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THE Equation f?+ g2 = h?, where f,g,
and h Are Derivatives

It is easy to show that the sum of squares of two derivatives is not always the
square of a derivative. (Take, e.g., f(z) = sin, g(z) = cosi(z # 0), f(0) =
g(0) = 0.) To investigate our equation we introduce the following notation: I =
[0,1]; D is the class of all derivatives on I; C|[C,,] is the class of all continuous
[approximately continuous] functions on I; bC,, is the class of all bounded elements
of Cop; M = {f € D; fg € D for each g € bCyp}. It can be proved that M N C,,
is the class of all Lebesgue functions and that each bounded derivative is in M.

It is easy to see that /f2+¢2 € D, if f,g € D and g/f € C. This simple

result leads to the question whether the relation
(1) ff+g*=h% f,g,heD

implies something about g/f, if f # 0. The following theorem points in this
direction:

Theorem 1. Let (1) hold and let
(2) liminfap h(y) >0 (y = z,y € I) foreach z € 1.
Then f/h, g/h € Cyp.

(This follows from [1], Proposition 4.6 with m = 2 and |(z,y)| = vz + y2.) If,
moreover, f # 0, then, clearly, g/f € C,,. Now it is natural to ask whether the
relations f,g € D and g/f € C,, imply that /f2 + g% € D. The next theorem

gives a negative answer to this question.

Theorem 2. Let f € D \M, f>0. Let € € (0,1). Then thereisa f € C,,
such that |8 —1|<e, g=pBf€ D and \/fZ+ g2 ¢ D.

We get, however, an h fulfilling (1) if we impose some restrictions on f and g;
at the same time the requirement g/f € C,, can be weakened, as Theorems 3 and
4 show.
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Theorem 3. Let f,g € M; let a,8 € Cup, a* + B? > 0; let ¢ be a function
such that f = ap, g = Bi. Set v = \/a? + B2, h = Sf+ Sg. Then (1) holds.

(The proof is easy.)

Theorem 4. Let f € M, g € D, f2+¢* > 0; let a,3 € C,, and let ¢ be a
function such that f = at, g = B1. Suppose that there is an A € (—o0,0) such

that g 2 A|f|. Then /f? + g% € D.

Example 5.12 in [1] shows that in Theorem 1 we cannot replace the requirement
(2) by A > 0. However, we have Theorem 5 that points in the same direction as
Theorem 1:

Theorem 5. Let f € M, f >0 and let (1) hold. Then g,h € M.

A characterization of M and the proofs of Theorems 2, 4, and 5 will be published
later. :
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