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MULTIPLIERS OF SUMMABLE DERIVATIVES

Theorem 8 of this note characterizes the system of
all functions g such that the product £fg 1is a |
derivative for each summable derivative f. If we require
the product fg to be a summable derivative, we get the

same system.

In this way we obtain a solution of Problem 4.1

posed in [l] by R.J. Fleissner.

The word function means throughout this note a
(finite) real function defined on a subset of R = (-=,»).
For each interval J 1let D(J) be the system of all

finite derivatives on J.

Let a,b € R, a < b. Let g Dbe a function defined
on a set containing the interval J = [a,b] and let m
be a natural number. By v(m,J,g) or v(m,a,b,g) we
shall denote the least upper bound of the set of all sums

m
D=y lolyy) =g(x )|, where a ¢ x <y, < x,<7¥,¢
< X < ¥ra { b. Note that v(1,J,g9) is the oscillation of
g on J, v(m,J,g) { v(m+1,J3,9) for each m and that

lim wv(m,J,g) is the variation of g on J.
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We shall keep the meaning of the symbols a,b,J,m

throughout sections 1-3. The integrals are Perron integrals.

1. Let g € D(J), T € (-»,|g(b) -g(a)|). Then there
is a function f ©piecewise linear on J such that

f(a) = £(b) = £f =0, f{ = 2 and fg > T.
IJ j‘J‘ \ XJ

Proof: Let, e.g., g(a) > g(b). Choose an ¢ € (0,»)
such that g(a) -g(b) -4¢ > T. Set s = (a+Db)/2. There
c
is a ¢ € (a,s) such that f g > (c-a)(g(a) —¢). There
a

is a § € (0,») such that a+8§ < c, ¢c+8& < s and that
X Yy

lf g| +|[ g| < e(c-a), whenever x € [a,a+8] and
a c

y € [c,c+8]. Set Q = 1/(c-a). Let p be a function

on J with the following properties: p = O on

{a} u [c+8,b], pP=Q on [a+s,c], P is linear on

[a,2a+58] and on [c,c+58]. Obviously f p=1. Set
a+d c+d J c

A= (p-Q)g, € =] ©pg. Then [pg=0 [ g+A+cC.
a c J a

It follows from the second mean value theorem that there is

an x € [a,a+8] and a y € [c,c+8] such that
X Y
A = -0 I g, C =20 j‘ g. Hence I Pg > g(a) -=2¢. In a
a c J
similar way we construct a nonnegative piecewise linear
function @ on J such that g =0 on [a,s] U {b},

f g =1 and that j dgg < g(b)+ 2e. Now we set f = p-dqg.
J J

2. Let g €D(J), T € (-»,v(m,J,g)). Then there

is a piecewise linear function £ on J such that
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X
J 1€l =2m, [[ £] ¢ 1 for each x ¢ J, [ £=0 and
J a - g
y P % T,
J
(This follows easily from 1.)

3. Let f and g be measurable functions on J.

Let f |£| < » and let g be bounded. Set
J

x
A= max{\f fl;x € J}, B = v(m,J,g9). Then
: a
B
[ f9] <= [ [£]+a(B+ |g®)]).
AJ'J —de
Proof: Set C = [ |f|. There are y, € J such that
J
Yy
a=yy<y <+ <y,=Db and that I |£] = ¢/m. set
Yr-1
Sy = sup{lg(yk)-g(x)l; Vi1 < X< yk} (k=1,...,m),

Yy Y
P=50 I'F fg-gy)). 0=5" gy ['F ot
Yk-1 Yr-1

b'e
s m k C «m
Obviously |P| ¢ Z&=l Sy f | E] = = Z&=l s,. Let
Yr-1
e € (0,o). There are X, € (yk—l’yk) such that
lgty ) —g(x )| > s, -e. since Z&:llg(yk)-g(xk)l < B,

we have Z&Sl S, < B+me so that |P| < C(%%—e),
Y

. -1 Yx m
|P| < CB/m. Since Q = Zg;l(g(yk)-g(yk+l)) [ o+ gly,) [ £
a a
we have |Q| ¢ A(B+ |g(b)|). Now we note that y fg = P+0Q.
- J
4. Let f and g be measurable functions on the
1

X
interval [0,1]. Let f |£] < =, % f f 0 (x » O+) and
0 0

let g be bounded. For each natural number n set

488



V. = v(2n,2—n,2_n+l,g)o Suppose that supnvn < «, Then

1 X
o Iozﬁg 4+ 0 (x » O+),

Proof: Set x, = 2K (k

s = sup{|g(x)|; x € [0,1]}, V

OllIO")l

supnvn. Let ¢ € (0,=).

Set 8§ = ¢/(2V+S+ 1). There is a natural number r such
X X

that I “|£] < 8 and that 3] £| < 6x for each
(0] 0] -

X € (O,xr]. If k> r and if Xy < x < 2xk, then

%
[j fl g-%(x4~xk) < 6xk so that, by 3 with m= 27,
X
k

X

I[ £9] < % V8 +06x, (V, +S) < x,8(2V+S) < x,e. Now
X
k

let x ¢ (O’Xr]‘ There is an n > r such that

X, < xg 2xn and, by what has just been proved,

X 2x
lfofg‘ gz'k:ml”x
k

This completes the proof.

X
kfg[ + Lf fg| < Thep Xy = 2ex < 2eX.
X
n

5. Let g € D([0,1]). Then

(1) lim supx*o+g(x) <

n ,-nt+l )

< g(0) + 1im supnam‘v(l,2_ ;2 g
Proof: Let G’ = g. For n=1,2,... set X = 2-n’
J, = [xn,2xn], s, = sup g(Jn), Tg = (G(2xn)-G(xn))/kn.
For each n we have Yn > inf g(Jn), hence
s, < yn4-v(l,Jn,g). Obviously lim sup_, s = =
= lim SUP, Lo+ g(x), Ty 7 g(0). This easily implies (1).
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6. Notation. Let J = [0O,1], D = D(J). By 8D
we denote the system of all functions £ € D for which

j |£| < =. For each system Q of functions on J let
J

M(Q) be the system of all functions g on J such that
fg € Q for each f € Q. Let 2Z Dbe the system of all
functions g on J such that fg € D for each £ ¢ SD.

Let W be the class of all functions g on J such that

(2) lim Sup, . v(2n.x+'2_n.X*'2_n+l:g) L B
for each x ¢ [0,1)

and

(3) lim Sup_ ., v(2n,x-2-n+l.X-2n,g) L ®

for each x € (0,1]

Remark. The inequality in (2) is fulfilled, if

lim supyax+l(g(y)-g(X))/(Y-X)l < =

7. Let g € DNW. Then g is bounded.

(This follows easily from 5.)

8. We have Z =D N W = M(SD).

Proof: I. Let g € Z. It is obvious that g € D.

Suppose that, e.g., (2) fails for x = O. Set

v, o= v(2n,2—n,2_n+l,g). There are integers r, such that
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1<« Ty & r, < ... and that Vr > k2 for each k. Choose

r. k
a k and set m=2 , a = 1/m,
Since v(m,a,2a,g) = V. there is, by 2, a function
k
h piecewise linear on J such that h = O on
[0,a] U [2a,1], [ |h| = 2m, [h =0, [ hg > k* and
- J J J
that |[ h| < 1 (x € J). It is easy to see that
5 0]
[f h| ¢ mx (x € J)., For each k construct such a and
(o) - :

_ 2 . e
h and set £, = ah/k". Further define f = Zﬁ=l £

Obviously lef\ = Z&:l 2/k2 < », If k, a and h are

x x
as above and if x € [a,2a], then \f £| = If fkl & x/k2
(0] 0 -
2a 2a
and j fg = I £,.9 > a. We see that f € SD and that
a a

fg € D. This contradiction shows that g € W. Hence

Z DN W,

ITI. Let g€ DNW and let £ € SD. By 7, g

is bounded. Set fl = £f-£f(0). It follows from 4 that

X x
1 I f.g » 0. Hence l-j fg + £(0)g(0) (x =+ O+). This
X Jy 1 X dg

shows that fg € D. Obviously f |fg] < » whence
J
fg € SD, g € M(SD), D N W c M(SD).

III. It is easy to see that M(SD) < Z. This completes

the proof.

9. Let g € M(SD). Then g is bounded and

approximately continuous.
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Proof: The boundedness of g follows from 8 and

7. We see, in particular, that g € SD. Therefore

g2 € D. According to a well-known theorem (see, e.g., [1],

Theorem 3.3) g 1is approximately continuous.

Remark. R.J. Fleissner described in [2] the system
M(D). His characterization involves the notion of an
improper Lebesgue-Stieltjes integral. It is, however,
possible to characterize M(D) in the following way which
is analogous to our description of M(SD): A function

g € D belongs to M(D) if and only if

lim sup_,_ Var(x4-2_n,x4-2_n+l,g) <
for each x € [0,1)
and
lim sup_, var(x-—2—n+l,x-2—n,g) <
for each x € (0,1]
(where var ... has the usual meaning). This assertion

will be proved elsewhere.
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