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Analysis Mathematica, 16 (1990), 11~25 

On a class of orthogonal series 

JOHN C. GEORGIOU and JAN MA~frK 

1. Notations 

The letter R denotes the set of all (finite) real numbers. The word function means 
a mapping to R. The domain of definition of  a function f is denoted by Domfi  

For each A a R let  int A~ cl A, I AI, and caden_ 0te the interior, t h e  closure, t he  
outer Lebesgue measure and the characteristic function of A, respectively. The sym- 
bols f(a+) and f (a - )  stand for l imf(x)  and l imf(x) .  Further,, we set No= 

={0, 1 . . . .  }, N={1, 2 . . . .  }. Instead of lim sup a. (hEN, n ~ ) w e  write simply 
lim sup a.; similarly for lim inf and lira. The meaning of  a.~a is obvious. 

]he  symbols [a, b], [a, b) etc. (a, hER, a<-b) have theusual meaning (in partic- 
b 

ular, [a, a]-- {a}); f f or f f .  denotes the Lebesgue integral~off over [a, b]. 
a [a, b] 

(In this connection f will be always Riemann integrable.) The words almost and 
measurable refer to the Lebesgue measure. 

2. ~3-and I~)F-series 

2.1. Foreach nENo letD. be a finite set {d.,o.d.,1 . . . . .  d.,,.}, where O=d.,o< 

< d . , l < . . . < d . . , . = l .  Set D =  0 D.. Assume that DoaD1c..~ and-that D:is 
n = 0  

dense in [0,. 1] (so tha t  max { d . , j - d . , j _ l ; j = t ,  ,.:~ r .}-*0). .For,  each .~EN0 let 
~ .  be the system ofallintervals[d.;)_l, d.,j] (j-' 1, :.., r.): I~t  ~denote  the sequence 
Do, D1 . . . . .  

Let nENo. For xE(0, 1] define ~.(x) and /~.(x) by ~.(x)<x<=~,(x) and 
[~.(x),/~.(x)]E~.; for xE[0, 1) define ~*(x) and /]*(x)by ct.(x)=x~.(x) and 

* * l * [~.(x), fl*(x)]E~.. Further set cr an( ) = 8 . ( 1 ) = i  (nEN0)~ 
For each xE[0, 1] and each nENo set[l.(x)=[c~.(x),[3~(x)], J.*(x)-_[~.*(x), 

#.*(x)] (thus ].(0)={0}, Jn*(1)={1}). 

Received March 18, 1988. 



12 J.C. Georgiou and J. M~ik  

Remark .  If xED,,, then ~*(x)=fl,~(x)=x; if xE[0, 1]-Dn, then Jn(x)= 
=1.*(x). 

2.2. For each nENo let V n be the system of all functions f e n  [0, 1] with the 
following properties: 

l) f is constant on int J for each J E ~ ;  

2) f (x)=2(f (x+)+f(x-)  ) for each xE(0, 1); 

3) f (0 )=f (0+) ,  f ( 1 ) = f ( 1 - ) .  

Obviously V0cV1c .... Set V= ~J V,. Then V is a vector space and V~ is an 
n = 0  

r,-dimensional subspace of V (nENo). It is easy to see that V becomes an inner 
1 

product space, if we define the inner product of any elements f i g  of V as f fg. 
0 

2.3. Let W be a system of functions on [0, 1] and let I be a function on W with 
the following properties: 

4) If fl,f~EW, al, a~ER, then alft+a~faEW and I(at~+a~)=a~I(~)+ 
+a~I(A); 

1 

5) V c  W and l ( f ) =  f f for each fE V; 
0 

6) if fEV and gEW, then fgEW, 
7) if f is a function on [0, 1] such that f ( x ) = 0  for almost all xE[0, 1], then 

fEW and I(f) = O. 
1 

2.4. Let f, gEE Then fgEW and ffg=I(fg). 
0 

Proof .  There is an hEV such that f(x)g(x)=h(x) for almost all xE[0, 1]. 
Now we apply 5), 7) and 4). 

2,ft. Let T be a finite-dimensional subspace of V. Let fE W. Then there is a 
unique gET such that I(f~o)=I(g~o) for each ~0ET. I f  functions ~01 . . . . .  %, form 

nl 

an orthonormal basis of T, then g=j~l(f~oi)~o j. 

Proof .  Easy. 

2,6. (i) The element g of 2.5 (the orthogonal projection of f to T) will be deno- 
ted by o.p.(fi T). 

(ii) Let T0=V0. For each hEN let T~ be the set of all elements f of V~ such 
that I(fg)=O for each gEV~_ 1. 

(iii) Any series ,~ f ,  where f~ET~, will be called a ~3-series. 
n-~l} 
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tm 

(iv) Let fEW. Then the series ~ o.p. (f,  T,) will be called the I~)F-series o f f  
n = 0  

(F suggests Fourier). 
The proofs of the next three assertions are left to the reader. 

2.7. Let nEN, fEV,,. Then the following three conditions are equivalent to 

and if fET., then f = 0  on int J. 

Let fE W, gE V, nE No. Then the following three conditions are equivalent 

each other: 

x 

(i) ff=o foreach xED._I; 
0 

(ii) f f  = 0 for  each JE~,,-1; 
2 

(iii) fET.. 

Remark .  If JE~ .N~ , -1  

2.8. 
to each other: 

x 

(i) f g = I(fcto ,,0) 
0 

(ii) g(x)lJl=I(fcs) for each JE~.  
(iii) g = o.p. (fi V,). 

2.9. Let fkEV (k=0, 1 . . . .  ), fEW. 
n 

~fk=o.p . ( f ,V,)  for each nENo. 
k = 0  

for each xED.; 

and each xEintJ;  

oo 

Then z~J~ is the l~3F-series of f iff 
k ~ - O  

3. Auxiliary theorems 

3.1. Throughout the paper, , ~ f .  is a ~-series. We set 
? 1 = 0  

n x 

s, = z~A. F,(x)= f f. (nENo, x([0, 1]). 
n=O 0 

The sum of the series z~ F. (x) will be denoted by F(x) at the points of its conver- 
1 1 = 0  

gence. 
* J* instead of ~, (x), J*(x), respectively. We will often write e., ft., e*, ft., J .  . . . . .  

3.2. Let nENo, xED.. Then F(x)= f s,. 
a 
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tt 

P r o o f .  By 2.7 we have F~(x)=0 for k>n. Thus F(X)=k=z:=o Fk(x)= f 
= O 

3.3. Let nENo, xE(O, 1) -D. .  Then s.(x)=.(F(fl.)-F(~,))/([3,-a,). 

Proof .  It followsfrom 3.2. 

3.4. Let 0 < q < l .  Suppose that ~ has the following property: If hEN0, 
JE~,, KE~,+~, KcJ, K~J, then IKl<-qlJI. Let xE[0, 1] and let 

f L  + 0  [ f A - ' O ] .  
s~ J* 

Then 

f,. 
Jn J* n 

Proof.  Let fA-~O. We will show that fs,-~O. 
q g  .z J, 

x>0.  Set 

We may suppose that 

b , = s u p ( I f f k [ ;  k>=n}, B,=boq'+...+b,_lq+b, (hEN0), B = l i m s u p B . .  
s, 

Since B,<=bo/(l-q), we have B< ~;  since B,+l=qB.+b,+l and b,~O, we have 
B=qB so that B=0, 

Let P={nEN; J,#J~-l}. We may write P={Pl,P2 . . . .  }, where p~<p~<...; 
further set p0=0. Let ,>0 .  Since B--0, we can find an moEN such that Bin<8 
for each m>=mo. Now let hEN, n>=Pmo. There is an m>=mo such that pm<=n< 
<Pro+l- Let jENo, j<--re. Obviously IJpJ<=qm-:ldpJ; sineefpj is constant on 
int Jpj and pj~j, we have 

I ff,,l <= qm-J] fL,] <- :-%. 
JPm JPJ 

If kEN-P and k=<n, then Jk_l=JkDJ,=Jp,, whence fA=o. Thus 
JPra  

I(I ::,t " sn <: j - -  

j j=O 
]Jm 

Similarly can be proved that 

f s, -~0 if fi. - ,0.  
j2 

3.5. (i) Let #>0. Wesay fliat ~ fulfills (condition) Q(p) iffit has the following 
property: If nENo, JE~., KE~,+I, KcY, then IKI~_#iJI. (In such a case, ob- 
viously, /z< 1.) We say that ~ fulfills Q iffit fulfills Q(p) for some p>0.  
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(ii) For each xE(O, 1) and each nEN set 

5.(x) = ]J.=_l1-1 min 11 f f~[' I f A[}. 

Further, we define 

6(x) = sup {5.(x): nEN}, S(x) = sup {l*.(x)l: n~&} 

for each xE(0, 1). 

3.6. Let ~ fulfill Q(/z). Let x~(0, 1)-D,  nENo. Set e=sup {Sk(x): k>n}, 
n=sup{IA(x)l: k>n} and suppose that max{~,~/}<~. Further, set 0= 

=(e+ (1 -#)~/)//:. Then Z iFk(x)l< co (sothat F(x) has a meaning) and there is a 
k = 0  

p-->n such that 

(1) IF(x)- F(~.)- (x-~,)sp(x)l <= (x-~,)O, 

(2) IF(fl.)- F(x)-(fl,-X)Sp(X)l <= (fl,- x) O. 

If, moreover, S(x)< oo and if 2 is a number such that 2>=(5(x)+2S(x))/# 2, then 

(3) IF(X)-F(a,)I ~- (x-~,)2,  

(4) Ir(fl,)- V(x)l <= (fl,-x)2. 

Proof. Letp be the greatest integer for which ap=~,. Since [%, %+a] contains 
some element of ~p+ 2, we have 

( 5 )  ,7~--~Zp > O~p.bl--C(p ~ #lJpl. 

Now choose a k>p. Let ,  e.g., 

Gtk - I 

If Jk#Jk-1, then ltlJk_l[<--lJk_l--Jkl; therefore (even if Jk=Jt,_l) 

Obviously 
x gk x 

I f f~l <= IA(~)1141, ~(x) = f A + f A, 
so that  

(6) IFKx)f ~ 1&-l-:-Ala,,(x)/~+lA(x)l IJkl. 
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Let P={kEN; k>p, A#Jk_x}. We may write e={pl,p~ . . . .  }, where 
p<p~<p2< .... If  k>p, k:iP, then fk(X)=0; thus 

It is easy to see that 

k = p + l  r = l  

ig~l < (1 /~)lJ I ~ . . <  (1 /~)'lJ I r ~ - -  P r -  1 - -  " ~--" - -  P " 

Now we get from (6) and (5) 

(7) 

we have 

~' iF~(x)t =~ t:;e/~+nt:~I(1 -~0/~ ~ (x-~,)o. 
k = p + l  

Since, by 3.2, 

p x 

Z F~(x)-F(%) = f s, = 
k = O  % 

F(x)-F(%) = (x-%)sp(x)+ ~ Fk(x ). 
k = p + l  

This together with (7) proves (l). 
If, finally, S and 2 are as above, then 

~/<= 2S(x), O+S(x) <= (fi(x)+S(x)(2-2#+#2))/# ~ <= 2 

and, by (1), 
IF(x)-V(~.) l  ~ (x-~,)(O+S(x)). 

This proves (3); (2) and (4) can be proved similarly. 

Then 

3.7, Let ~ fulfill QOz). Let g be a function such that D o m g D D .  Let 8>0,  
rENo, JE~,. Let A c ( J - D ) O D o m g  and let 

ig(x)--g(ak)l <= (X--~tk)n, Ig(flD--g(x)l <= (fl~--X)e (k = r, r + l  . . . .  ) 

for all xEA. 

Ig(Y)-g(x)l ~ ly-xl~/# for all x, yEA. 

which P r o o f .  Let x, yEA, x<y. Let n be the smallest integer for 
(x,y)OD,r Obviously n>-r. 

1) Let (x, y)AD. contain only one point. Then a.(y)=fl.(x) whence 

Ig(y)-- g(x)[ < Ig(y)-g(a.(y))l+ [g(fln(X) )-- g(x)l ~ e(y-- X) 
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2) Let (x,y)AD, contain more points than one. Set ==~,-l(x) ,  fl=fl,-l(x). 
Since (x,y)ND,_~=O, we have ~,_x(y)=~ so that 

Ig(y)-g(x)l <= Ig(y)-g(~)l + lg(x)-g(~)l <= ( x + y - 2 = ) e ;  

similarly 
Ig(y)-g(x)l ~ (2 /~-x-y)e .  

If x+y<=~+fl, then x+y-2~<=fl-~; if x+y>~+fl, then 2 ~ - x - y < f l - ~ .  
Since (x, y) contains some element of ~, ,  we have lz(fl-~)<=y-x whence 

Ig(Y)-g(x)l <= (~-~)~ ~- (y-x)~/l~. 

3.8. For each m > 0  set 

E= = {xE(0, 1) -D;  max {a(x), S(x)} ~_ m}. 

3.9. Let m>0. Then ClEm-D=E =. 

Proof .  Obviously E=cclE=-D. Now let xEclE=-D and let nENo. 
There is a yEEmAintJ,(x ). Thus A(x)=fk(Y), &(x)=J~(y) for k = 0  . . . . .  n so 
that Is,(x)l=ls,(y)l<=m and, if n>0,  also a,(x)=a,(y)<=m. Therefore xEE=. 

Remark .  It follows from 3.6 and 3.9 that if ~ fulfills Q, F(x) exists for each 
x E U  dE=.  

m > 0  

3.10. Let ~ fulfill Q(p). Let re>max {[fo(x)[: xE[0, 1]} and let x, yEdE=. 
Then 

(8) IF(y)- F(x)I <= ly-  xl 3m/# 8. 

Proof .  Define 2=3m/lz ~. Notice that the relations (3), (4) in 3.6 hold for each 
xE E= and each nE No. 

(i) Let x, yEE=, x<y. Letp be the smallest integer for which (x,y)ADp#O. 
1) Suppose that p=0 .  Set P=/~o(x), ~==0(Y). Then x<p<-_~<y. By 3.6 

we have 
IF(fl)-F(x)l <= (f l -x)2,  IF(y)-F(~)[ <= ( y -~ )2 ;  

obviously 

IF( )-F(fl)I = [ f fo 

Therefore IF(y)- F(x)[ ~_ ( y - x ) 2 .  
2) Suppose that p>0.  Then we apply 3.7 with g=F, ~=2, r=p-1,  etc. 
(ii) Let x, yEelE=. If y~D, then, by 3.9, yEE= and we define y,=y for 

each nEN. If yED, we fix a p  such that yED~ and proceed as follows: For each 
n<p we choose an arbitrary element y, EE=. For each n>=p there is a y, EE= Such 

2 Analysis Mathematica 
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that either y = ~ , ( y . )  or y=fl,,(y,,); by 3.6, 

IF(y~)- F(y)I <= ly~- yl L 

~[hus, in any case, y ,~y  and F(y,)~F(y). We find similarly points x, EEm such 
that x,,-,-x and F(x,,)--,-F(x). By ( i )we  have 

tF(y,)-F(x,)t <= [y.--x,12/# (nEN);  
this implies (8). 

4. ~-integral 

4.1. (i) Let g be a function such that Dora gDD and let xE[0, 1]. We say that g 
is S~-eontinuous at x iff g(fl*)-g(~,)-*O (ft, =ft, (x) etc.). We set 

S~g  (x) = lim sup (g (fl*)- g(a,))/(fl* - ~,), S~g (x) = lim inf... ; 

S~g'(x) means S~g(x) provided that S~],(x) = S~(x)ER.  
(ii) Let xE[0, 1] and let g be a function such that D o m g D D U  {x}. We say 

that g is D-continuous at x iff limg(~.)=g(x)=limg(fl*,). 
(iii) Let xE(0, 1) and let g be a function such that D o m g ~ D U { x } .  By 

~g'(x) we mean the common value of 

lim(g(fl*)-g(x))/(fl*-x) and lim(g(x)-g(~,))/(x-a,) 

provided that these limits are finite and equal. 

4.2. Let ~b, 71 be functions; set Z = D o m  T. We say that T is an indefinite 
:~-integral of  ~O iff the following conditions are fulfilled: 

1) Dom ~=[0 ,  1]. 
2) DcZc[O, 1] and [0, 1 ] - Z  is countable. 
3) ~v is ~-continuous at each point of  Z and S~3-continuous at each point of 

[0, 1]. 
4) There is a countable system ~ of  dosed sets such that Z =  ug~ and that 7/ 

is absolutely continuous on A for each AEg~. 
5) S ~ ' ( x ) = ~ k ( x )  for almost all xE[0, 1]. 

4.3. Let ~g be an indefinite ~3-integral of a function ff such that ~ (x)= 0 for 
almost all xE[0, 1]. Then ~g is constant. 

P r o o f .  Let M be the set of all points xE[0, 1] such that lira ~(~,(x)) exists. 
For each xEM denote this limit by ~(x). It follows from 4.2, 3) that �9 is an exten- 
sion of  ~. Let Z, 9.1 be as in 4.2. Let G be the set of  all points xE (0, 1) with the follow- 
ing property: q?here is an open interval J c M  such tha t  xEJ and that �9 is constant 
on J. Then G is open and �9 is constant on each component of G. Set H = ( 0 ,  1 ) -G .  
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Suppose that h is an isolated point of H. Then there are numbers v, w, 2,/t such that 
v<h<w, ~ = 2  on (v,h)and ~=/~ on (h,w). Obviously hEM, ~(h)=2. Since 
(see 4.2, 3)) �9 is S~-continuous at h, we have /~=2, ~ = 2  on (v, w), hEG, which is 
a contradiction. We see that H has no isolated point. 

Suppose that H # 0 .  Set C=[0, 1 ] -Z .  Obviously, 

H=(cnx)u U (ANX). 
AE~ 

The set C is countable and H is a G~-set. Since H has no isolated point, there is, 
by Baire's theorem, an open interval J~ (0 ,  1) and an AEg/ such that 

(9) 0 ~ Jf-IH c A. 

Let U=(v, w) be a component of J--H=JAG. Then r is constant on U. If, e.g., 
rE J, then vEH, vEAcZ  so that r is ~3-continuous at v. Thus �9 is constant on 
Jf~cl U. This together with the absolute continuity of �9 on J A H  implies easily 
that �9 is absolutely continuous on J. Therefore q~'(x)=S~C!(x)=~k(x)=O for 
almost all xEJ. We see that �9 is constant on J. It follows that JoG which contra- 
dicts (9). Thus H=O, G=(0, 1) sothat r  constant on (0, 1). Since ~is  :~-contin- 
uous at 0 and 1, ~ is constant on [0, 1] and 71 is constant on Z. 

4.4. Let ~ be an indefinite ~-integral of ~k and let 7ER. Then ~ is an indefin- 
ite ~-integral of ~ff. 

Proof .  Easy. 

4.5. Let ~ j  be an indefinite ~3-integral of Oi ( j = l ,  2). For any xEDom ~xA 
(/Dora ~ set ~ (x) = ~1 (x) + ~,  (x). Then ~ is an indefinite ~-integral of Ox+ ~ .  

Proof .  Let Zj,  9/j correspond to ~k], ~i  in the sense of 4.2. It is easy to see that 
S~"(x)=~k(x) for almost all xE[0, 1] and that the set Z=Z~NZ, and the system 
9i of all sets Ax (1-4, (.4iEg/j) satisfy the requirements of 4.2 with respect to ~k 1 + ~k, 
and 7/. 

4.6. Let ~1, ~a be indefinite ~3-integrals of the same function. Then 
~1(1 ) -  ~1 (0) = ~ ( 1 ) -  ~ (0). 

Proof .  It follows easily from 4.3--4.5. 

4.7. A function which has an indefinite ~)-integral will be called ~-integrable. 
Let ~ be such a function and let ~ be its indefinite ~)-integral. According to 4.6, the 
number ~ ( 1 ) -  ~(0) does not depend on the choice of ~; We call it the ~)-integral o f~  
and denote it by ~ ) f  ~. 

2* 
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4.8. Let A c B c [ 0 ,  1]. Le tg  be a function on B, bEB. Let A be dosed and let g 
be absolutely continuous on A. Set gl(x)=g(x) for xEBN[0, b], gl(x)=g(b) for 
xEBn(b, 1]. Then gl is absolutely continuous on A. 

P roo f .  Let 5>0. Let us choose a 6 > 0  corresponding to ~ and the absolute 
continuity of g on A. If  bEA, set 61=6; if bCA, choose an ~/>0 such that 
( b - q ,  b + t / ) N A = 0  and set 61=min {6, t/}. Now it is not difficult to prove that 61 
fulfills the requirements corresponding to e and the absolute continuity of gl on A. 

4.9. Let 7 j be an indefinite ~3-integral of ~b and let bEDom 7L Then 

P roo f .  Let 7Jl(x)=Tt(x) for xE[0, b]NDom ~, ~Ul(x)=TJ(b) for xE(b, 1]N 
n D o m  ~. It is easy to prove (see 4.8) that ~u 1 is an indefinite ~3-integral of r b ~. 
Obviously, ~ul (i)- PI(0)= e(b)- P(0). 

4.10. Let ~k be a function on [0, I] whose Denjoy--Perron integral exists; Ictus 

denote it by P. Then ~ f~ = P. 

Proof. Let ku be an indefinite (Denjoy--Perron) integral of ~k. Then P is contin- 
uous on [0, I], P'(x)=ff(x) for almost all xE[0, I] and there is a countable cov- 
ering 9~ of [0, I] such that P is absolutely continuous on A for each AEg~. Since 
P is continuous, we may suppose that each element of ~[ is closed. Therefore ~' is an 

indefinite ~)-integral of ~k so that ~3f~=P(1)-ku(0)=P. 

5. Recovery of terms of a D-series from its sum 

5.1. Let ~ fulfill Q. (See Section 3.5.) Let g be a function on D. Set 

A = {xE[0, 1]: either S~,(x)  < co or S~3g(x) > -oo}. 
m 

Then S~g'(x) exists for almost all xEA. 
This is Theorem 6 of Chapter 4 in [2]. The proof uses methods developed in 

[3, pp. 134--138]. 

5.2. Let W be the system of all 33-integrable functions. For each f E W  set 
I ( f ) = ~ f f .  Then W and I fulfill the assumptions of 2.3. 

P roo f .  It follows from 4.2---4.10. 

5.3. L e t / ,  W be as in 5.2. Then, instead of I~3F-series, we will say simply ~ F -  

series. 
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5.4. T h e o r e m .  Let ~3 fulfill condition Q. Let ~ f ,  be a ~-series such that 
/1=0 

max{ fi"l'l f f.[}--0 

for each xE[O, 1]. Let the set {xE(O, 1): max {S(x), 5(x)}= =} be countable. Then 

there is a ~-integrable function f such that f ( x ) =  ~ f . ( x )  for almost all xE[O, 1]; 
t t=O 

f ,  is its ~ F-series. 
11=0 

Pro of. Let F have the usual meaning. Set f(x) = S~F'(x) for each x for which 
S~F'(x) exists, and f(x)=O for any other xE[O, 1]. For each xE(O, 1 ) - D  we have, 
by 3.3, 

S~F(x) =- lim sup s, (x), S~3_F(x) = liminfs,(x). 

It follows easily from our assumptions and from 5.1 that 

f(x) = S~3F'(x) =- lims#(x) = ~ A ( x )  for almost all xE[0, 11. 
k = 0  

Let Em be as in 3.8; set Z=DU ~J E,,. It is easy to see that [0, 1 ] - Z  is 
" = 1  

countable. Suppose that ~ fulfills Q(/t). By 3.6 (with 2=3m/p 2) Fis ~-continuous at 
each point of E" for each mEN. For every xE[0, 1] we have, by 3.2 and 3.4 (with 
q =  I - ~ ) ,  

F ( a . ) -  F(~,.) = f s. --- o 
J. 

and, similarly, * * F(fl,)-F(ot11)~O. This shows that F is ~-continuous at each point 
of D (thus at each point of Z)  and Sa3-continuous at each point of [0, 1]. 

It follows from 3.9 that Z=DU 0 dE.,. Since ElcE~c  ..... we infer from 
. , = 1  

3.10 that F is absolutely continuous on clE., for each mEN. This shows that the 
restriction of F to Z is an indefinite a3-integral off.  By3.2 and 4.9 we have 

x 

f s11 = Ffx) = F ( x ) - F ( 0 )  = ~ffcto,~ for  each xED11 (nENo). 
0 

Now we apply 2.8 (with g=s~) and 2.9. 

R e m a r k  1. Let us keep the assumptions and the notations of 5.4. Then (see 
2.8 (ii)) 

f d x )  = tJo(X)t-l~ffcjo(~) for each xE(0, 1)-Do, 

f.(x) = IJ11(x)l-l~ f fcs.(~)-lJ11_l(x)l-l~ f fo._l(x ) 
for each xE(O, 1)-D11 (nEN). 
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Remark  2. If D.NintJ has at most one element for each JE~.-1 and each 
nEN, then, obviously, 6(x)=O for each xE(0, 1) (which enables us to simplify the 
assumptions of 5.4). 

5.5. In sections 5.5 and 5.6 we suppose that D. has n+ 2 points; we write D.= 
={0,1, cl ..... c.} (nEN0). Set cpo(x)=l (xE[0,1]). For each nEN let ~p. be a 
function in T. such that 

( ] J * ( c . ) ] ) 1 / ' 2  
~o.(x) = l J . ( e . ) l  I J . - a ( c . ) l  for xEintJ.(c.), 

r  IJ.f_.(c.)l ]1/2 for xEintJ*(c.). 
. I~*(e.)l I ] . - d c . ) l  J 

It is easy to see that the function (p. forms an orthonormal basis for T. (hEN0). 

Thus, a series ~ ' f .  is a D-series iff there are numbers a. such that f,, = a. ~p.; such 
? 1 ~ 0  . . . . .  

a series is the ~3F-series of a function f i f f  a.=~ffq~. (nENo). 

5.6. Theorem.  Let ~ fulfill condition Q. For each xE[0, 1] define M(x)= 
={hEN: r Let ao, al .... be numbers such that 

(10) an/~O.(x)-,-O (nEM(x), n - ~ )  for each xE[0,1] 

and that the set 
I1 

{xE[0, 11: limsuplk=~o ak~ok(X)[ =~}  

is countable. Then there is a ~-integrable function f such that f (x)=  2 agq)k(X) 
k=0 

for almost all xE[0, 1]; we have ak=~3 ff ip k (kENo). 

Proof.  Let xE[Q, 1], nEM(x), x#c. .  Obviously xE[g.(c.),[3*(c.)]. Suppose 
first that ~.(Cn)<=X~:C.. T h e n  0<(p.(x)~(p.(y)-for each yEintJ*(x) so that 

1 

s*(~) o 

If x=~.(c.), then re,=0; if ~.(c.)<x<c., then J~(x)=J*.(x). Thu~ 
J.(x) 

( | I )  max {Is J )  ~~ ]s*fi<P"}< 1/Iq~.(/)]. 

In a similar way we can prove (11) for c < -< * . x=fl.(c.). If nCM(x), xCc., 
then 

f ~ o . =  f ~o. = 0. 
$.(x) J*(x) 
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This shows that 

(12) max{I f a.q,.}-+o. 
&(x) S*(x) 

Obviously 6(x)=0 for each xE(0, 1). Now we apply 5.4. 
Remark .  It is not difficult to prove that (under the assumptions of 5.6)condi- 

tions (10) and (12) are equivalent for each xE[0, 1]. 

6. Additional remarks 

6.1. Let 0, ~ be functions. We say that ~v is an indefinite ~,s-integral of 0 iff 
the following holds: 

(i) The requirements 1)--4) of 4.2 (with Z = D o m  kv) are fulfilled; 
(ii) ~v's(x ) = O(x) for almost all xE[0, 1]. 

The reader can easily formulate the analogues of sections 4.3--4.7, 4.9, 4.10, 5.2 
and 5.3 for the ~,s-integral. In the analogue of 4.10 we may even replace the 
Denjoy--Perron integral by the Denjoy--Khintchine integral. The modification of 
theproofs is trivial. 

6.2. Let ~ fulfill Q(/~). Let B be a measurable set, D c B c ( O ,  1). Let h be a 
function measurable on B such that ~h'(x) exists for all xEB. Then h',(x) exists 
and equals ~h'(x) for almost all xEB. 

Proof .  We may suppose that BAD=O. Let r, and d,,s be as in 2.1. Let 
be a countable dense subset of R. Choose an e>0. For nENo, j =  1 . . . . .  I", and 
coE~ let B(n,j,  co) be the set o f  all points xEBA (d,.s_ i, d,,s) such that 

I [ co <8,  co < e  ( k = n , n + l  . . . .  ). 
i X - - ~ k  1 

It is easy to see that the sets B(n,j,  co) cover B. Now choose n,j, co as above and set 
A=B(n , j ,  co). According to 3.7 with g(x)=h(x)-cox,  r=n etc, we have 

<ol-<+ cx. + + , .  
y - -x  I 

We see, first of all, that h is absolutely continuous on A. It follows ' that ho,(x) exists 
and that Ih',~(x)-col<-e/l ~ for almost all xEA. Obviously [~h'(x),col~_e for all 
xEA. Therefore Ih',+(x)-+~h'(x)[<28/l~ for almost all xEA, [h~(x)-~h'(x)l< 
<2~//~ for almost all xEB and, finally, h'~(x)=:~h'(x) for almost all xEB. 
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6.3. Theorem.  Let all the assumptions of 5.4 be fulfilled. Suppose, moreover, 
that 6,(x)-+O for almost all xE(0, 1). Let f be as in 5.4. Then f is ~ ,rintegrable and 

2 f~ is its ~asF-series. 
n = - 0  

e~o 

Proof .  If xE(0, 1)-D,  ~ f , ( x ) = f ( x )  and if 6,(x)-~O, then, according to 
" = 0  

3;6 (see (1) and (2)) we have ~F' (x) - f (x ) .  It follows from 6.2 that F~(x)=f(x) for 
almost all xE[0, 1]. Further, we proceed as in the proof of 5.4. 

6.4. Theorem.  Let all the assumptions of  5.6 be fulfilled. Let f be as in 5.6. Then 
f is ~a,-integrable and a~=~a, ff~ok (kEN0). 

The proof is left to the reader. 

1 1 3 1 3 5 7 1 
6.5. Let c l=  ~ ,  % = ~ ,  ca=~-, c4:-  ~ ,  cn= ~ ,  cn= T ,  c~- T ,  c8=-]- ff . . . . .  

15 
cu=- i~  . . . . .  %.=1/2 "+~ .. . .  ; set D,={0, 1, c~ . . . . .  c,} (nEN0). Let q~o, 9~ .. . .  

be as in 5.5. Then ~ fulfills condition Q ( 1 ) ,  r are the Haar functions, a ~-series 

is a Haar series and the ~3,,-integral is the HD-integral defined in [4]. We see that 
our assertion 6.4 is a generalization of Theorem 2 in [5] (which, in turn, is a generali- 
zation of Theorem 4 in [4]). 

6.6. Let D,=  {k/2"; k=  0, 1, ..., 2"} (nE N0) and let f be a Perron integrable 
function on [0, 1]. Let Z a . z .  and ~b.~O. be the Haar- and Walsh-Fourier series of 
f, respectively. Let nENo and let m=2". As Zo . . . . .  X,.-~ is an orthonormal basis 
of V. and as the same is true for ~k0 . . . . .  r we have 

m-1 m--I 

,~ akZk = o.p. (f, 1I,) = Z bk~k 
k=O k=O 

(see [61). 
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0 6  O~HOM gaacce  opTorona~mnbnc ps~on 

~K.  K. I'EOPFIdF H ~I. MAP~KHK 

]-Ipr xITO 3a~aHa TaKa~ rIOCae~OBaTeJ~HOCTb pa36riei t i~ OTpe3xa [0, 1], qTO ( n +  1) 

pa36HeHHe Bccr~a MeYfbtIe n-ro.  Ta~a~ IIOCJIe~OBaTCJIbHOCTb e~TeCTBCHHbIM o6pa3oM Hopox-  

~aeT HOCHC~(OBaTCY~HOCTb HoHapHo OpTOrOHaflbHbIX HpocTpaHCTB KyCO~HO HOCTO~HH~IX ~yH~UHit. 

HCKOTOpBIC CBOi~CTBa COOTBCTCTByIOI~HX opToroHanSHb~X pH~OB H3y~IaJIHCb B pa6oTe [2]. l~en~ Hac- 

TOm~efi pa6OTbI ~ HafiTH IIpH HeKOTOpbIX ~OHOHHHTCJIbHbIX Hpe~HOHOTKCHHgX KIIeHI~I Taxoro  p s a a  

rfcxo~q rt3 e ro  cyMIvlbI (CM. 5.4 a 5.6). HeKoTopaa MO~rl~bltxai~l 3TIIX pe3yJIbTaTOB IIplIBO,/~T B 

pa3;~. 6.4 • o6o6meHatO TeopeMbI 2 H3 pa6oTb~ [5]. B HamHx ~oKa3aTenbcTBax ,~acro Hcrroab3yxorc~t 

coo6paxxem~,  pa3pa6oTam~r~e B [4]. HeKOTOpbIe 6nri3r,~e BOIlpOCbl ~ccae,~oBaJI~Cb, Hanp~Mep, B 

[6] rI [7]. OcHoBHhte pe3yabTaT~ pa6orr~I 6e3 ~oica3arear~cxBa 61,IaH c~OpMyrmposam~i e [1]. 
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