequence of Theorem 6 choosing H(x) = -g(x), 

K(x) = ]•; then we have Ua(x) = \!2[G(<x) - G(x)] and Ua(0) = V2G(a). 

Corollary 8. Suppose (29), (32) andf(x) ^ Ofor all x. Then (28) has the property P. 

Proof. This corollary is a consequence of Theorem 8 for h(x) = -g(x), k(x) = 1. 

Corollary 9. Suppose g{x) > 0 for x > 0, f(x) ^ 0 for x < 0 and that there is a 

constant M > 0 such that f(x) M2" + g(x) ^ 0 for x > 0 and 2 g.l.b. G(x) < - M 2 . 
:c<0 

Then (28) has the property P. 

Proof. This corollary is a consequence of Theorem 9 for y(x) = M. 

Corollary 10. Suppose g(x) > Ofor x > 0, (32),f(x) ^ Ofor a//x, l.u.b. G(x) > C 
x<0 

if lim G(x) = C and l.u.b. G(x) = oo if lim G(x) = 00. Then (28) has the property P. 
.X->00 A < 0 x-*co 

Proof. This corollary is a consequence of Theorem 10 for h(x) = -g(x). 
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