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On a class of orthogonal series
JOHN C. GEORGIOU and JAN MARIK

1. Notations

The letter R denotes the set of all (finite) real numbers. The word function means
a mapping to R. The domain of definition of a function f is denoted by Dom f.

For each ACR letint 4, cl 4, |4], and ¢, denote the interior, the. closure, the.
outer Lebesgue measure and the characteristic function of A, respectively. The sym-
bols f(a+) and f(a—) stand for lgg f(x) and 111‘?“1 f(x).- Further,” we set Ny=
={0,1,...}, N={1,2,...}. Instead of limsupa, (€N, n—~<) we write simply
lim sup a,; similarly for lim inf and lim. The meaning of a,—a is obvious.

The symbols [a, b], [a, D) etc. (a, b€ R, a=b) have the usual meaning (in partic-

ular, [a, d]={a}); f f or f f - denotes the Lebesgue integrat-of ¥ over {a, b].

(In this connection f will be always Riemann integrable.) The. words almost and
measurable refer to the Lebesgue measure.

2. D-and IDF-séries

2.1. Foreach neN, let D, beafiniteset {d, o, d, ;. v dyp }, Where 0=d, o<
<dy1=<...<d,,=1. Set D= G D,. Assume that DycD,C...- and that D'is

dense in [0, 1] (so that max{ ,,J_l,] =1, ..5 r,}=0): For-gach - ne N, let
9, beé the system of alhntervals[d,,, j-1sdy ;1 (G=1, ..., 1,). Let D-denote the sequenice.
Dy, D, ...

Let n€N,. For x€(0,1] define a,(x) and B,(x) by 2,(x)<x=8,(x) and
[0,(x), Bu(x)]€D,; for x€[0,1) define of(x) and B*(x) by af(x)=x<B¥(x) and
[ (%), Br(N)€D,. Further set a,(0)=B,(0)=0, o*(1)= (1)=1 (nEN,).

For each x€[0, 1] and each n€N, set J,(x)= [, (x), Bo (%)), T*(x)= [oc*(x)
Br)] (thus J,0)={0}, J3(1)={1}).
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12 J. C. Georgiou and J. Matik

Remark. If x€D,, then of(x)=g,(x)=x; if x€[0,1]-D,, then J,(x)=
=Jr(x).

2.2. For each n€N, let ¥, be the system of all functions f on [0, 1] with the
following propertices:
1) fis constant on int J for each J€2,;

2) f(x)=-;—(f(x+)+f(x——)) for each x€(0,1);

3) fO)=£(0+), f(D)=f(1~).
Obviously ¥,c¥,c.... Set V= {J ¥,. Then V is a vector space and V} is an
n=0
r,-dimensional subspace of V' (n€Ny). It is easy to see that ¥ becomes an inner

1
product space, if we define the inner product of any elements f, g of V' as f Sz
13

2.3. Let W be a system of functions on [0, 1] and let I be a function on W with

the following properties:
A) If f1, LEW, ay, a€R, then a fi+afo€ W and I(afi+afo)=al(fi)+
+a,1(f2);

5) VoW and I(f):flf for each feV;

6) if feV and geW, then fgeW;
7) if £ is a function on [0, 1] such that f(x)=0 for almost all x€[0, 1], then
feW and I(f)=0.

1
2.4. Let f, gcV. Then fecW and [ fe=1(fg).
0

Proof. There is an h€V such that f(x)g(x)=h(x) for almost all x€[0, 1].
Now we apply 5), 7) and 4).

2.5. Let T be a finite-dimensional subspace of V. Let f¢W. Then there is a
unique g¢7T such that I(fp)=1I1(ge) for each ¢¢T. If functions ¢y, ..., ¢, form
an orthonormal basis of T, then g= Zm’ I{fo))e;.

j=1

Proof. Easy.

2.6. (i) The element g of 2.5 (the orthogonal projection of fto T') will be deno-
ted by o.p.(f, T).

(i) Let Ty=V¥,. For each néN let T, be the set of all elements f of ¥, such
that I(fg)=0 for each g€V, ;.

(iii) Any series f f. where £,€T,, will be called a D-series.
n=0
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(iv) Let f€W. Then the series S o.p.(f, T,) will be called the I'D F-series of [
n=0

(F suggests Fourier).
The proofs of the next three assertions are left to the reader.

2.7. Let néN, f€V,. Then the following three conditions are equivalent to
each other:

(1 ff=0 for each x€D,_;
0

(i1) ff=0 for each J€Z,.q;
J

(iii) f€T,.
Remark. If J€2,N9,_; and if f¢T,, then f=0 on int J.

2.8. Let feW, gcV, neN,. Then the following three conditions are equivalent
to each other:

() [ &=1(fer,x) foreach xeD,;
0

(i) gx)=I(fc;) for each J€P, and each xcintJ;
(i) g=o0.p.(f, V).

29. Let f,cV (k=0,1,..), feW. Then 3 f, is the IDF-series of f iff
k=0

ank=0-p.(f,V,,) for each n€N,.
K=o

3. Auxiliary theorems

3.1. Throughout the paper, S’ f» is a D-series. We set
n=0

s= Sfu Fx)= [1, em,, xeo0,1).

The sum of the series S E,(x) will be denoted by F(x) at the points of its conver-
n=0

gence.
We will often write a,, f,, ay, By, J,, J; instead of a,(x), ..., J}(x), respectively.

3.2. Let n€Ny, x€D,. Then F(x)= [ s,.
[1]
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Proof. By 2.7 we have F()=0 for k>n. Thus F(x)= 3 R()= [ s,
k=0 iy

3.3. Let neN,, x€(0,1)—D,. Then s,(x) =,(F B)—F (oc,,))/(ﬁn -0y,
Proof. It follows from 3.2.

34. Let O<g<1. Suppose that D has the following property: If nEN,,
Je9,, Ke9,,,, KcJ, KJ, then [K|=ql|J|. Let x€[0,1] and let

Jf=0 [ [£~0].
I, X

Then

fs,,—»O [fs,,—»O].
7, I

Proof. Let f f,~0. We will show that f s,~0. We may suppose that
7, J

x=>0. Set

b, = sup {| fj;[; k=n}, B,=bg"+..+b,_1g+b, (neN,), B=limsupB,.
Jk

Since B,=by/(1 —¢q), we have B<; since B,,,=¢B,+b,.; and b,~0, we have
B=¢gB so that B=0.

Let P={neN; J,J,_,}. We may write P={p, ps, ...}, where p;<p,<...;
further set p,=0. Let ¢>0. Since B=0, we can find an my€N such that B,<¢
for each m=m,. Now let ncN, n=p, . Thereis an m=m, such that p,=n<
<Pmir- Let JEN,, j=m. Obviously [mel‘éq'""‘jl.]pjl; since fpj is constant on
int Jp,. and p;=j, we have

| [fol=a| [h)|= a0
I om Ip,
If kéN—P and k=n, then J,_,=J;>J,=J, whence [ f=0. Thus

Iy
7,

= 2| [fl= 2a" b= Bu<e
Jj=0 Iom Jj=0
Similarly can be proved that

3.5. (i) Let p=0. We'say that ® fulfills (condition) Q(u) iff it has the following
property: If ncNy, J€9,, K€D,.,, KT, then |K|=ul|J|. (In such a case, ob-
viously, u<1.) We say that D fulfills @ iff it fulfills Q(u) for some u=0.
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(ii) For each x€(0,1) and each ncN set

}.

a, By
8u(x) = Voot min{| [, ,lﬂf fi

Further, we define
5(x) = sup {6,(x): nEN}, S(x) = sup {|s,(x)|: n€ Ny}
for each x€(0, 1).

3.6. Let D fulfill Q(u). Let x€(0,1)—D, neN,. Set e=sup {6;(x): k=>n},
n=sup {|fz(x)|: k>n} and suppose that max {¢, n}<<. Further, set 0=
=(e+(1—p)n)/p?. Then S’ |Fp(x)]< = ‘('so'th‘at F(x) has a meaning) and there isa

k=0
p=n such that

(1) |F(x)~ F@)— (x—a)5,(0)|. = (x—a,)6,

) |F(B)— F() = (By=3)5,(3)| = (B,—)0.

If, moreover, S(x)<eoo and if 1 is a number such that 1=(5(x)+2S(x))/y? then
3) FG)—F(a,) = (x—0,) 2,

@ |F(B)—F()| = (B,~x) 1

Proof. Let p be the greatest integer for which a,=a,. Since[a,, «,.,] contains
some element of Z,,,, we have

(5) X—0p = Opp1—0p = .uIJpl
Now choose a k=p. Let, . e.g.,

| [ A= Wl

g1

If J,#2Jioq, then plJ =\, —J|; therefore (even if J,=J, ;)

| fakﬁ‘lg 'Jk—1—jk|5k(x)/y.
Obviously e
| [H=16@00 B@ = [h+ [

% -1

so that
(6) IFe GOl = =1~ Il )/ + LA (] 1l
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Let P={keN; k>p, I #J,_1}. We may write P={p,,pa, ..

p<pi<pa<... If k>p, k4¢P, then f,(x)=0; thus

2 [N =1 Z IJPJ

k=p+1

It is easy to see that
Mol = (1=, | == (1= .

Now we get from (6) and (5)

G 5’ (B = 1 elunld | (= = (r—,)6,

k=p+

Since, by 3.2,

P x
SRO-F@) = [ 5= (x=,)5,()

we have
F()—F(a,) = (x—a,,)s,,(x)+k=§ B,

This together with (7) proves (1).
If, finally, S and 2 are as above, then

7 =2S(x), 0+S(x)=(3x)+SE)R—2u+pH)u* =1

and, by (1),
|F(x)—F(e)l = (x—0,)(0+S(x)).

This proves (3); (2) and (4) can be proved similarly.

.}, where

3.7. Let © fulfill Q(u). Let g be a function such that Domg>D. Let &>0,

reN,, J€@,. Let Ac(J—D)NDomg and let

lg(x)—g@) = (x—a)e, 1g(B—g@) = Bp—xe k=rr+l, ..

for all xcA.
Then

lg(N—g(x)| = ly—xle/u for all x, ycA.

)

Proof. Let x,y€A4, x<y. Let n be the smallest integer for which

(x, y)N\D,=0. Obviously n=>r.

1) Let (x,y)N\D, contain only one point. Then «,(y)=p,(x) whence

lg(») - = |g()—g(%O)|+|e(Ba(¥)) -8 ()| = e(r—x).
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2) Let (x,y)ND, contain more points than one. Set a=a,_;(x), f=pF,-1(x).
Since (x,»)\D,_;=0, we have «,_,(y)=a so that

g —gx)| = lg()—gD|+]g(x)—g@)] = (x+y—2a)e;

similarly
le()—gX)l = 2B—x—))s.

If x+y=a+p, then x+y—2a=f—a; if x+y=a+f, then 2f—x—y<f-a.
Since (x, y) contains some element of &,, we have p(f—«)=y—x whence

g0)—g)| = B—a)e = (y—x)&/n.
3.8. For each m=0 set
E, = {x€(0, 1)~D; max {6(x), S(x)} = m}.
39. Let m>0. Then ol E,—D=E,,.

Proof. Obviously E,cclE,—D. Now let x€clE,—D and let neEN,.
There is a y€E,NintJ,(x). Thus f,(x)=£.(»), J,(x)=J,(y) for k=0, ...,n so
that |s,(x)|=|s,(»)I=m and, if n=0, also §,(x)=6,(y)=m. Therefore x€E,.

Remark. It follows from 3.6 and 3.9 that if D fulfills Q, F(x) exists for each
x€ |J clE,.

m>0

3.10. Let ® fulfill Q(u). Let m>max {|f,(x): x€[0, 1]} and let x, y€clE,,.
Then

®) [F()—FX)| = |ly—x|3m/p.

Proof. Define 1=3m/u®. Notice that the relations (3), (4) in 3.6 hold for each
x€E, and each ncN,. A
(i) Let x, y€E,, x<y. Let p be the smallest integer for which (x, y)\.D,#8.
1) Suppose that p=0. Set B=pfy(x), a=a,(y). Then x<pf=a<y. By 3.6
we have :
[FB)—F(x)| = (B—x)4, |F(y)—F(@)| = (y—0)i;
obviously

B
\F@—FB) =| [ fi| = (B—a)m = (B—a) .

Therefore |F(y)—F(x)|=(y—x)A.
2) Suppose that p>0. Then we apply 3.7 with g=F, e=4, r=p-—1, etc,
(ii) Let x,y€clE,. If yp4¢D, then, by 3.9, y¢E, and we define y,=y for
each neN. If yeD, we fix a p such that y€D, and proceed as follows: For each
n<p we choose an arbitrary element y,€E,. Foreach n=p thereisa y,¢E,, such

2 Analysis Mathematica
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that either y=a,(y,) or y=p,(y,); by 3.6,

|F(r)—FW)| = |yu—ylA.
Thus, in any case, y,—~y and F(y,)—F(y). We find similarly points x,€E, such
that x,~x and F(x,)—~F(x). By (i) we have

]F(yn)—F(xn)t = iyn—'xni }“/.u (neN);
this implies (8).

4. D-integral

4.1. (i) Let g be a function such that Dom gD and let x€[0, 1. Wesay thatg
is SD-continuous at x iff g(f¥)—g(x,)~0 (Bi=p}(x) etc.). We set

SDF(x) = limsup (2(B7) —g(@))/(B; — %), SDg(x) = limin...;

SDg’(x) means SDZ(x) provided that SDE(x)=SDg(x)ER.

(i) Let x€[0, 1] and let g be a function such that Dom g>DU {x}. We say
that g is D-continuous at x iff limg(a,)=g(x)=lim g(8}).

(i) Let x€(0,1) and let g be a function such that Domg>DU {x}. By
Dg’(x) we mean the common value of

lim (g(8;)—g(x))/(B; —x) and lim (g(x)—g(@))/(x—,)

provided that these limits are finite and equal.

4.2, Let Y, ¥ be functions; set Z=Dom ¥. We say that ¥ is an indefinite
D-integral of  iff the following conditions are fulfilled:

1) Dom y=[0, 1]. .

2) DcZc[0,1] and [0, 1]1—Z is countable.

3) ¥ is D-continuous at each point of Z and SD-continuous at each point of
[0, 1]

4) There is a countable system U of closed sets such that Z=U and that ¥
is absolutely continuous on 4 for each A4€9.

5) SDY (x)=y(x) for almost all x€[0, 1].

4.3. Let ¥ be an indefinite D-integral of a function ¥ such that (x)=0 for
almost all x€[0,1]. Then ¥ is constant.

Proof. Let M be the set of all points x€[0, 1] such that lim ¥(o,(x)) exists.
For each x€M denote this limit by @ (x). It follows from 4.2, 3) that & is an exten-
sion of ¥. Let Z, A be asin 4.2. Let G be the set of all points x€(0, 1) with the follow-
ing property: There is an open interval J<M such that x€J and that & is constant
on J. Then G is open and & is constant on each component of G. Set H=(0, 1)—-G.
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Suppose that 4 is an isolated point of H. Then there are numbers v, w, 4, u such that
v<h<w, &= on (v,h) and ®=u on (h, w). Obviously heM, d(h)=A. Since
(see 4.2, 3)) @ is SD-continuous at h, we have p=A1, &=A1 on (v, w), h€G, which is
a contradiction. We see that A has no isolated point.

Suppose that H=@. Set C=[0,1]—Z. Obviously,

H=(CNHU U (ANH).
A€

The set C is countable and H is a G,4-set. Since H has no isolated point, there is,
by Baire’s theorem, an open interval J—(0, 1) and an A€ such that

® 0= JNH C A.

Let U=(v, w) be a component of J—H=J(1G. Then & is constant on U. If, e.g.,
veJ, then veH, véACZ so that @ is D-continuous at ». Thus @ is constant on
JNecl U. This together with the absolute continuity of & on JNH implies easily
that @ is absolutely continuous on J. Therefore @' (x)=SD® (x)=y(x)=0 for
almost all x¢€J. We see that @ is constant on J. It follows that J—G which contra-
dicts (9). Thus H=0, G=(0, 1) sothat @ is constant on (0, 1). Since @ is D-contin-
uvous at 0 and 1, & is constant on [0, 1] and ¥ is constant on Z.

4.4, Let ¥ be an indefinite D-integral of ¥ and let y€ R. Then y¥ is an indefin-
ite D-integral of .

Proof. Easy.

4.5. Let ¥; be an indefinite D-integral of §; (j=1,2). For any x¢Dom ¥;N
NDom ¥, set ¥(x)=¥;(x)+ ¥:(x). Then ¥ is an indefinite D-integral of ¥, +,.

Proof. Let Z;, U; correspond to ¥;, ¥; in the sense of 4.2. It is easy to see that
SDY' (x)=y(x) for almost all x€[0, 1] and that the set Z=2Z,NZ, and the system
A of all sets 4;MN 4, (4;€U;) satisfy the requirements of 4.2 with respect to Y3+ ¥,
and ?.

4,6. Let ¥,, ¥, be indefinite D-integrals of the same function. Then
l1’1(1)”Tl(o)=‘1’2(1)’“?2(0)-

Proof. It follows easily from 4.3—4.5.

4.7. A function which has an indefinite D-integral will be called D-integrable.
Let i be such a function and let ¥ be its indefinite D-integral. According to 4.6, the
number ¥ (1)— ¥ (0) does not depend on the choice of ¥; we call it the D-integral of v
and denote it by D f v.

2%
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4.8. Let AcBc][0, 1]. Let g be afunction on B, b€ B. Let A be closed and let g
be absolutely continuous on 4. Set g,(x)=g(x) for x€BN[0, b], g(x)=g(b) for
x€BN(b,1]. Then g; is absolutely continuous on A.

Proof. Let &=0. Let us choose a §==0 corresponding to ¢ and the absolute
continuity of g on A. If b€A, set §,=48; if b¢A, choose an n=0 such that
(b—n, b+n)NA=0 and set §,=min {4, #}. Now it is not difficult to prove that 6,
fulfills the requirements corresponding to ¢ and the absolute continuity of g; on 4.

4.9, Let ¥ be an indefinite D-integral of ¢ and let b€ Dom ¥. Then
D [Yep,n = P(B)~F(0).

Proof. Let ¥;(x)=¥(x) for x€[0, )] Dom ¥, ¥,(x)=¥(b) for xe(b, 11N
NDom P. It is easy to prove (see 4.8) that ¥, is an indefinite D-integral of Ycpg, 53
Obviously, ¥;(1)—?,(0)=¥(b)—¥(0).

4.10. Let  be a function on [0, 1] whose Denjoy—Perron integral exists; let us
denote it by P. Then D f y=P.

Proof. Let ¥ be an indefinite (Denjoy—Perron) integral of . Then ¥ is contin-
uous on [0, 1], ¥’/(x)=y(x) for almost all x€[0, 1] and there is a countable cov-
ering A of [0, 1] such that ¥ is absolutely continuous on 4 for each 4¢A. Since
¥ is continuous, we may suppose that each element of 2 is closed. Therefore ¥ is an
indefinite D-integral of ¥ so that O f Y=P()—¥(0)=P.

5. Recovery of terms of a D-series from its sum

5.1. Let © fulfill Q. (See Section 3.5.) Let g be a function on D. Set
A= {XE[O, 1] either Sbg(x) = oo QO Sb_g(x) - —oo}

Then SDg’(x) exists for almost all x¢c4.
This is Theorem 6 of Chapter 4 in [2]. The proof uses methods developed in

[3, pp. 134—138].

5.2. Let W be the system of all D-integrable functions. For each feW set
I(f)=2 f f. Then W and I fulfill the assumptions of 2.3.

Proof. It follows from 4.2—4.10.

5.3. Let I, W be as in 5.2. Then, instead of IDF-series, we will say simply DF-
series.
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5.4. Theorem. Let D fulfill condition Q. Let S f. be a D-series such that
n=0
max{| [l [£]}~0
Tn(x) JX(x)

for each x€[0, 1]. Let the set {x€(0, 1): max {S(x), (x)}=c<} be countable. Then
there is a D-integrable function f such that f(x)= 5’ fu(x) for almost all x€[0, 1];
n=0

> Ja is its DF-series.
n=0

Proof. Let F have the usual meaning, Set f(x)=SDF’(x) for each x for which
SDF’(x)exists, and f(x)=0 for any other x<[0, 1]. Foreach x€(0, 1)~D we have,
by 3.3,

SDF(x) = limsups,(x), SDF(x) = liminfs,(x).

It follows easily from our assumptions and from 5.1 that
f(x) = SDF'(x) = lims,(x) = > fi(x) for almost all x€[0, 1].
k=0

Let E, be as in 3.8; set Z=DU U E,. It is easy to see that [0,1]—-Z is

countable. Suppose that D fulfills Q(1). By 3 6 (with A=3m/u?) Fis D-continuous at
each point of E,, for each meN. For every x€[0, 1] we have, by 3.2 and 3.4 (with
q= 1 _ﬂ)a
F(B)—F(a)= [s,~0
Jn

and, similarly, F(8))— F(x})—~0. This shows that F is D-continuous at each point
of D (thus at each point of Z) and SD-continuous at each point of [0, 1].

It follows from 3.9 that Z=DU U clE,. Since E;CE,C..., we mfer from

3.10 that F is absolutely continuous on cl E, for each m¢N. This shows that the
restriction of Fto Z is an indefinite D-integral of f. By 3.2 and 4.9 we have

fx S, = F(x) = F(x)—-F(0) =% f Jer,xy foreach x€D, (neEN).

Now we apply 2.8 (with g=s,) and 2.9.

Remark 1. Let us keep the assumptions and the notations of 5.4. Then (see
2.8 (i)
folx) = o@D [ fe, for each  x€(0, 1)—Dy,

F23) = 1, )I71D [ fer, = aaa D [y, o)
for each x€(0,1)-D, (ncN).
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Remark 2. If D,NintJ has at most one element for each J€9,_; and each
né€N, then, obviously, d(x)=0 for each x€(0, 1) (which enables us to simplify the
assumptions of 5.4).

5.5. In sections 5.5 and 5.6 we suppose that D, has n-+2 points; we write D,=
={0,1,¢1, ..., €,} (HEN,). Set @o(x)=1 (x€[0,1]). For each neéN let ¢, be a
function in T, such that

(el v :
0,09 = ACKIEANCN] ) for weintse)

LACA I -
o) =~ reiGy) o s

It is easy to see that the function ¢, forms an orthonormal basis for T, (n€N,).
Thus, a series Z’ f» is a D-series iff there are numbers a, such that f,=a,¢,; such

a series is the DF-serxes of a function fiff 4,= f [0, (n€Ny).

5.6. Theorem. Let D fulfill condition Q. For each x€[0,1] define M(x)=
={nEN: @,(x)=0}. Let a,,a,, ... be numbers such that

(10) a0, (x) >0 (nEM(x), n ~ ) for each x€[0,1]
and that the set
{x€[0, 1): ]imsup|2n' @, @i (x)| ===}
is countable. Then there is a D-integrable function f such that f(x)= 2 a, ¢ (x)
for almost all x€[0,1}; we have a,=D f f(pk (k€ Ny).

Proof. Let x€[0, 1], neM (x), x#c,. Obviously x¢[a«, (c,,) B (el Suppose
first that «,(c,)=x<t,. Then 0<go,,(x) - 0,(¥)" for each yEmtJ*(x) so’ that

(P"(x) f¢n< ‘]‘QD,,——I

RAE)
If x=a,(c,), then- f‘qi,,zo; if a,(c)<x<c,, then J,(x)=J;(x). Thas
J (%)
8 max{| [ ou|s| [ ouf} < 1l0ao.
1,(x) TEx

In a similar way we can prove (11) for c,<x=f5(c,). f n¢M(x), x#c,,
then '

" f ¢, = 0.
Ja(x) T
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This shows that

(12) max {'J (f) @y

2

} 0.

Obviously 6(x)=0 for each x€(0,1). Now we apply 5.4.
Remark. It is not difficult to prove that (under the assumptions of 5.6) condi-
tions (10) and (12) are equivalent for each x€[0, 1.

[ a0,
T

6. Additional remarks

6.1. Let , ¥ be functions. We say that ¥ is an indefinite D,,-integral of ¥ iff
the following holds: ‘

(i) The requirements 1)—4) of 4.2 (with Z=Dom ¥) are fulfilled;

(ii) P.(x) = Y(x) for almost all x€[0, 1].

The reader can easily formulate the analogues of sections 4.3—4.7, 4.9, 4.10, 5.2
and 5.3 for the ®,-integral. In the analogue of 4.10 we may even replace the
Denjoy—Perron integral by the Denjoy—Khintchine integral. The modification of
the.proofs is trivial.

6.2. Let D fulfill Q(u). Let B be a measurable set, DcBc(0,1). Let h be a
function measurable on B such that DA’(x) exists for all x€B. Then h,(x) exists
and equals Dh'(x) for almost all x€B.

Proof. We may suppose that BN D=9. Let 7, and 4, ; be asin 2.1. Let Q
be a countable dense subset of R. Choose an ¢=0. For néN,, j=1,...,r, and
w€Q let B(n, j, w) be the set of all points x€ BN (dy, ;1> dy,;) such that

HIhe) (MBI

—a B —x wl <¢ (k=nn+l1,..).

It is easy to see that the sets B(n, j, @) cover B. Now choose n, j, @ as above and set
A=B(n,j, w). According to 3.7 with g(x)=h(x)—wx, r=n etc, we have

hO)—h(x)

= w, =e/p (x, y€d, x £ y).

We see, first of all, that 4 is absolutely continuous on 4. It follows that h,’,s(x) exists
and that |k, (x)—ow|=¢/u for almost all x€A4. Obviously |Dh’'(x)-—w|=¢ for all
x€A. Therefore |h, (x)—Dh (x)|<2¢/u for almost all xcd, |kl (x)—DW (x)<
<2g/u for almost all x€B and, finally, h, (x)=Dh’(x) for almost all x¢B.
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6.3. Theorem. Let all the assumptions of 5.4 be fulfilled. Suppose, moreover,
that 6,(x)-0 for almost all x€(0,1). Let fbe as in 5.4. Then fis D, -integrable and

S [, is its D, F-series.
Proof, If x€(0,1)—D, Zf,,(x)-—f(x) and if §,(x)—~0, then, according to

n=0

3.6 (see (1) and (2)) we have DF’ (x)=f(x). It follows from 6.2 that F/ (x)=f(x) for
almost all x€[0, 1]. Further, we proceed as in the proof of 5.4.

6.4. Theorem. Let all the assumptions of 5.6 be fulfilled. Let f be as in 5.6. Then
[ is Dyintegrable and a,=D, [fo. (KEN).

The proof is left to the reader,

1 3 1 3 5 7 1
6.5. Let ==, Cq=—, = TE—y = e e TRy ey
Ot aTgs Ty QT AT 6T G Gy 6T
15
Cumpzs o =2 s st D=0, L6y, 6} (END. Lot g0,

1
be as in 5.5. Then D fulfills condition Q (—2—) , @, are the Haar functions, a D-series

is a Haar series and the D -integral is the HD-integral defined in [4]. We see that
our assertion 6.4 is a generalization of Theorem 2 in [5] (which, in turn, is a generali-
zation of Theorem 4 in [4]).

6.6. Let D,={k/2"; k=0,1,...,2"} (n€N,) and let f be a Perron integrable
function on [0, 1]. Let > a,y, and > b,y be the Haar- and Walsh-Fourier series of
f, respectively. Let n€N, and let m=2". As yg, ..., ¥m_1 1S an orthonormal basis
of ¥, and as the same is true for Y, ..., ¥,,_1, We have

m~1

3 an=op (iR =3 b
(see [6]).
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OO0 oanoM Kiacce OPTOroHAJIHLHBIX PANOB
IK. K. TEOPTHY n 5. MAPXKYK

TIpeamonoxeM, 9TO 3aiaHa Taxas MoCIeXOBATeILHOCTh pa3Ouenuit orpeska [0, 1], 9ro (n+1)
paz0meHde BCErma Meibde 7-T0. Takasd MOCIENOBATENLHOCTh €CTECTBEHHBIM 00pa3oM IOPOX-
JIAET MOCENOBATEILHOCTD HOMAPHO OPTOrOHANHLHBIX IPOCTPAHCTB KYCOYHO MOCTOSHHBIX (yHKLHA,
HexoTopble CBOKCTBA COOTBETCTBYIOIMMX OPTOrOHANBHEIX PSAOB H3y4amuch B pabore [2]. Llens mac-
TosAImel paboTE — HARTH IPH HEKOTOPHIX AOTOIHATENBHEIX MPEATOTOKEHUSIX LIEHB! TAKOTO PAIA
BCXomA M3 ero cyMMmel (cM. 5.4 u 5.6). HexoTopas MonuduKanus 3THX Pe3yNbTaTOB IPHBOIAT B
pasz. 6.4 x o6o6mennro TeopeMsi 2 #3 pabotsi [5]. B HAMX JOKa3aTeILCTBAX YacTO HCHONB3YIOTCH
coobpaxerms, paspaborannrie B [4]. HexoTopeie GiM3Kkde BONPOCH! HCCIENOBANIACH, HAMPEMED, B
[6] u [7). OcrHOBHBIE pe3ymbTaTh paboTsl Ge3 mokazarenscTa Obimu chopMyneposanst B [1] .
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