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DERIVATIVES AND CLOSED SETS 

J. MAI~J[K (East Lansing) 

In their article [1] G. Petruska and M. Laczkovich proved (among other things) 
that a function defined on a perfect set S and differentiable relative to S can be 
extended to a function differentiable on the whole real line R. This note contains 
an elementary proof  of a more general theorem where the set S is supposed only 
to be closed in R. 

NOTATION. The word function means a mapping to R = ( - * %  oo). Let a E S c R  
and let F be a function. If  SA(a, b)~ 0 for each b>a, we define 

F~ + (a) = lira (F(x)-F(a)) / (x-a)  (xES, x \ a) 

provided that this limit exists. We define analogously the meaning of  F}-(a) and 
Us(a). (Note that Us(a) may exist even if F's+(a) is undefined.) The symbols 
F'+(a), F'-(a) and F'(a) will have the usual meaning (i.e. F'+(a)=F'R+(a) etc.). 

Points in R•  will be denoted by ( . ,  .). 

1. Let a, bER, a<b and let J=[a, b]. Let ~o and ~k be functions continuous 
on S. Let q~ be convex, ~ concave, r on {a, b}. Set s=(q~(b)-cp(a))/(b-a). 
Let ~, fl, M, NER, q~'+(a)=<a<--~'+(a), t~'-(b)~=fl<-q~'-(b), M < m i n  (a, fl, s), 
max (a, t ,  s)<N. Then there is a function G continuously differentiable on J such 
that G'+(a)=a, G'-(b)=fl, M < G ' < N  on (a,b) and that, for each xE(a,b), 
G(x)=~p(a)+ s(x-a)  or q~(x)<a(x)<r 

PROOF. We may assume that ~p=~=0  on {a, b}. Then s=0 .  Let e=(a+b)]2, 
We construct a function H continuously differentiable on J such that H '+(a)=cq 
H = 0  on (c,b), M < H ' < N  on (a,b) and that, for each xE(a,b), H ( x ) = 0  or 
~p(x)<H(x)<~,(x). If  a=0 ,  we choose H = 0  on aT. Now let, e.g., a>0 .  Choose 
an ~ E ( 0 , - M )  and set # (x)=r  We have ==</~(a)=#(a+). There 
is an axE(a, e) such that ~ increases on (a, az). There is an a=E(a, al)and a 
function p continuous and decreasing on [a, a2] such that a(a~-a)<n(al-a,), 

LI 2 

p(a)=a ,  p < p  on (a, a2) and p(a2)=0. Since f p<=(a , -a )<~(a l -a , ) ,  there is a 
g 

~1 Gj~ 

function q continuous on [a.,, as) such that 0<=q-<_e, f q--- f p and that q = 0  on 
a s  a 

x 

{az, al}. Set h=p on [a, a~), h = - q  on [a.~, ad, h = 0  on (al, b] and H ( x ) =  f h 
a 

for each xEJ. It is easy to see that - e < - H ' ( x ) < ~  and O~H(x)<~(x) for each 
xE(a, b). 

A c t a  Ma~hernar H u n g a t i c a  43, 1934 
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In an analogous way we construct a function K continuously differentiable 
on J such that K = 0  on (a, c), K'-(b)=/~, M < K ' < N  on (a,b) and that, for 
each xE(a, b), K(x)=0  or q~(x)<K(x)<~b(x). Now it suffices to take G=H+K. 

2. Let a, b and J be as in 1. Let P be a function on J such that the derivatives 
~=P'+(a) ,  [3=-P'-(b) exist. Set s=(P(b)-P(a))/(b-a).  Let M, NER, M <  
-<min (c~,/3, s), max (c~, fl, s)<N. Then there is a .function G continuously dif- 
ferentiable on Y such that the graph of G is contained in the convex hull of  the graph 
of  P and that G'+(a)=~, G'-(b)=/~, G=P on {a, b} and M-<G'<N on (a, b). 

PROOF. Let �9 and T be functions continuous on a r such that r  
on {a, b}, r is convex, T is concave, ~ '+(a)=  T ' - ( b ) =  - co, T '+(a)= ~ ' - ( b ) =  o~. 
Set Po=(PV~)AT.  Obviously ~=P~§ fi=P~-(b). Let C and Co be the 
convex hulls of the graphs of P and P0 respectively. It is easy to see that CocC. 
Let ~o be the greatest convex function on J such that q~<=P0 and let ~k be the 
smallest concave function on J such that P0_-<~. Let C1 be the set of all points 
(x ,y)  such that xE(a,b) and that y=P(a)+s(x -a )  or ~o(x)<y<~O(x). Then 
C~CCo. Now we apply 1~ 

3. Let S be a nonempty set dosed in R. Let A, BERU { -  ~, ~}. Let P be 
a function on R such that A<P' (x )<B for each xES and that 

a < (P(y)- -P(x)) / (y 'x)  < B, 

wl~enever x, yES, x ~  y. Then there is a function G differentiable on R such that 
G : P ,  G'=P'  on S and A < G ' < B  on R. 

PROOF. We may suppose that inf S = - % sup S . . . .  Let (a, b) be a compo- 
nent o f  R \ S  and let ~,/3, s be as in 2. There are M, NER such that A < M <  
<rain (c~,/~, s), max (~,/3, s)<N<B. Construct a function G according to 2. In 
this way we define G on R \ S ;  further we set G=P on S. It is easy to see that 
G has the required properties. 

4. Let xo, yo, sER. For each 7E(0, ~) define 

(1) W r = {(x, y)ERXR;  l y -yo-s (X-Xo) l  < 7(x-x0)}. 

Let eE(0, ~ ) a n d l e t  (xl, y,), (bl c)ErV,, 3Xi<=ab-xo . Then (2b-x~, 2c-yi)EWs,.  

PROOF. We may suppose that x0=y0=0.  Then 6x~<=8b and hence 12C-y~- 
- S(2b - Xl)l <=2 lc -  sb [ + l y~ -  sxll <~(2b + x~) <=e( I Ob - 5x~) = 5~(2b - x~). 

REMARr:. The geometric meaning of W~ is obvious. To see the geometric 
meaning of assertion 4 the reader should realize that 3x~<=4b-xo means the same 

4 
as x~-xo<= ~-(b-xo)  and t h a t  (b, c) is the center of the segment with end points 

(x~,yl) and (2b-x1 ,  2c-yl) .  

5. Let xo,Yo,sER. For each ~'E(0, oo) define Wr by (1). Let ~E(0, ~o)and 
let: ~x~, yt}, (b, c), <x~, y~)EW~, xx<b<x~, xER, 3lx-bl<-b-x~.  Let q=(Y~--Yx)/ 
/(xz--Xa ). Then (x, c+q(x-b))EWz, .  

A c t a  Mathemat~ca  H u n g a r i c a  4~, 1984 
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PROOF. We may suppose that x0 =y0=0. Set y=c+q(x-b) ,  Z= [x-b[(xl+x2)/ 
/(xs-xl). As 3[x-b[<min (xs-xl ,  b), we have  3Z<min (x~+x2, b(x~+x2)/ 
/(xs-xl)). If x2<-2b, then x~+x2<3b; if xs>2b, then 

< (b b)  < 3. 

Thus in either case Z < b .  
Obviously [q-s] = ]Y2-SX2 - (yl - sxl)l/(x2- x~) <= e(xl + x2)/(x2 , xl); therefore 

]y-xsl=[c-sb+(x-b)(q-s)] <= eb+~Z<2~b. Since x=b-(b-x)>2b/3 ,  we have 
[y--sxl<3ex. 

6. Let S be a set closed in R. Let F be a function on S such that F~(X) 
is finite for each accumulation point x of S. Then there is a function H on ~R 
differentiable at each point of S such that H = F on S. 

PROOF. We may suppose that i n f S = - r  sup S=o~. Set 

A + = {xCS; S A ( x , y ) #  ~ for each y > x } ,  

A - = { x E S ;  S O ( y , x ) #  0 for each y < x } ,  

I + = A - ~ A  +, I - = A + ~ A  -, I = S ~ ( A + U A - ) .  Define a function f on S as 
follows: If b 6 A + U A - ( = S ~ I ) ,  set f(b)=F~(b). If bCI, find xl, x~ES such 
that S(~(xl,x2)={b} and set 

f (b) = (F(x2)- F(x~))/(x2-- x~). 

For each bCS define a set M b as follows: 
If bEA+f-IA -, let Mb={b}. 
If b~i+UI -, choose a db>0 such that either SN(b,b+3do)=fD or SO 

A ( b -  3db, b) = O and set 

M b = {x; 2b-xCS(~[b-d  b, b+db] }. 

If bEI, choose a db>0 such that SN(b-3do, b+3db)={b } and set Mb---- 
=[b-db, b+db]. 

Let M = U M  b (bCS). Obviously b~M b for each  bCS and M j ~ M b = ~ ,  
whenever a, b~S, a#b. If (a, b) is a component of R ~ S ,  then M,(~(a, b)= 0 
for each cCS~,{a, b}. Thus (a, b)~M=(a, b)~(M~UMb) which is Open. There- 
fore R ~ M = ( R ~ S ) ~ M  is open, M is closed. 

There is a unique function G on M with the following properties: G=F 
on S ; i f  x~Mb, b~I+UI -, then G(x)=2F(b)-F(2b-x); if x~M~, b~/, then 
G(x)= F(b) + (x-b)f(b). 

Let Xo~S. We shall prove that 

(2) (Xo) = f (xo). 

The case xoeA + is left to the reader. Now let x0~A + and let e~(0, oo). Set 
s=f(x0) (=F~(xo)). For each 7~(0, oo) define W~ by (1). There is a z>x  o such 
that (x, F(x))~W, for each x~S~(xo, z). There are z~, z2~S such that Xo<Z~<Z 

3 
and that O<z~-Xo<~(z~-xo) (so that Xo<Z~<Z~). Let x~M~(xo, Z~). If x~S, 

A c t a  Mathema~ica  Hunf farica 43, 198d 
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then, obviously, (x,G(x))EW~. Thus, let x r  and let (a,b) be the component 
of R ~ S  containing x. We have xo<a<x<b~_z 1. There are the following four 
possibilities: 

1. xEMb, bE1-. Set xx=2b-x.  Then x~ES, O<xt-b<=db~_(b-a)/3< 
4 

<(b-xo)/3, therefore 3xx<4b-xo, and xl<zl+(zl-xo)/3=xo+-~(zl-Xo)<Z2. 

Set c=F(b), yx=F(xx). We have (b,c), (xl, yt)EW~, x = 2 b - x l ,  G(x)=2c-yx 
so that, by 4, (x, G(x))E lrv6,. 

2. xEMb, bEI. There is an xaESf')(b, ~) such that SO(b, xa)= O. Obviously 
xa~_z~. Then G(x)=F(b)+(x-b)f(b), O<b-x<=db<-(b-a)/3 so that by 5 with 
x l = a ,  q=f(b) etc. we have (x, G(x))EWa~. 

3. xEM,, aEl +. Proceeding as in 1 we get (x, G(x))EWs~. 
4. xEM,, aEI. Proceeding as in 2 we get (x, G(x))EWa~. 
This proves (2). Similarly, it can be shown that G'M~(Xo)=f(xo) for each x0E S. 

Now it suffices to choose for H the function that equals G on M and is linear 
on the closure of each component of R ~ M .  

7. Let T be a closed set in R, V = R ~ T ,  Q c V  and let Q be isolatedin V. 
Let g be a function on Q. Then there is a function K differentiable on R such 
that KIn0  on TUQ, K'=O on T and K'=g on Q. 

PROOF. Let ~o be a function differentiable on R such that ~o=0 on {0}U 
kJ R ~ (  1, 1)), r ]~pt<l on R There is a co on ( -- , -- . function continuous 
R such that co=o) =0  on T and that ~o>0 on V. There are positive numbers 
8~(qEQ) such that the intervals Jq=[q-eq, q+eq] are pairwise disjoint and that 
Jq=V for each q. Now let ~/q=min {og(x);xEJq}, Cq=max(1/~,lg(q)l/nq) and, 
for each xER, let 

K(x)  = ,~ ~ - cp(cq(x--q)). 
qEQ Cq 

Obviously lKl~_o~ on R. It is easy to see that K satisfies our requirements. 

R~MARK. The following assertion is a generalization of Theorem 5.5.3 in [1]. 

8. Let S be a nonempty set closed in R. Let F and f be functions on S such 
that F's(x)=f(x ) for each accumulation point x of S. Let A, B E R U { - ~ ,  co}. 
Suppose that A<f (x )<B for each xES and that A<(F(y) -F(x) ) / (y -x)<B,  
whenever x, yES and x ~ y. Then there is a function G differentiable on R such that 
G=F, G ' = f  on S and A<G'<B on R. 

PROOF. Let T be the set of all accumulation points of S. Let H be as in 6. 
By 7 there is a function K differentiable on R such that K = 0  on S, K ' = 0  on 
T and that K ' = f - H "  on S',,.T. Set P=H+K. Obviously P=F and P ' = f  
on S. Now we apply 3. 

REMARK. It has been mentioned in [1] that there is a perfect set S and a func- 
tion F on S such that IF~(x)l-<_l for each xES and that G' is unbounded for 
each function G differentiable on R such that G=F on S. The following example 
shows a little more. 

Ac~a Mathemc~tlca Hunffar~ea 43, 1984 
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Let l=xo>xl>... ,x,-*O, yn~-'~- gn- l - -X2n(gn- l - -Xn)  ( n =  l,  2, . . .).  It is easy 

to see that x.<y~<X._l. Set S =  [x.,y.] U {0}. Define a function F on 

S setting F ( 0 ) = 0  and F(x)=x~ for each xE[x.,y.]. Then S is perfect and 
F} = 0 on S. Now let G be a function diffcrentiable on R such that G = F on S, 
Then G(x._O-G(y.)=Xl_l-X~>2x.(x._l-XJ=2(x._l-y.) /x .  so that (G(x.-1)- 
- G ( y . ) ) / ( x ~ - l - y . ) ~  (n-*~). We see that G' is unbounded on (0, 1). 

Thus, we have constructed a perfect set S and a function on S twice (actually. 
infinitely many times) differcntiable relative to S that cannot be extended to a func- 
tion twice differentiable on R. 
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