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Derivatives, Continuous Functions and Bounded
Lebesgue Functions

It is well-known that the product of a derivative with, say, a continuous
function need not be a derivative. This fact leads naturally to the following
problem: Let ©Q be a class of derivatives. Characterize the multipliers of €,
i.e. the functions f such that fg is a derivative for each g € Q. This problem
has been solved for various classes Q. (See [F1], [F2], [M1], ... , [M4].) In
this note we describe the multipliers, first, of continuous functions (theorem 7)
and, second, of bounded Lebesgue functions (theorem 12); these multipliers play
an important role in theorem 5.11 in [MW]. It is well-known that the class of
bounded Lebesgue functions is identical with the class of bounded approximately
continuous functions. (The multipliers of all Lebesgue functions are just the
bounded derivatives; see theorem 4.2 in [M4].)

1. Notation. We write, as usual, R = (—00,00). The word function means a
mapping to R. Further we set R* = (0,00), I = [0,1]. The symbol D stands
for the system of all finite derivatives on I. The words measure and measurable
refer to Lebesgue measure in R; the measure of a measurable set S C R will be
denoted by |S|. If z € R and if S is a measurable subset of R, then d(S, z) is
defined as lim(|S N (z — h,z + h)|/2h) (h — 0+) provided that the limit exists.

Symbols like fab f or fs f mean the corresponding Perron or Lebesgue inte-
grals; “integrable” means “Perron integrable”. (We need an integral that inte-
grates every derivative.) If a > b, then, as usual, we set fab f=- fba f provided
that the last integral exists.

If J is an open interval in R, then C1(J) denotes the class of all functions
with a continuous derivative on J; C; means C;(R).

2. Lemma. Leta,b € R, a < b, J = [a,b]. Let f be integrable on J and let
€ € Rt. Then there isa g € Cy such that g=00n R\ J,0< g<1 on J and

|fjf_f]fgl<5

Proof. There is a § € (0,|J|/2) such that | [¥ f| < &/2, whenever a < z <
y<bandy—z <4 Seta=a+6, S=0b—6. Thereisa g € C; such that g=0
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onRR\J, g=1on (a,f), g is monotone on (a,a) and on (#,b). By the Second
Mean Value Theorem (see, e.g., [S], p. 246, Theorem (2.6)) there are £ € [a, o]

and 1 € [B,b] such that [~ f(1—g) = It 1, fﬁb fl—9g) = f: f. We see that g

satisfies our requirements.

3. Lemma. Let a,b,J, f be as before and let Q be a number less than fJ |l
Then there is a g € Cy such that g=0 on R\ J, [g| <1 on J and [, fg> Q.

Proof. Let V be the variation of an indefinite integral of f on J. Then
J;|fl = V. (This is well-known, if [, |f| or V is finite; hence it holds even if
fJ |f| = o0.) It follows that there is an ¢ € R* and zg,...,z, € J such that
a==z9<z < < Ty, =>b and that, setting Jx = [zx—1,2x] and A = ka fs
we have Y 7_, |Ax| > Q + €. By 2 there are functions g; € C; such that gy =0
on R\ Ji, 0 < gr <1on Ji and [Ag — [, fgx| < e/n. It is easy to see that the
function g = "7 _, gk sgn Ay, satisfies our requirements.

4. Convention. Symbols like limsup f(z), f(z) — 0 etc. will refer to the case
z — 0+, unless something else is obvious from the context.

5. Lemma. Let f be a function such that %foz fg — 0 for each g € Ci(RY)
with g(0+) = 0. Then

lirnsup%/0 |f] < oo. (1)

Proof. It is easy to see that f is measurable on (0,6) for some § € Rt.
Now suppose that (1) does not hold. Then there are z,,y, € R such that
0< zn < yYn < Tn_1, Yn — 0 and that, setting J, = [z, yn], we have fJn lfl >
nyn (n=1,2,...). By 3 there are g, € C; such that g, =0 on R\ J,, |gn]| <1
on J, nad f]n fgn > nyn. Set g =3 o, gn/n on Rt Then g € C;(Rt) and
g(0+) = 0. By assumption %f: fg — 0. It follows that there are an,8, € R
such that |an|+ [Ba] = 0 (n = ), [7" fg = anzn, Ji» fg = Bayn. Then

f_,n f9 < yn(lan| + |Bn]). However, f_,n fg= %f_,n fgn > yn for each n which is
a contradiction.

6. Proposition. Let f be a measurable function on I. Then the following three
conditions are equivalent:

(i) L[5 fg— 0 for each g € C1(R¥) with g(0+) = 0;
(i) limsup [ |f] < oo;

(iii) £ [7 fg — 0 for each measurable function g on I with g(0+) = 0.
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Proof. The implication (i) = (ii) was proved in 5. The proof of the implica-
tion (ii) = (iii) is left to the reader. The implication (iii) = (i) is obvious.

7. Theorem. Let f € D. Then the following two conditions are equivalent:
(1) fg € D for each function g continuous on I;
(i1) limsupy__%ff |fl<oo(y—z,y€I) for each z € I.

(This follows easily from 6.)

Remark. It follows from 7 that the product of a nonnegative derivative with
a continuous function is always a derivative. However, it is easy to prove this
simple result directly. '

On the other hand it is worth mentioning that the product of a Lebesgue
integrable derivative with a continuous function need not be a derivative. (A
Lebesgue integrable derivative need not be the difference of two nonnegative
derivatives.) To see this it suffices to take f(z) = z~1/2sin(1/z), g¢(z) =
z!/?sin(1/z) (z € (0,1], £(0) = g(0) = 0.

8. Lemma. Let §,A € Rt. Let f be a nonnegative measurable function on
(0,8) such that foé f > 6A. Then there is an z € (0,6/2] such that szf >z A.

Proof. We may choose £ = §/2" for some n € {1,2,...}.

9. Lemma. Let f be a measurable function on I. Suppose that

o[ 10 2)
T Jsn(o,x)
for each measurable set S C I with d(S,0) =0. Then
1 :
o[-0 )
Z Jsn(o,z)
for every such S and
limsupl/ |f] < oo. (4)
Z Jo

Proof. Let S be as above. Set ¢ = fVO0, T = SN {f > 0}. Since
d(T,0) =0, fSn(O,x) g= an(o,x) f and |f| =29 — f, we have (3).

Now suppose that (4) does not hold. Using 8 we find z, € I such that 0 <
Tp < Tp_1/2 and fz:" |[fl > nz, (n=1,2,...). Set zpx = 2, (1 + k/n), Jnr =
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[Zn k-1, Znk). For each n there isa k € {1,...,n} such that fJ,.k |f| > zn. Let
Lo = Jnk, S=Uneq Ln. It is easy to see that d(S,0) = 0. For z = 2z, we have
Jsaoo 1 Z [ 11> @0 = /2 so that (3) does not hold. This contradiction
proves (4).

10. Lemma. Let €,6 € (0,1) and let f be as in 9. Suppose, moreover, that

f06 || < 0o. Foreachc € R and each z € (0,1) set M(c,z) = {t € (0,z);|f(t)| 2
c}. Then there is a ¢ € R such that fM(c’x) |f| < ez for each = € (0,6).

Proof. Suppose that such a ¢ does not exist. By 9 there isa K € R* such that
JJ1f] < Kz for each z € (0,6). Set co = 0, zo = §. We construct by induction
numbers Z,, Yn, cn as follows: Let z,_1 € (0, 8] and let ¢p_1 € [0,00). There is
acn € (cn—1+1,00) such that fM(c,, 5 |f] < €zn—1/2. By assumption there is a
Yn € (0, 8) such that fM(cn,yn) |f| > eyn. Clearly y, < €71 fM(cn,é) If] < zn-1/2.
Now we find an z, € (0,yn) such that fSn |f| > €yn, where S, = M(cn,8) N
(€n, Yn)- Set S =J22; Sn. Let 2, < & < zn_1. Since SN(0,z) C U;Z,, Sk and
|f] = ek = k on Sk, we have |SN (0,z)| < [; |f|/n < Kz/n. Thus d(S,0) = 0.
However, fSn(O,yn) Il 2 [s_ |f| > ey which contradicts (3).

11. Proposition. Let f be a measurable function on I. Then the following
four conditions are equivalent:

(i) LJS fg — 0 for each function g bounded and continuous on (0,1] with
lim ap g(z) = 0;
(ii) %fSn(o ) f — 0 for each measurable set S C I with d(S,0) = 0;

(iii) there is @ monotone function ¢ on [0,00) such that p(0) = 0, ©(t)/t —
00 (t — 00) and limsup L [ o |f| < co;

(iv) L[5 fg — O for each function g bounded and measurable on I with
lim ap g(z) = 0.

Proof. Suppose that (i) holds and let S be as in (ii). It follows from 5 that

foﬁ |f| < oo for some § € (0,1). Let h be the characteristic function of S. It is
easy to construct a function g continuous on (0, 1] such that 0 < g <1 and that

L[ asimia-n—o )

Since L [Fh — 0, we have also 1 [ g9 — 0 whence lim ap g(z) = 0. By

z

assumption %foz fg — 0 so that, by (5), %fox fh — 0. This proves (ii).
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Suppose that (ii) holds. By 9 there is a § € (0,1) such that f06 |f] < co.
Choose numbers ¢, € (0, 1) such that Y o> ne, < 1.

Set ¢o = 0. According to 10 there are ¢, € Rsuch that ¢, > c,_1+1 and that
Jat(en, o) 1f| < €nz for each z € (0,6) (n = 1,2,...). Fort € [ca, cny1) set p(t) =
nt (n = 0,1,...). Now let z € (0,6). Define A, = {t € (0,2); ¢n < |F(?)| <
cnt1}. Clearly A, C M(cn,z), po|f| = n|f| on A, and (0,z) = U3, An-
Hence [ o |f] <320, nfM(cmx) |fl <z > .7, ne, < z. This proves (iii).

Suppose that (iii) holds and let g be as in (iv). There is a § € (0,1) and
A, B € Rt such that |g| < 4 on I and that [ ¢ o |f] < Bz for each z € (0, §).
Let ¢ € Rt and let @ = AB/e. There is a K € RY such that ¢(v) > Qu for
each v € (K,o00). If [f({)] > K, then [f(t)] < ¢(If(¥))/Q. Thus | [5 fg| <
K [y lgl+ %f:(,oo |f| whence limsup|L [ fg| < AB/Q = e. This proves (iv).

It is obvious that (i) follows from (iv). This completes the proof.

12. Theorem. Let f € D. Then the following three conditions are equivalent:

(i) For each z € I and each measurable set S C I with d(S,z) = 0 we have
%fsn(z‘—h,x+h) f—=0 (h - 0+)’

(ii) for each x € I there is a monotone function ¢ on [0,00) such that p(0) =
0, p(t)/t — oo(t — o) and

lim sup

y
/s00|f|<°°(y—+r,yel);

(iii) fg € D for each bounded Lebesgue function g.

(This follows easily from 11.)

13. Remark. Theorem 12 characterizes multipliers of bounded Lebesgue func-
tions. Now we would like to get an idea about the “size” of this system; let us
denote it by M. It is easy to prove that the product of a Lebesgue function with
a bounded derivative is always a derivative; thus all Lebesgue functions are in
M. From 12 we see that M contains, for example, every derivative f such that
limsup ;i—sz f? < oo (y — z,y € I) for each z € I. Proposition 5.8 in [MW]
says that an approximately continuous function is in M if and only if it is a
Lebesgue function.

Now let E be the vector space generated by nonnegative derivatives. (It is
easy to see that a derivative f is in E if and only if |f| < g for some g € D.)
It has already been mentioned that each nonnegative derivative (and so each
element of E) is a multiplier of continuous functions. It may interest the reader
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that we have neither E C M nor M C E. To show that E ¢ M it suffices
to construct functions f and g such that f 2 0and 0 < g < 1 on I, f and
g are continuous on (0,1], f € D, f(0) = 1, ¢(0) = 0 = lim ap g(z) and
that f(z) = 0, whenever z € (0,1] and g(z) < 1. Then fg = f on (0, 1] while
(f9)(0) = 0 so that fg & D, f € E\ M. To show that M ¢ E is not so easy.
We shall construct an f € M \ E in 15. First we prove a simple lemma.

14. Lemma. Let f,g be measurable functions on I, |f| < g. Let Q €
R, %foz g— Q. Letc € (1,00). Then

timsup e [ 1A12Q.

Proof. Set G(z) = [y g. Then % [*|f| < 1(G(cz) — G(z)) — (c - 1)Q.

15. Example. There is a function f € D\ E such that f is continuous on (0, 1]
and limsup 1 [* f2 < oo (hence f € M).

Proof. Let F be a function continuous and decreasing on (0, 1] such that
F(0+) = 00, F(1) =1 and fol F?2 < 00. Set A = fol F. Let n be a positive

even number. Let z; be numbers such that 0 = 20 < z;1 < -+ < zp, =
1, f::_l F = A/n. Let yg, zx be numbers such that fzy:_l F = f:"‘ F = 1/n2

Since A > 1 and n > 2, we have % < 4 so that zx_1 < yx < 2 < Zf.
= nz n

Let gx be a function continuous on [zg_1,z] such that 0 < gr < F' there,
gk(ze-1 = gr(zk) =0, g = F on [yk, 2t), [or  gx = [ gr = 1/2n%. Now we
define a function F}, on I setting Fy, = gx(—1)*~ on [zx_1,zx] (k= 1,...,n). It
is easy to see that F), is continuous on I, |Fy,| < F, f::_2 F,=0(k=2,...,n)
and 0 < [ Fp < A/n for each ¢ € I. Let Vo = {z € I;|Fu(z)| < F(2)}, Wy =
Up=1((Zk=1,¥k) U (2&, zx)). Since V, C Wy, we have an F<2n=2.n=2/n.

Now set 2z, = 27% (k = 1,2,...). Define a function f on I setting f(0) =0
and f(z) = For((z—2zk)/z) for z € (z,22;]. Forany such z we have( < f:; <
21 A/2k. Clearly f::" f2<z [, F?and ff:" f =0. Hence limsup L [F f2 < o0
and %f: f — 0. Since f is continuous on (0, 1], we have, by 12, f € M.

Let B € (1,00). There isa b € (0,1) such that F/(b) = B. Set vz = z;(1+4b).
(Hence vy — zx = zxb.) Then fz": Ifl = 2z fob |For|. Define Sy, = (0,b) \ Vai.
Obviously |Sk| = b — |Vax|; since F 2 1, we have |[Vor| < fv2kF < 1/k so
that [Sg| 2 b — 1/k. Further [J |Far| 2 [5 |Far| = [5, F 2 Sk|F(b) 2 (b—
1/k)B, [;*|f] 2 z:(b—1/k)B = (v — z)(1 — (kb)=*)B, liminf L [7*|f] 2

Vk—2k Y2k

B(k — 00). It follows from 14 that there isno g € D with |f| < g. Hence f ¢ E.
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