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SUMS OF POWERS OF DERIVATIVES

JAN MARIK AND CLIFFORD E. WEIL

(Communicated by Andrew M. Bruckner)

ABSTRACT. In a previous paper the authors proved several theorems concerning
products of positive derivatives. Here they prove analogous results for sums of
powers of positive derivatives.

1. INTRODUCTION

In [1] the authors proved that if the product of powers of several positive
derivatives is approximately continuous and if the corresponding exponents
are positive, then all of the factors must be approximately continuous. The
main goal of this work is to prove some analogous results for sums of powers
of derivatives. For example, it follows from Theorem 5.6 that if the sum of
squares of several derivatives is bounded and approximately continuous, then
all of these derivatives are approximately continuous.

The authors also investigate equations like f° 24 g2 = ¢2 , where f, g, and
¢ are derivatives. We can construct nontrivial examples of such triples f, g,
¢ , if we choose a bounded derivative y , bounded approximately continuous

functions o, f,and set f=ay, g= Py, ¢ = y/\/a2+ﬂz. Theorem 5.11
shows that this construction is “not too far” from the general case.
Some of the results of this paper have been stated without proof in [2, 3].

2. NOTATION

The word “function” means a mapping to the real line R. The words “mea-
sure,” “integrable”, etc. refer to Lebesgue measure in R. The measure of a
measurable set S C R will be denoted by |S|. Symbols like [, f, [°f will
always denote the corresponding Lebesgue integrals. .

The letter m denotes a natural number and R™ is m-dimensional Eu-
clidean space. The coordinates of a point a € R™ will be denoted usually
by a,,...,a,. For x, ye R" weset x-y =37 x,, and |x]| = Vx-x.
If || is any norm on R™ and if f),..., f, are functions on a set S, then
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808 JAN MARIK AND C. E. WEIL

|(f;, ..., f,)| means, of course, the function |(f,(2), ..., f, ()] (t€S).

3. PRELIMINARY RESULTS

In this section we investigate some special norms on R” (see 3.4). The cor-
responding results will be used later in this paper. They are valid, in particular,
for the norms

m l/p
(0) x|t = (Z |x,~|”) (>1)
i=1

(hence ||x|| = ||x|l,) ; actually, for the proofs of the main results (Theorems 5.5,
5.6, and 5.11) we will need no other norms. However, the reader might find it
interesting that the results of §4 hold for more general norms.

3.1. Lemma. Let V be a vector space over R, || anormon V, and x,
y € V. Suppose that |tx + (1 —t)y| =1 for each t € [0, 1]. Then

|ax+ By|Za+B foralla, BeR.
Proof. We may suppose that o+ 8 > 0. We have

|ax + By|=(a+ B) ai‘ﬂx+afﬂy =a+p ifa,f20.

If,eg, a<0,then 0< B =|By|S|ax+By|+|-ax|=|ax+By|-a so
that a+ B < |ax + By|.

3.2. Proposition. Let H be a Hilbert space over R with the inner product
denoted by x-y. Let | | be a norm on H which generates the same topology
as the inner product. (We do not assume that |x| = /x-Xx.) Suppose that x,
yeH and |tx+(1-t)y| =1 foreach t € [0, 1]. Then thereisa b e H such
that x-b=y-b=1and z-b<|z| forall ze H.

Proof. The set V = {ax + By; a, f € R} is clearly a vector space over R. If
ax+ By =0, then, by 3.1, a+ 8 = 0. Hence we may define a linear functional
® on V setting ®(ax + fy) = a+ B. According to 3.1 we have |D(v)| < |v]
for each v € V. By the Hahn-Banach theorem ® has a linear extension ®*
to all of H such that |®"(z)| £|z| for each z € H. By assumption, ®* is
continuous in the topology induced by the inner product. It follows from the
Riesz Representation Theorem that there is a b € H such that ®*(z) = z-b
forall ze H. Then x-b=®x)=1=P(y)=y-b and z-b =P (z) £|z|
forall ze H.

3.3. Proposition. Let |-| be a norm on R™ and let f,, ..., f, be functions
integrable on R. Set f=(f,,..., f,), A=z fi,-. . [z f,,). Then |A| <
VAR

Proof. It may be assumed that | 4| > 0. By 3.2 with x =y = A/| A| there is
a beR” suchthat b-4=|A4| and b-z <|z| forall ze R™. In particular,
b-f(1)<|f(1)] foreach t€ R. Thus |A| = [ b-f < [:]|f]|-
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3.4. Convention, notation. For the remainder of this paper, |-| is a norm on
R™ and Z = {z € R”;|z| = 1}. It is well known that there are positive
numbers k£, K such that

(1) k|x|<|lxl| £K|x| foreachxe R".

We shall assume that the following conditions are satisfied:

(C,) Foreach x=(x,,...,x,) wehave |x|=|(x,,...,I|x,D|-
(C,) Foreach x € Z there is a unique b € R™ such that x-b =1 and that
yeZ,y#x implies y-b< 1.

We define a function 8 on Z setting 6(x) = b, where b is determined by
(C,)).
Remark. We will prove in 5.3 that the norms ||x|| , (p > 1) satisfy conditions
(C,) and (C,) with b= (b, ..., b,,), where b, = |xi|"—1 sgnx; .
3.5. Lemma. Let x € Z, b€ R™. Suppose that x-b=1 and y-b <1 for
each ye Z. Then b= 60(x).
Proof. Set ¢ =1(b+6(x)). Then x-c=1 and y-c <1 foreach y € Z\{x}.
By the uniqueness part of (C,) we have ¢ = 6(x) so that b = 6(x).
3.6. Lemma. Let 0<x, <y, for i=1,...,m. Then | x| <|»|.

Proof. Set a = (y,, x,,...,x,), b=(-y,, x5, ..., x,,) . First we show that
| x| £|a]|. Thisis obvious, if y, =0, since in thiscase x =a. If y, >0, we
set o = (y,+x,)/2y,, B =(y,—x,)/2y, and wehave a+f =1, x =aa+pb.
By (C,) we have |a|=|b|. Thus |x| S a|a]|+ B|b|=]|a|. We can prove

similarly that |a| <|(y,,»,, X3, ..., x,,) |, etc.
3.7. Lemma. Let 0 < x; <y, for i=1,...,m andlet |x| = |y|. Then
x=y.

Proof. One may assume that x, y € Z. Choose a ¢ € [0, 1] and set a =
tx+(1—1t)y. It follows from 3.6 that | x| < |a| £|y]. Since |x|=|y|=1,
we also have |a|=1. By 3.2 thereisa b € R” such that x-b=y-b=1 and
z-b <1 foreach z € Z. By 3.5 we have b = 0(x) and it follows from (C,)
that y = x.

3.8. Lemma. The mapping 6 is continuous.
Proof. Let k beasin (1)and x € Z. Set b=6(x), y=5b/|b|. Then y € Z
and consequently b-b/|b|=y-b < 1. Hence l6l>=b-b < |b] < k™8] so
that ||b| < k~'. We see that 6 is bounded.

Let x, x,, x,,... € Z, x, — x. Suppose that the relation 6(x,) — 0(x)
does not hold. Then by the boundedness of 6 there is a subsequence (z,) of
(x,) anda b e R™ suchthat 6(z,) - b # 6(x). Let y € Z. By (C,) we have
z,-6(z,)=1and y-6{(z,) £ 1 foreach n. Hence x-b=1and y-b< 1.

n

By 3.5, b = 6(x) which is a contradiction.
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3.9. Lemma. Let ¢ € (0, 1). Then thereisa P € (0, 1) such that y-6(x) S P,
whenever x, y € Z and ||y —x|| 2 ¢.

(This follows easily from 3.8.)

3.10. Notation. For each function g defined on (0, 1) we set
A(g) =liminf g(t), and A(g) =limsup g(¢) (t = 0+).

If f=(f,...,f,) is a mapping of (0,1) to R™, we define A(f) =
(A s - s ML) s AS) = (A5 -5 A(S)) -
3.11. Lemma. Let f,, ..., f, be nonnegative functions defined on (0, 1) and
let f=(f,...,f1,). Supposethat A(|f|) < oo. Then |A(N)| <A(f]).
Proof. There are t,, t,,... € (0, 1) such that 7z, — 0 and that | f(z,)| —
A(|f]). Let K be as in (1). Then
(2) fit) K| f(t,)| foralli,n.
Since A(| f]) < oo, the sequences (f;(¢,)) (i=1,..., m) are bounded. Thus
there is a subsequence (v,) of (t,) anda b= (b,,...,b,) € R” such that
f(v,) = b. Clearly A(f;) £ b, for each i. By 3.6 we have |A(f)| < |b]| =
lim| f(v,)| = A(| f]-
3.12. Lemma. Let f; and f be asin 3.11. Suppose that A(|f|) < oo. Let

b, = A(f), by =Afy),.... b, =Af,), b=(b,....,b,). Then |b]| <
A(SD-

Proof. There are ¢, t,,...€ (0, 1) such that {, — 0 and f|(t,) — b, . Since
A(|f|) < oo, by (2) the sequences (f(¢,)) (i = 1,..., m) are bounded.
Thus there is a subsequence (v,) of (¢,) anda B = (B,,...,B,) € R”

such that f(v,) — B. Clearly b, £ B, £ A(f;) for each i. By 3.6 we have
|51 < |B]=tim| f(0,)] < A( £

4. NORMS AND CONVEXITY
4.1. Notation. Let ¥ be the system of all functions integrable on [0, 1]. Let

9. = {fef;f(O)gliminft_l/otf (t—-+0+)},
P = {fef;f(O)glimsupt"l/otf (z—»o+)},

and & =2, ND". Let & be the system of all functions that are measurable
on [0, 1] and approximately continuous from the right at 0 and let

#={resic [1r-ro1-0 (=04},

(Thus . is the system of all tunctions f measurable on [0, 1] for which
|f — f(0)| € Z.) For any system .7 of functions let 7 "[b.7] be the system
of all nonnegative [bounded] elements of 7 .
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Remark. Each of the systems ., &, &, .Z is a vector space. It is easy to
seethat by C X CI N .

42. Lemma. Let [, g€, |g|Sf€eZD. Then g€ ZL.

Proof. We may suppose that g 20. Set ¢ = f(0)+1, f,=fAc, go=gAc,
h=F—-1, § = &— &, Since f; € b/, we have f, € Z; similarly
g, € £ . From the relations g =(g-c)vVOS(f—c)v0=f and t‘lfotfl =
L I i R A ~£,(0)=0 weget £ fJg, =0 (t— 0+) so that
g, €2 . Hence ge.S”

4.3. Lemma. Let f € & . Let J be an open interval containing f([0, 1]), let
y be a convex function on J andlet yo f € % . Then yo f€Z,.

Proof. There is a linear function u such that u(f(0)) = y(f(0)) and that u <y
on J. Obviously uo f € & so that y(f(0)) = u(f(0)) = limt“lf(fy of <
Liminfs™" fiyo f (t—0+).

4.4. Lemma. Let f and J beasin 4.3. Let y be a strictly convex function on
J andlet yofe2D*. Then f, yofeZ.

Proof. Set ¢ = f(0). There is a linear function u such that u(c) = y(¢) and
that u <y on J\{c}. Set ¥ = y—u. By assumption and 4.3 we have yof € &

sothat wo fe <. Since wo f20 and y(f(0)) =0, we have wo fe€.Z.
Choose an & € (0, o) such that c + ¢ € J and set y = min(y'*(c + &),

W' (c—e)), wo) =n(ly-cl-¢&) (velJ).If |y—cl<e,then y,(y)<O0.
If yeJN[c+e,00), then w(p) 2 w(c+e)+y  (c+e)y—c—e) > y,(v);
it can be proved in a similar way that ¥ > y, on J N (-oo0, c —¢]. Hence
w >y, on J. It follows that |y —c| < n_lw(y)+a for each y € J and that
Jolf—cl€n™" [y wof+et foreach t € [0, 1]. This together with the relation
wofeZ provesthat f€.% . Hence yof=wof+puofe. aswell
4.5. Lemma. Let f,,..., [, €2}, f=(f,....f,) andlet || € @".
Then f,,.... 1. |fle<.

Proof. For t € (0,1) and i = 1,...,m set F(t) = t'lfotf,.; further set
= (F,, ..., F,). Proposition 3.3 implies that
t
(3) |F(z)|§z“/ | f| foreachte (0, 1).
0

Since £(0) S A(F,), we have by 3.6 and 3.11, | £(0) | £ | A(F)| £ A(| F|) which
together with (3) shows that | f| € 2, .

Now define b, = A(F)), b—l(F) b, =AF,), b= (b ...,bm)
It follows from 36and3 12 that |f(0 | |b| §A| | Smce |f| eI,
we have by A(|F|) £|£(0)]. Hence |f(0)|] = |&|. By 3.7 we have
£,(0) = A(F) whence fi€2”. Similarly f,, ..., f €2".

4.6. Proposition. Let f,,.... [, €2. Let f=(fi,....[). o=|S]|

¢ = liminfape(t) (t — 0+). Suppose that ¢ € & and that ¢ > 0. Then
9(0) >0 and there are o, ..., c, € ¥ suchthat fi=a,0 (i=1,...,m).
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Proof.. It follows easily from the relation ¢ € 2* that ¢(0) = c¢. Define
J =10, 1], a,(t) = fi(t)/9(t), if ¢(t) > 0, and a,(t) = a;(0) elsewhere on J .
Then f, = a,pon J for i=1,...,m. Let o = (o, ..., ,) and f0'f=
(Jofys-ors Jo f,) foreach teJ. Let e€ (0, 1). Since f,,..., f,, €D, we
have [;f/|f, f|— f(0)/]f(0)] = (0) (t— 0+). Thus thereisa & € (0, 1)

such that
AN

(4)

Set £ = {t € J; |la(t) — a(0)|| > 2¢} and choose a P € (0, 1) according to
3.9. Let x€(0,8), A= [, f, A, =A4/|A|, B=6(4,). Then A-B =|A|.
If te EN(0, x), then from (4) |la(t) — 4,]| 2 lla(?) — a(0)|| — |4, — a(0)]| >
2¢ — ¢ =¢. Consequently a(t)-B S P, f(t)-B < Po(t). Clearly, f-B< ¢
on J.

Choose an n € (0,c) andset T ={te J;p(t)>n}, S=TNEN(0, x),
S = (0, x)\S. Since ¢ € Z, thereisa Q € (0, oo) such that fot ¢ £ Qt for
each ¢t € J. We have

[o|=a-8=[r8sp[o+[o=[v-a-P [0
Obviously
[ozisinzasien [ o

[ Asa-a-pisinen [ "o
0 0

Combining this inequality with the relation | [; |/ f; ¢ — | f(0)]/9(0) = 1
we obtain |TNEN(0, x)|/x -0 (x - 0+). Since EC(ENT)U(J\T) and
|T N (0, x)|]/x — 1, we have also [EN (0, x)|/x — 0 (x — 0+). This proves
that o,..., 0, €.

- a(O)” <¢ foreachte (0, d).

so that

4.7. Convention. In 4.8-4.11 we shall use the following notation and assump-
tions: £ ={1,...,m}y; V' CH; f,..., f,€Z;foreach i €/ astrictly
convex function y; on R is given such that y,(¢) > 0,if t #0; g, =7y,0f; for
ieN, g =/ foried\NV;o=|(g,....8,)|€D".

4.8. Proposition. We have

(5) g s l&ls s |8l 0 €D
and

(6) fi, 8 €L foreachie .
Proof. Since |g,| S |I(g,,---, &), we get by (1)

(7) lg;| < Ko
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sothat g, € % . Let h, =|g,|. By4.3 we have h, € &, (i € #). It follows
from (C,) in 3.4 and from 4.5 that ¢ =|(h,, ..., h,)| andthat A, ..., h
¢ € & . This proves (5); now 4.4 implies (6).

4.9. Proposition. If

m?

(8) p(0)=0

or

(9) f;(0) #0 for someie NV,
then

(10) fisooos 0 €L,

Proof. If i € #\N, then, by (5), |f,| = |g| € & . If, moreover, f;(0) =0,
then f, € & . If ¢(0) =0, we get similarly ¢ € 2. Thus (8) together with
(6) implies (10).

Now let (9) hold. Choose an s € # with f(0) # 0. Then g (0) > 0 and,
by (6), g, € & . Therefore according to (7)

(11) liminfap ¢(¢) > 0 (t — 0+).

By (5) and 4.6 there are o; € & such that g, = ;¢ foreach i € # . It follows
from the relation g, = o ¢ that ¢ € %/ . By (5) and 4.2 we get ¢ € .. Now
let i e #\A . Then f, = g, = o;0 sothat f, € & . Combining (7) with 4.2
we obtain f; € . Thus (9) together with (6) implies (10).
4.10. Proposition. If (11) holds, then there are B, ..., B, € & such that
fi = B;p foreach i€ /£ .
Proof. By 4.8 (see (5)) and 4.6 we have ¢(0) > 0 and there are o; € & such
that g, =0 (i€ ). If ic \N, set B, =q;;if i €4, define
{ B.(t) = f;(t)/p(1), if o(t) >0,

B(t) = B,(0) elsewhere on [0, 1].
Then f, = B,p for each i € # . It remains to prove that g, € & for each
i € 4. Choose such an i. By (6) we have f, € & . If f,(0) # 0, then (9) holds
so that, according to (10), ¢ € & and by (12) we have g, € & . If f,(0)=0,
then, by (11) and (12), we have B, € & again.
4.11. Proposition. If ¢ € &/, then (10) holds.
Proof. By (5) and 4.2 we have ¢ € & . If ¢(0) =0, we apply 4.9. If i e 1",
then by (6) we have f, € . Thuslet ¢(0) >0 and i € #\/". By 4.10 we
have f, € &/ and the relation f, € .Z follows from (7) and 4.2.
4.12. Lemma. Let r be a natural number, 6,,...,6,€(0,1), é,+---+0, = 1,
hys...,h €(D")". Then b .-k e D".
Proof. We may suppose that J, +---+dJ, = 1. Let ¢ € (0, 1). By Holder’s in-
equality we have ¢~ [ o = I'[;.zl(t”l IN hj)éf for each ¢ € (0, 1) which
easily implies our assertion.

(12)
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5. DERIVATIVES AND APPROXIMATE CONTINUITY

In this section we shall apply Propositions 4.8-4.11 and Lemma 4.12 using
the norm |x| = |lx||, (p > 1). We shall see that the behavior of derivatives
fi»..., f, depends on some properties of the sum of powers of their abso-
lute values. In 5.10 and 5.11 we obtain some results pointing in the opposite
direction.

5.1. Notation. For each p € (1, co) and each x € R™ define Ix|l, by (0) and
set Z, ={x e R"; x|, =1}.

5.2. Lemma. Let p, q € (1, c0), p_1+q_1 =1, x,yeER". Then x-y <

Ix1, 01, 5 equality holds if and only if

(13) yi=|xi|p_lsgnxi fori=1,..., m.

Proof. 1t is well known that x -y < ||x|| ,Ivll, and that equality holds if and
only if x;y;, 20 and |x,” = |y;|? for each i. Since p/q =p — 1, this equality
means the same as |y,| = |x;|” ~!'. This easily implies our assertion.

5.3. Proposition. Let p € (1, 00). For each v € R" set |v| = |lv|,. Let
x€Z,and b=(b,...,b,), where b, = Ix, 1P~
(C,) and (C,) in 3.4 are fulfilled.

Proof. The validity of (C,) is obvious. Define g by p_1 +¢~ ' =1. We have
x-b=1 and ||b||q =1.If ye Z,, then y - b < |[y||p||b||q = 1; if, moreover,
y-b =1, then we obtain from 5.2 the equalities b, = |yi|” ~!sgn y; so that
y=x.

Now let ¢ = (¢,,...,¢,) €ER", x-c=1 and y-c £ 1 for each yeZ,.
Set v = (v, ..., v,), where v, = lcil"_l sgnc; . Since v/||v|, € Z,, we have
v-c £ |lvl|, while by 5.2, v-c = |lv|,llcll,. It follows that [|c[|, = 1. Since
x-c=12z|x|,lll,, by (13) we have ¢, = b, so that ¢ = b. This proves (C,).

-sgnx;. Then conditions

5.4. Notation. Let D be the system of all finite derivatives on R. Thus, the
relation f € D means that there is a function F differentiable on R such
that F'(¢) = f(¢) for each ¢t € R. If, moreover, [ is locally integrable, then
fabf=F(b) — F(a) forall a, beR.

Let A be the system of all approximately continuous functions on R and let
L be the system of all Lebesgue functions on R (i.e., functions f such that
h=' [ |f = f()] = 0 (h — 0) for each ¢ € R). The symbols b and I *
will have the same meaning as in 4.1.

It is well known that b4 C L ¢ DN A. We shall often apply the fact that
nonnegative derivatives are locally integrable. For each p € (1, oo) let Qp be
the set of all functions & with the following property: There is a natural number
r, positive numbers ¢;, and functions &, € D" (j =1,...,r) such that
g, +-+g,<p and ®=h]"---h¥ . (We see that products of p nonnegative
derivatives are in Q_, if p is an integer.)
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5.5. Theorem. Let p € (1,00). Let f,€D, p,€ (p, o) (i=1,...,m) and
Y fil €Q,. Then f, € L foreach i.
Proof. Set ® =" |f|". Let q,, ..., q, be as in the definition of Q, - Now

we apply 4.12 with 6, = ¢;/p and 4.8 with |x| = |Ix||,, /" = {1,..., m}
and y,(t) = |¢]"'”.

5.6. Theorem. Let p € (1, 0), fi,..., f, € D;set ¢ = (X |fi)'". Then
9 € L ifand only if f, € L for each i.

Proof. If ¢ € L, we apply 4.11 with | x| = ||x||, and empty .#". The proof
that p € L,if f,..., f, € L, is left to the reader.

Remark 1. Choosing a nonempty ./ # .# we may obtain from 4.8-4.12 vari-
ous other theorems analogous to 5.5 and 5.6. For example, choosing |x | = ||x|| ,

m=p=2,4/={1}, fi=1, f,=1, y(t) = * we deduce easily from 4.9

that a derivative f is a Lebesgue function if and only if \/1 + f2 is a deriva-
tive.

Remark 2. If the functions f,, ..., f, and ¢ = (X7, || )/ are derivatives
and if ¢ is “not too small,” then by 4.10, the functions f;/¢ are approximately
continuous. Now it is natural to ask whether the relations, say, 1 < f; € D and
filp e A (i=1,..., m) imply that ¢ € D. Example 3 in 5.14 shows that
this is not true even in the simple case m = p = 2. However, according to
Proposition 5.10, we get the desired result ¢ € D, if we replace the requirement
f,eD by f, € M, where M is defined next.

5.7. Definition. Let M be the system of all functions f € D such that fg € D
for each g € bA.

Remark. 1t is easy to prove that L UbD C M . A characterization of M will
be given in another paper. Here we prove only two simple propositions to give
the reader an idea about the “size” of M .

5.8. Proposition. We have ANM = L.

Proof. Let fe ANM. Set fy=(fV(=1)Al, g=ff,. Then g(t) = (f(2))’
if |f(¢)| <1, and g(¢) = |f(t)| elsewhere on R. Hence |f| < 1+ g. Since
fo€bA,wehave g € AND. By 4.2 we have f € L. The proof of the inclusion
L c AN M is left to the reader.

5.9. Proposition. Let f € D. Suppose that for each t € R thereisa p € (1, o)
such that
t+h
(14) limsuph_l/ /TP < oo,
h—0 t

Then feM.

Proof. Let g € bA and let ¢, p be as above. Define g by p—l +q'l =1 and
set fi=/f—-f(t), g =g—g(t). Then fg = f g +v, where v € D. By



816 JAN MARIK AND C. E. WEIL

Holder’s inequality we have

1 [i+h 1 [i+h ) l/p 1 [t+h . l/q
(15) + AR Il ‘A7 12, for each 4 # 0.
h h h
h t t

It is easy to see that in (14) we may replace f by f;. Since |g,| € b4 C D,
the second factor in (15) tends to O (h — 0). This shows that fg e D.

5.10. Proposition. Let |-| beanormon R™. Let f,,...,f €M, o, ...,
a,€A.Set f=(f,.... f,), a=(a,,...,,), ¢=|f| and suppose that
f=ap. Then p e M.

Proof. Obviously ¢ = |a|¢ sothat |a| =1 ontheset S = {t € R; p(t) > 0}.
Defining y = kzv(a-a) (see (1)) wehave ye A, y=a-aon S, a-f =yp on
R.Let T={teR;|a(t)]|£k}.On T wehave y = k* so that lla]l £ y/k ;on
R\T we have y = ||a||2 so that ||| = y/lle|l < y/k . We see that ||a|/y < k!t

on R whence o,/y € bA, a,f/yeM (i=1,...,m), p=af/y.
5.11. Theorem. Let p € (1,00) and let f,,...,f, € M. Define ¢ =
I(fys - s S, @ =¢° and suppose that
(16) liminfap,  ¢(y) >0 for each t € R.
Then the following conditions are equivalent:
(i) PeQ,;

(ii) p € D;

(iii) there are a, € A such that f,=a,p for i=1,..., m;

(iv) there are functions y, «a,,...,a, suchthat yw € D", o, € A, and

fi=auw for i=1,...,m;
(V) pe M.

Proof. If (i) holds, we apply 4.12 as in the proof of 5.5, then 4.8 with |x| =
x|, and from (5) we get (ii). If (ii) holds, then (iii) follows from 4.10. If (iii)
holds, then by 5.10, we have ¢ € D so that we may choose ¥ = ¢ in (iv). Now
suppose that (iv) holds. Set f = (f,,..., f,,), a=(a;, ..., a,,). Itis easy
to see that ¢ = ||f|lp = ¥|lef|, and that Jla|, € 4. If € R and ||le(7)]|, =0,
then (16) implies lim ap,_,, w(y) = oo which is impossible because ¥ € D* .

Hence a-a >0 on R. Set f =allell,/(a-a). By (1) [|8] = lall,/llel < k™'
sothat B-f €M and B-f = (a-ay)|al,/(a-a) = yla|, =¢. This proves
(v). If (v) holds, then, obviously, ® = ¢° € Q, which completes the proof.

Remark. We conclude the paper with three examples. The first shows that the
requirement (16) cannot be replaced by “¢ > 0 on R.” The second reminds
us that in 4.11 we supposed that ¢ € 2" (see 4.7); the assumption that ¢ is
integrable would not suffice. The third refers to Remark 2 in 5.6.

5.12. Example 1. Let y be a bounded derivative such that y =1 on (-oc, 0],
v 1s continuous and nonnegative on (0, oo) and that the upper density of the
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set S = {t € R; y(t) = 0} at 0 is positive. Let x4 be a bounded continuous
function on R such that x(0) = 0 and wu(¢) > 0 for ¢ # 0. Further set
f=3y+4u, g=4y+3u, 9o = \/f2+g2. Then f, g € D and from the
inequalities 5y < ¢ < 5(y + u) it follows easily that ¢ € D. It is obvious that
all the functions f, g, and ¢ are positive; since they are bounded, they belong

to M. However, (f/¢)(0)=2 and f/¢p =% on S. Therefore f/p ¢ A.
5.13. Example 2. Let x, > x, >--- ,x, = 0, x,,,/x, — 1. Set @ =5/V2,
d =x,_,-x,, ¥, =x,+d,/n, v, = (x,+x,_,)/2, w, =v,+d,/n

n
(n =3,4,...). Let f, g be functions on R continuous on (0, co) such

that f =g=Q on (-,0], f=3, g=4o0n (y,,v,), f=4, g=3
on (w,,x, ), f23,g23o0nRand [(*'f=[""'g=Qd . (Such
functions exist, because Q > (3+4)/2.) Set S = -;((x,,y,)U(v,, w,)).
Since x,.,/x, — 1, we have f, g € D and S has density 0 at 0. It is easy

to see that the function ¢ =/ f 24 g2 is locally integrable, ¢ € 4 (because
¢ =5 on (—oo, x,)\S) and that f, g ¢ 4.

5.14. Example 3. Let x,, d,, y, beasin 5.13. Set J =[x,,y,], L
[x,,x,_,] (n=3,4,...). Itis easy to construct a function v on R con-

tinuous on (0, co) such that v = 1 on (-o0, 0], v > 4 5 on R, v =7 on
J, (sothat [, v =4d,/2) and [, v =d,. Let u be a nonconstant func-

tion continuous on [0, 1] such that fol u =0, u(0) = u(l) = 0 and that
—% Susl. Set q=f0l \/1+/,t2 (so that ¢ > 1). Define a function 42 on R
setting h(1) = u((t - x,)/(y, —x,)) for te J, (n=23,4,...) and h(t) =0
elsewhere on R. Nowset f=v-(3+4h), g=v-(4-3h), ¢=\/f2+g2.
Then ¢ = 5uV1 +h?. It is easy to see that f, g, and @ are continuous
on R\{0} and that [, h =0, [; V1+h? = gy, — x,). Thus [, vh =0
and [; v V1+h? = qd,/2. Tt follows that f, f = 3d,, [, & = 4

fL = 5d,(q + 1)/2. This combined with x,,  /x, — 1 yields f, g € D
and lim,_, 1 fo(p =5(g+1)/2 > 5=9¢(0) sothat ¢ ¢ D. On R\U,_,J,

wehave 23, g22, flo=2, g/lo=1%; 1npart1cular flo, glo € 4.
The inequalities —1 < h <1 implythat f=2%, g=2% on J . Thus f>1,
g>1on R.
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