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ON A GENERALIZATION OF FABRY'S AND SZASZ’'S THEOREMS
CONCERNING THE SINGULARITIES OF POWER SERIES

By ProreEssorR MiLo% KOSSLER,
Charles University, Prague, Czechoslovakia.

The analytic function defined by the power series
<] 1
1) f@)=2Xa,2" a,=la,|e?, lim |a,|"=1,
n=1 ny»xo

has one or more singularities on the circle of convergence. The number, position
and quality of these singular points are functions of the infinite number of
variables ay, as, a3, . ...

It has been shown by the author in some recently published memoirs,* that
all the investigations concerning this subject can be considerably simplified and
at the same time generalized by means of the so-called L series of coefficients

Auyy Cgy Cyrgy - - o s

chosen from the set a;, as, a3, . .. in such a manner that
1

lim |a, | =1.
q
g>r®
Clearly every set ai, ¢z, ... given by (1) includes an unlimited number of L
series.

In the memoirs just cited the author has generalized the well known theorems
of Vivanti-Dienes, Fatou-Polya and of Hadamard concerning singularities on
the circle of convergence. The first and a special case of the third generaliza-
tions are reprinted as the second and third auxiliary theorems in part I of this
memoir. The present communication is a further addition to this general
theory based upon the systematic use of L series.

It seems quite probable that the results obtained by this method are an
individual property of power series and cannot be extended to more general
Dirichlet’s series.

*(a) Rendiconti dei Lincei. XXXII (5), 1° sem. (1923) Swur les singularités der
séries entiéres, p. 26-29. Nouwveaux théorémes sur les singularités des séries entiéres, p. 83-85. Swur
les sgngularites des sévies entieres, p. 528-531.

(b) Rozpravy ces. akademie Praha. XXXII, tr. II, c. 35 (1923). O singularitdch rady
mocninné legicich na krunici konvergencni, p. 1-15. See also the extract in French: Bulletin
internat. de I’Académie des Sciences de Bohéme (1923), Sur les singularités des séries entiéres
sttuées sur le cercle de convergence, p. 1-3.
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I. AUXILIARY THEOREMS.

We use in the following some auxiliary theorems. The first is Hadamard’s*
multiplication theorem:

First Auxiliary Theorem: If two analytic functions are defined by the con-
vergent power series

o(x) =ao+awx+amx?+. ..,
Y(x) =botbix+bax?4. ..,

the only singularities of the function
(%) =aobotaibix+asbaxt+ . ..

will be points whose affixes v;; are the product of affixes of the singular points a; and
B; of the first two funciions.

For our purpose the proof of a special form of this theorem due to Pringsheimft
is quite sufficient.

The second and third auxiliary theorems] are as follows, the third being a
generalization of the well-known Hadamard’s theorem§, concerning power
series with an unlimited number of zero coefficients:

Second Auxiliary Theorem: If corresponding to some L series an, By -,
Bpgre - o1 chosen from the coefficients of (1), a series of angles Y1, s, . .., ¥, ... canbe

selected in such a manner, that
1
(a) hm {cos(qb,,a—l—;l/q)} "1,
(®) cos{ént,} 20,
for all indices n satisfying one of the inequalilies
n(l—pw=n=n,(1+w), (@=1,2,3,...),

where u 1s a positive constant independent of q, then the point z=1 1s a singularity of
the function (1).

Third Auxiliary Theorem: If an L series Oy Gy oy Qi - .,derived from the
coefficiepts of (1) exists, which has the property, that
a,=0
for all indices n satisfying one of the inequalities
nl—p)=n=n,(4w), (@=1,2,3,...),
where p s @ positive constant independent of q, with the sole exception of the central

coefficients Cngr then the circle of convergence is the natural boundary of the function (1).

*Acta Mathematica 22 (1898), p. 55.
{Miinchener Berichte (1912), p. 11-92.

}Consult for proof (3), p. 12 and 14, theorems (I) and (I1) for #,=0or Bulletin intern., p.2-3
theorems (I) and (IT).

§Jour. de Math. (4), vol. 8 (1892), p. 101-186.
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It is obvious from this, that every coefficient of the L series used, e.g,, the
coefficient @y, as non-vanishing can be a member of only one group defined by

nw(l _[.l.) éné‘mo(l +IJ—),

which fact involves the easily verified consequence

nd+1:nq(1+#1)’ (!Z=1» 21 3) - ~-))
where p; is a positive constant dependent only on u.

The fourth auxiliary theorem, which will be stated at the end of this section
after we have proved a preliminary result, refers to a type of integral functions.
Suppose that the positive numbers N, Nz, ..., \,, ... havejthe properties

Myona-NZ1, =123, ...).
14

Then the integral function

=111~ )

is of the “Minimaltypus der Ordnung eins’'* and_;therefore
lgx)| <™,

where § is some positive constant independent of x, if only |x| is greater than a
suitably chosen R(8). The consequence of this is

L
"<

(2) lim lgCx)|!
x| >0

If now a series of positive numbers
a1<a2<a3< .. .a,,<. ..
s given in such a way, thatt
a,>®, la,—N|Zx, (n,v=1,2,8, ...),
then we can prove the following inequality]:
1
lg(an)] "> e,
where § is as small a positive number as desired, if only # is sufficiently great.

To prove this preliminary theorem we first observe that for some given a,,
only one index n can verify the relation

)\”_1 <am <)\”

*Cf. Pringsheim, loc. cit., p. 85, 87-88.

tx is a positive constant independent of # and ».

1This inequality represents a remarkable property of the function g(x). In the special case
a
l'l o the inequality has been proved by Szisz: see Mathematische Annalen 85 (1922)
gm
5. 99-110, Ueber Singulariiiten von Potenzreihen und Dirichletschen Reihen e.s.o.
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We have now

!
-
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- TI =

2

-9 1 v=n1

= =
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le(an)| " =

v

it
—
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v

@

T_M 1 (1 @ )
= . + ()‘u+ am) (7\;' - am)

v=1 a,m—7\,, v="n

n—1 @ 2
é Qo . H <1+ @y )_
k+1). .. (kFn—2) v=n N, (kv —mn)
To simplify the proof* further we introduce the series of auxiliary numbers

am=Max X, vZm, (m=1,2,3,....).

Since

it is obvious that
N >0 If m>» o,

It follows that
Y =n,ifv=n,
v

and therefore

fIA
3

>
<
- |

which gives

A

@ 2 @ )2
H (1 _ O ) H (1 (am\/"'ln) )
+ M(x+v—n) v=n + v(r+k—mn)

y=n

If now the number # is so great, that

ne>1, n+x—2=0,

then putting v =n-+u we find
(n+p) (k+u)> (ut1)?

and therefore

ﬁ <1—J,— (a_”‘@>< II (1+ (GM\/ZEP): sin riam\/a )

v(ik+v—mn)/ u=1 K TG N

see Gottinger Nachrichten Math. Phys. Klasse 1921; Newuer Beweis und Verallgemeinerungen des
*This follows the lines of the proof of a similar theotem used by F. Carlson and E. Landau:

yv=n

Fabryschen Liickensatzes.
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Hence returning to the function g{x), we have

n—1

lg(an)| "t < an, _sin ?riam\in‘,,
k(k+1). .. (xk+n—2) T8\

< GZ_I (n_l) ewan:‘\/%

(n—11 «
n—1 (eam)”—l _ewamx/ﬁ
k (n—1)""1
can (T2
<e ”m m ,

But the numbers # and m are conditioned by the inequalities
eh, 1 <ea,, <e. Ny,

ANp— ea e.n N
en1< m L O

n—1 n—1 n—1 n
Now if m» = (we recall that a,» «) then also #-» « and therefore®

Np— A e n—1, e n—1
2l My, 2 o lg 227 5.0, 5,0, ——lg——+0
n—1 3 n—1 e.a, #n-—I1 €a,, 5

We arrive at the following result: if one chooses some small positive number §,
then an integer m(8) can be found such that for each m> m(3), the inequality
1

(3) [g(am)l "‘>e s
holds. Hence
1
(4) lim |g<am)| " =1
myco
But from (2) we have,
1
Ilm |g(a,,,)l é

and from the two inequalities we finally obtain the fourth cuxiliary theorem ex-
pressed by the following formula:

Fourth Auxiliary Theorem:

lim |g(am)| " =
m-p 0

*As to the last of these relations we have:
lg(n—1) < lgn—1) Ilgln=1)n—1

>0.
Qo ) n—1 Ap—1
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II. THE GENERALIZED THEOREM OF FABRY.

E. Fabry has proved the following well known theorem*:

If in the power series
(<)
f(2)= X ay2™
=0
the conditions

m<ma<mz<..., lim—%=m'
p>® P

are satisfied, then the circle of convergence is a natural boundary for f(z).

Quite recently the validity of this theorem has been shown to hold for the
general Dirichlet series

f@) =g, e if 25
r=1 P

The author of this important generalization is O. Szaszf, while a still more general
form is due to F. Carlson and E. Landaui.

In all these theorems the condition

Myo

must hold for @/l indices p, that is to say, for all members of the series.

The following pages contain a generalization of the theorem relating to
power series only: there is, however, here no longer the necessity of imposing

the condition -2 » on all the members of the series.

Theorem A, Let Qs By -y Qg - - be an L series derived from the coefficients of

w
f(z) =2 a,z",
n=1
where
Mg 1 =1 (L 4 w)
and the positive number u, is independent of q.

Let us arrange in an infinile series Guy, Gmy - -y G,y - - ., the non-vanishing

Annales de I'Ecole Normale Supérieure (3) 13 (1896), p. 381-382, Acta Mathematica 22 (1899),
p. 86. The theorem above is quoted in a form adapted to our notation.

tloc. cit. p. 106.

tloc. cit.
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coefficients of f(z) which satisfy the conditions
ng(l—p)=n=n,(1+u), n#n, (¢=1,2,3, ...),
where u 1is a suitably chosen positive constant®, independent of gq.

If the condition

m,
__>cz),
14

is satisfied, then the circle of convergence is a natural boundary for f(z).

To prove this we first form the integral function
[e2) y2
e =11 (1- 7)),
y= m,
which is of the form indicated in the fourth auxiliary theorem.

Then the power seriesf

2 g2
=1

v

defines an analytic function with the sole singular point z=1.

Next we form a new power series

0
F(z)=2% g(v)a,?’,
v=1
all the singularities of which must (in accordance with the first auxiliary theorem)
be such as are possible for the series
o
e =X a3
y=1
But of all the coefficients of F(z) satisfying the inequality
(1 —p) =En=n,(1+u)
only one, anqg(1zq), does not vanish. Furthermore
L
. "q
llm[a,,qg(nq)l =1,
as a consequence of the fourth auxiliary theorem and the condition

1

lim |a, | * =1.
q

Now it is obvious that the function F(2) has all the qualities requisite for
the application of the third auxiliary theorem. The circle of convergence is

*We choose the y in such a manner that each an, is a member of only one group defined by
ng(l—p)=n=nge(l+pu). (Cf the third auxiliary theorem).
tConsult for proof Pringsheim loc. cit.
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therefore the natural boundary of F(z) and since f(z) has the same singularities,
it is also the natural boundary of f(2).

As an example we construct the following series:
[o
f(Z) = 2 anzn-
n=1

Put the coefficients with indices # satisfying one of the inequalities
10°—10° 2 =n=10"4+10""%, (g=3,4,5,...),
equal to zero with the following exception:
a,n=1
and for coefficients with prime indices
l=as=as=ar=an=....
On all the remaining coefficients with indices 7 such that
10°410° 3 <n <1071 —10°"2, (¢=3,4, 5, ...),
no limitations need be imposed except naturally
1
lim|a.,| = 1.
The choice of these latter coefficients cannot affect the singular character of the
natural boundary |z|=1.

It is obvious that the original Fabry's theorem is a special form of (4).

The theorem (4) remains a ‘‘Liickensatz,” which means that the vanishing
of some coefficients is essential. More explicitly stated: The replacing of the
zero coefficients by a series Grp Gryr + oy Gy . With the properties

o

la,,|>0, Timla,|" =1, (=1,2,3, ...),

cannot be done without invalidating our proof. This remark is not superfluous
because in the third auxiliary theorem, which represents a generalization of
Hadamard's “‘Liickensatz,’” a suitable replacing of zero coefficients is permissible
(cf. (&) second auxiliary theorem).

I1I. TuE GENERALIZATION OF Szisz's THEOREM.

Szasz (loc. cit.) has recently published a theorem concerning general Dirichlet
series, which, restricted to power series, may be stated as follows:

Consider the power series with real coefficients
1

f)=F 0", Gmlan] =1,
n=1
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Let the series of coefficients ay, as, ... have the following properties
01;0, (1«2;0, Caey quio; aql+1 <0, aql+2§0, ey aqz_léo,

aqzéo,’ a¢z+1>0' aqﬁ_z;o, Ce

If now
lim % = ©,
yy»mo p

then z=1 is a singular point of f(z2).
This is a generalization of a well known theorem of Vivanti*. We now propose

to prove a further generalization:

Theorem B. Let ay, Gy, -.., Cugp - be some L series derived from the

coefficients of
1

1) =D an", imlas =1,
n=1

and Yy, ¥, ..., ¥, ... @ corresponding series of angles selected in such a manner
thatt
R
1° lim {cos(¢u, )} =1
g-»®

Let u be a positive constant independent of q. The first of the indices n defined by
n (1 —p)=n=ny(1+u),

which satisfies the inequality

2° cos(bntq) <0,

we denote by n,,; the next index which satisfies the inequality

a1
3° c05(butrg)> 0
we denote by n,,4-1, so that

505(¢nqz+¢'q) =0
and so forth.

For simplicity of presentation denote the series of positive integers

<M <mye<... <#p 1 <wga<<. .. <y <M <.

ma=p, me2=5ps,...

*Riv. di Matem. 3 (1893), p. 111-114.
1Obviously the equation 1° implies the condition cos (¢nq+¢q) >0{orsufficiently large values
of ¢.
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If this series has the property
oy

Iim &=,
y-y»mo p

then z2=1 is a singular point of f(2).

To prove this we start with the function
@ 2
()= 11 (1-2)

and make use of the first auxiliary theorem.

Clearly g(v) is negative for every value of y, which lies within one of the
intervals

(Pl: P2)) (Pa, P:;), “ee

and is positive for every other positive value of y; in particular it is positive
and different from zero, for every value

V=R, Ny ooy gy o0

because these numbers are all owuiside the intervals. Therefore the values of
g(y) attached to these arguments satisfy the equation

1

lim Ig(nq)[n—q =1.

This follows from the fourth auxiliary theorem.

Consider now the power series
o
F(z) =2 ¢g()a2
v=1

which is derived by applying Hadamard’s multiplicative process to the following
two functions

f(2) = %10,,,2",

ZORPFIOES

The function k(z) has the sole singular point z=1. Hence it follows from the
first auxiliary theorem, that F(z) has no singular points other than those which
are possible for f(z). Theseries F(z), however, obviously satisfies the conditions
(a) and (b) of the second auxiliary theorem, because the real part of g(»)a,e*”
cannot be negative for indices » defined by

(L= =v=n (4w, (@=1,2,3, ...).
Hence the function F(z) and consequently also f(z) has the singularity z=1.

Clearly the original Sz4sz’s theorem can be obtained as a specialization
of B.
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