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ON BICOMPACT SPACES
By Epuvarp Cecu
(Received February 3, 1937)

The theory of bicompact spaces was extensively studied by P. Alexandroff and
P. Urysohn in their paper Mémoire sur les espaces topologiques compacts, Ver-
handlingen der Kon. Akademia Amsterdam, Deel XIV, No. 1, 1929; I shall
refer to this paper with the letters AU.  An important result was added by
A. Tychonoff in his paper Uber die topologische Erweiterung von Raumen, Math.
Annalen 102, 1930, who proved that complete regularity is the necessary and
sufficient condition for a topological space to be a subset of some bicompact
Hausdorff space. - As a matter of fact, Tychonoff proves more, viz. that, given a
completely regular space S, there exists a bicompact Hausdorff space S(S)
such that (i) S is dense in B(S), (ii) any bounded continuous real function
defined in the domain S admits of a continuous extension to the domain g(8).
It is easily seen that 8(S) is uniquely defined by the two properties (i) and (ii).
The aim of the present paper is chiefly the study of 8(S).

The paper is divided into four chapters. In chapter I, I briefly resume some
well known definitions adding a few simple remarks. In particular I show that
an arbitrary topological space S determines a completely regular space p(S) such
that a good deal of topology of S reduces to the topology of p(S), this being
true in particular for the theory of real valued continuous and Baire functions.
Chapter II contains the theory of the bicompact space B(S) mentioned above.
Here I shall recall only a few results of chapter II. First, if the space S is
normal, then B(S) may be defined without any reference to continuous real
function since property (ii) may be replaced by the following: if two closed
subsets of S have no common point, then their closures in 8(S) have no common
point either. Second, if the space S satisfies the first countability axiom, then
8 is completely determined by 8(8), S being simply the set of all points of 8(S)
where the first countability axiom holds true. This implies that in this case
(embracing the case of metrizable spaces) the whole topology of S may be
reduced to the topology of the bicompact space 8(S). Hence it is evident that
it is highly desirable to carry further the study of bicompact spaces and in
particular of B(S). Of course it must be emphasized that 8(S) may be defined
only formally (not constructively) since it exists only in virtue of Zermelo’s
theorem. If I denotes the space of integer numbers, then I think it is impossible
to determine effectively (in the sense of Sierpifiski) a point of 8(I) — I. I was
even unable to determine the cardinal number of 8(I). (The paper contains
several other unsolved problems.) The space 8(I) — I furnishes incidentally a
positive solution of a problem proposed by Alexandroff and Urysohn (AU, p.-54:
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Existe-t-il un espace bicompact ne contenant aucun point (x)? The authors
write in this connection: La résolution affirmative de ce probléme nous donnerait
un exemple des espace bicompacts d’'une nature toute différente de celle des
espaces connus jusqu'd présent). In chapter III, I call a completely regular
space S topologically complete if Sis a G5in B(S). The reason for this designation
lies in the fact that, if S is metrizable, it has this property if and only if it is
homeomorphic with a metric complete space. The proof is an easy adaptation
of Hausdorff’s well known proof of the theorem that a G; in a metric complete
space is a homeomorph of a metric complete space. In chapter IV, I consider
locally mormal spaces and I prove that a locally normal space 8§ is always an
open subset of some normal space. This was of course to be expected but I
think it would be difficult to prove without the theory of 8(S).

I

A set 8 is called a topological space (and its elements are called points) if
there is given a class §§ of subsets of S (called closed subsets of S) such that (1)
the whole space S and the vacuous set 0 are closed, (2) the intersection of any
family of closed sets is closed, (3) the sum of two closed sets is closed. A set
G C Sis called open, if the complementary set 8 — G is closed. A neighborhood
of aset A C S (4 may consist of a single point) is an open set containing A.

The intersection of all closed sets containing a given set A is called the closure
of A and is denoted by A. The closure operation has the following properties:
M0=0QQAc A4 (8 A+B=A+ B, (4) A = A Conversely, itis
possible to define the general notion of a topological space starting with an
operation A subject only to conditions (1)-(4) and defining closed sets by the
condition 4 = A.

An open base of a topological space S is a class B of open sets such that any
open set is the sum of some of the elements of 8. The class  of all open sets
is a particular open base. Any open base B has the following properties: (1)
given a point z € S, there exists a U ¢ B such that z ¢ U, (2) given a point z ¢ S
and two sets U and V such that U ¢B, V ¢B, z ¢ UV, there exists a set W
such that W ¢ B8,z ¢ W, W UV. Convetsely it is possible (and the possibility
is utilized very frequently in practice) to define a topological space starting with
a class B subject only to condition (1) and (2); the closure 4 of a set A C S
consists then of all the points z such that

U ¢B, 2z ¢ U implies U4 # 0.

A fixed subset T of a topological space S is always considered as a topological

" space, defining a set A C T to be relatively closed (i.e. closed in the space T)

whenever A is the intersection of T with some closed subset of S. Aset AC T

is relatively open whenever A is the intersection of T with some open subset of S.

The relative closure of a set A C T is the intersection T'A of T with the closure of

A in the space S. Any open base B of S determines an open base B, of T';
the elements of B, are the intersections of T with the elements of 8.
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A mapping f of a topological space S, into a topological space S; is an operation
attaching to each point z ¢ S, a definite point f(z) e S, ; we always suppose that,
given any point y ¢ Sz , there exists at least one point z ¢ S; such that f(z) = y.
The space S, is the domain of f, S, is its range. The image f(A) of aset A C S,
is the set of all points f(z), = running over A. The inverse image f~(B) of a set
B c §; is the set of all points z e S; such that f(z) e B. The mapping f is
one-to-one if

Z1 €81, 22 € 81, 21 ¥ 3 implies f(z,) # f(zs).

If f is one-to-one, then the inverse operation /™ is a one-to-one mapping of S
into S;. The mapping f will be called a function if its range consists of real
numbers. The function fis bounded if its range is a bounded set.

The mapping f is called continuous at a point z ¢ S, if, given any neighborhood
V of f(z), there exists a neighborhood U of z such that f(U) C V. fis called
continuous (simply) if it is continuous at any point z ¢ S;. f is called homeo-
morphic if it is one-to-one and if both f and f™* are continuous. f is continuous,
if and only if the inverse image of any closed subset of S is a closed subset of S; .

A set A C S is called a Gy-set if there exists a countable 'sequence {G,} of
open sets such that A = J]T G, ; 4 is called an F,-set if there exists a countable
sequence {F,} of closed sets such that A = > r F,. The complement of a
Gy-set is an F,-set and vice-versa.

S is called a Kolmogoroff space' if the closures of any two distinct points are
distinct. S is called a Riesz space’ if any single point is closed. Sis a Riesz
space if and only if the intersection of all the neighborhoods of any point z
consists of z only. S is called a Hausdorff space if the intersection of the closures
of all the neighbhorhoods of any point z consists of z only. Any Riesz space is a
Kolmogoroff space. Any Hausdorff space is a Riesz space. Any subset of a
Kolmogoroff space is a Kolmogoroff space. Any subset of a Riesz space is a
Riesz space. Any subset of a Hausdorff space is a Hausdorff space. Let 8
be any open base of S. S is a Kolmogoroff space if and only if, given two distinct
points = and y, there exists a set U ¢ B containing precisely one of the points
z and y. S is a Riesz space if and only if, given two distinct points z and y,
there exists a set U ¢ B containing z and not containing y. S is a Hausdorff
space if and only if, given two distinct points z and y, there exist sets U and V
such that U e®B,V eB,ze U,y eV, UV = 0.

Now we proceed to prove that the theory of general topological spaces (in the
sense precised above) can be completely reduced to the theory of Kolmogoroff spaces.
Let S be a topological space. Two points z ¢ S and y e S will be called equiva-
lent (for the time being) if Z = §. Let F be any closed subset of S and let z and
y be two equivalent points; if z e F, {then Z C F, since F is closed, but y ¢ 7 and
i = % so that y e F. It follows that any closed subset of S consists of complete

1 See P. Alexandroff and H. Hopf, Topologie I, p. 58.
3 See G. Birkhoff, On the combination of topologies, Fund. Math. 26, p. 162.
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classes of mutually equivalent points. Now let us attach to each point z ¢ S a
new symbol r(x) chosen in such manner that r(z) = r(y) if and only if z and y
are equivalent; let us call S, the set of the symbols 7(z), so that 7 is a mapping
of Sinto Sy. Aset Ao & S, will be considered as closed if and only if its inverse
image 77"(4o) is a closed subset of S. It is evident that S, is a topological space
and that 7 is a continuous mapping. Further it is evident that for any set
A C 8 we have r(d) = 7(4); in particular 7(Z) = 7(z) for any z¢S. If
7(z) # 7(y), we have % ¢ §; since the sets % and § are closed, it easily follows
thatr(Z) = 7(§), or r(z) # r(y), so that S, is a Kolmogoroff space. Conversely,
let So be a Kolmogoroff space. Let r be a mapping of a set Sinto S;. Let us
call closed in S the inverse image of any closed subset of S;. Then Sis the
most general topological space and r has the previous meaning. Evidently
the topology of 8 is quite completely described by that of S, .

S is called a regular space if it is a Kolmogoroff space having the following
property: given a neighborhood U of a point z, there exists a neighborhood V of
z such that ¥ < U.> We shall prove that any regular space S is a Hausdorff
space.' Let z and y be two distinct points of S. If we had both z ¢ and
y ¢ &, it would follow, since Z and § are closed, that £ C §and 7 C %, i.e. £=7,
which is impossible. The argument being symmetrical, we may suppose that z
does not belong to §, so that S — § is a neighborhood of z. Hence there exists a
neighborhood U of z such that 7 < S — §. Putting V = S — U,wehavetwo
open sets U and V such that z e U, y ¢ V, UV = 0, so that S is a Hausdorff
space.

Any subset of a regular space is a regular space.

S is called a completely regular space if it is a Kolmogoroff space having the
following property: given a closed set F and a point a ¢ § — F, there exists a
continuous function f (in the domain 8) such that f(a) = 0 and f(z) = 1 forany
zeF.® It is easy to see that a completely regular space is regular and that any
subset of a completely regular space is a completely regular space.

Now we shall start with an arbitrary topological space S and we shall attach
to it a uniquely defined completely regular space p(8) in such manner that a
great deal of topology of S may be reduced to that of p(S). Two points z and
y of 8 will be called equivalent (for the time being) if f(z) = f(y) for every
continuous function f (in the domain S). To each point z € S let us attach a
new symbol p(z) chosen in such a manner that p(z) = o(y) if and only if z and y
are equivalent;’ let us call S; the set of all the symbols p(z), so that p is a mapping
of Sinto S; = p(8). - We shall introduce a topology in S; by defining an open

3 The neighborhoods may here be restricted to a given open base of S.

4 This is usually done assuming g prior: that S is a Riesz space; for this point I am in-
debted to Dr. K. Koutsky.

8 We may assume that 0 = f(2) < 1 for every z ¢ 8, since we could replace f with ¢ by
defining ¢(z) = f(2) if 0 S f(2) S 1, ¢(z) = 0if f(z) <0,and p(z) = 1if f(z) > 1.

¢ It is evident that 7(z) = r(¥) implies p(z) = p(¥); but of course we may restrict our-
selves to Kolmogoroff spaces.
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base B for S;. An element [f, I] of B will be defined by a continuous function f
in the domain S and an open interval I, [f, I] consisting of the points p(z) of S,
such that f(z) e I. To prove that S, is a topological space we have to verify two
things. First, for any a e S, there evidently exists an [f, I] containing p(a).
Second, let p(a) belong both to [f , I)] and to [f: , Iz]; we have to prove that there
exists an [f, I] such that p(a) ¢ [f, I] and [f, I] C [f1, Li]-[f2, Is]. There exists a
number € > 0 such that, for ¢ = 1 and for ¢ = 2, the interval fi(a) — e < t <
fi(a) + eis a subset of I;. It is easy to see that we may put f(z) = | fi(z) —
fi(@) | + | f2(z) — fa(a) |, choosing I to be the interval — e <t < e. Hence S;
is a topological space.

Since the topology of S; was defined by means of continuous functions in the
domain S, it is easy to see that p is a continuous mapping of S into S; so that, if ¢
is any continuous function in the domain 8, f(z) = ¢[p(x)] is a continuous func-
tion in the domain 8. Moreover, in our case the converse is also true: any
continuous function in the domain S has the form f(z) = ¢[p(z)], ¢ being a continu-
ous function tn the domain S, .

If p(a) and p(b) are two distinct points of S;, then there exists a continuous
function f in the domain S such that f(a) # f(b). There exist two disjoined
open intervals I; and I; such that f(a) eI, and f(b) eI,. Then [f, I)] and
[f, I.] are two disjoined open subsets of S; and p(a) €[f, I], p(b) €[f, Io]. It
follows that S; is a Hausdorff space. As a matter of fact, S; is a completely
regular space. Let ® be a closed subset of S; not containing the point p(a).
There exists an [f, I] such that p(a) e[f, I] C S; — ®; we may suppose that I
consists of all numbers ¢ such that | ¢ — f(a) | < e(e > 0). If |f(z) — f(a) | =&,
put g(z) = 1;if | f(z) — f(a) | < e, putg(z) = €. |f(&) — f(a)|. Thengisa
continuous function in the domain 8, so that there exists a continuous function ¢
in the domain S; such that g(z) = ¢[p(z)]. It is easy to see that ¢[p(a)] = 0
and ¢(z) = 1 for each z ¢ ®. g

Let F be a closed subset of S. We shall prove that a necessary and sufficient
condition for the set p(F) to be closed in S, is that for any point

aeS — p p(F)]

there exists a continuous function f in the domain 8 such that f(a) = 0 and f(z) = 1
for each x ¢ F. First suppose the condition satisfied. If p(F) were not closed"
in 8;, we could choose a point a such that

p(a) e p(F) — p(F).

~ Since p(a) € Sy — p(F), there would exist a continuous function f in the domain 8
such that f(a) = 0 and f(z) = 1foreach z ¢ F. There would exist a continuous
function ¢ in the domain S; such that f(z) = ¢[p(z)]. For z e p(F) we would
have ¢(z) = 1; since ¢ is continuous, it easily follows that o(z) = 1 for z € o( ),
in particular ¢[p(a)] = 1, i.e. f(a) = 1, which is a contradiction. Secondly,
suppose p(F) closed in S;. Let aeS — p p(F)]. Then p(a) e Si — p(F).
Since S is completely regular, there exists a continuous function ¢ in the domain
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S: such that ¢[p(a)] = 0 and ¢(x) = 1 for each z € p(F). Putting f(z) = ¢[p(z)],
we have a continuous function f in the domain S such that f(a) = 0 and f(z) = 1
for each z ¢ F.

As 3 corollary, we obtain that, if the space S itself is completely regular, the
mapping p is homeomorphie. '

The following property is characteristic for completely regular spaces S:
Let o be a continuous mapping of S into a topological space R such that each con-
tinuous function f in the domain S has the form f(z) = ¢[o(x)], ¢ being a continuous
SJunction in the domain R. Then the mapping o is homeomorphic. The property
cannot be true if S is not completely regular, as is seen by putting ¢ = p. Hence
suppose that S is completely regular. If a ¢S, beS, a = b, there exists a
continuous function f in the domain S such that f(a) = f(b); since f(z) =
¢lo(x)], we have o(a) ¥ o(b), i.e. the mapping o is one-to-one. It remains to
show that if F is a closed subset of S the set o(F) is closed in R. If ¢(F) is not
closed, there exists a point a € S such that

o(a) e o(F) — o(F).

There exists a continuous function f in the domain 8 such that f(a) = 0 and
J(z) = 1 for each z ¢ F. We may put f(z) = ¢[o(z)] and we have ¢[c(a)] =

and ¢(z) = 1 for each z e ¢(F). Since ¢ is continuous, we must have ¢(z) = 1
for each z ¢ ¢ (F), hence for z = a, which is a contradiction.

Consider the following three properties of a topological space S: (1) If F, and
F are two closed sets such that F1F; = 0, there exist two open sets G, and Gy
such that F, € Gy, F; € Gy, G1G: = 0. (2) If F, and F, are two closed sets
such that F,F: = 0, there exists a continuous function f in the domain S such
that f(z) = 0 for each z ¢ F; and f(z) = 1 for each z ¢ F2." (3) If F is a closed
set and if ¢ is a bounded’ continuous function in the domain F, there exists a
continuous function f in the domain S such that f(x) = o(x) for each z ¢ F.
1t is easily seen that (2) is formally stronger than (1) and that (3) is formally
stronger than (2). But Urysohn proved® that all three properties are equivalent
to one another. A space having these properties is called normal. Property (2)
shows that a normal Riesz space is a completely regular space (hence a regular
space, therefore a Hausdorff space).

If the space S is normal, then p(8S) is normal as well. Let &, and &, be two
closed subsets of p(S) such that ®;&; = 0. Then F; = p'(&,) and F; = p~'(%s)
are two closed subsets of S such that F1F; = 0. Since S is normal, there exists a
continuous function f in the domain S such that f(z) = 0 for each z ¢ F; and
f(x) = 1 for each z ¢ Fo. There exists a continuous function ¢ in the domain
p(8) such that f(z) = ¢[p(z)]. Evidently ¢(z) = 0 foreachz ¢ ®;and o(z) =1
for each z € @, . '

If the space S is normal, then for a € S, b € S we have p(a) = p(b) if and only if

7 It is easy to prove that the word bounded may be omitted.
¢ P. Urysohn, Uber die Mdchtigkeit zusammenhingender Mengen, Math. Annalen 94, 1925.
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a-b# 0. Supposeiirst thatc ea-b. If fisa continuous function in the domain
S, it is easy to see that f(a) = f(c) = f(b), whence p(a) = p(b). Secondly,
suppose that @-b = 0. Since S is normal, there exists a continuous function f
in the domain S such that f(x) = 0 for each z ¢ @ and f(z) = 1 for each z ¢},
whence f(a) = 0, f(b) = 1.

If the space S 1is normal and if F s a closed subset of S, then p(F) is a closed
subset of p(S). Leta eS — p '[p(F)]. For z ¢ F we have p(a) 3 p(z), whence
G+-& = 0; therefore @-F = 0. Hence there exists a continuous function f in the
domain S such that f(zr) = 1 for each x ¢ F and f(z) = 0 for each z € d, in par-
ticular f(a) = 0. We know that this implies that p(F) is closed in p(S).

The last two theorems show that, if S is normal, the space p(S) and its topology
may be completely described without any explicit reference to continuous
functions: The space p(S) consists of symbols p(z) attached to single points
z € 8, p(z) and p(y) being identical if and only if -7 > 0; and a set ® C p(8) is
closed in p(8) if and only if the set p~'(®) is closed in S. It is an interesting
problem to give a similar description of p(S) in the general case.

If the space S ts normal, then a necessary and sufficient condition fora set A C S
to be both closed and a G 13 the existence of a continuous function f in the domain S
such that f(x) = 0 if and only if x ¢ A. Suppose first that such a function f
exists. Then A = {f(z) = 0} is a closed set and G. = {|f(z) | < 1/n} are
open sets and A = J]G.. Converselylet A = 4 = I1@., @. being open.
Since S is normal, there exist continuous functions f, in the domain S such that
fa(x) = 0forzed, falz) = 1forzeS — Go,0 < fu(z) S 1forzeS. Itis
sufficient to put f(z) = > 27" f.(x). '

A point z of a topological space S is called a complete limit point of aset A C S
if, for any neighborhood U of z, the cardinal number of the set AU is equal to
the cardinal number of the set A. A family € of subsets of S is called monotonic
if for any two sets 4 €€, B ¢ € we have either A C Bor BC A. A family €
of subsets of 8 is called a covering of S if each point of S belongs to some set of €.

Consider the following three properties of a topological space S: (1) Every
infinite subset possesses at least one complete limit point. (2) A monotonic
family of non-vacuous closed subsets has a non-vacuous intersection. (3) Any
covering of S consisting of open sets contains a finite covering of S. It is known
that all three properties are equivalent to one another.” A space having these
properties is called bicompact. It is known that a bicompact Hausdorff space is
normal” (hence completely regular). A closed subset of a bicompact space is a
bicompact space. Conversely, a bicompact subset of a Hausdorff space is closed.™
It easily follows that a one-to-one continuous mapping of a dbicompact Hausdorff
space 8 homeomorphic.

Let {S.} be a family of sets; the subscript « runs over an arbitrarily given set I.
The cartesian product P. S, of the family {,S.} is the set of all families z = {z.},

* AU, p. 8.
10 AU, p. 26.
1 AU, p. 47.
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each z, belonging to S,. The zs are called the coordinates of z. If every S,
is a topological space, we introduce a topology into S = P, S, by means of the
following open base 8B: The elements of B are sets of the form P,G, where (1)
each @, is an open subset of S,, (2) G, = S, except for a finite number of sub-
scripts «. It is easy to see that S is a Kolmogoroff space, a Riesz space, a
Hausdorff space, a regular space, a completely regular space, if and only if every
factor space S, belongs to the correspond.ing category of spaces. If Sisnormal,
every S, is normal as well; but the converse is f alse

The cartesian product S = P, S, of any family of bicompact spaces ia a bicompact
space. Using Zermelo’s theorem, we may suppose that the set I consists of all
ordinal numbers less than a given ordinal number. Let there be given an
infinite subset 4 of S. We have to construct a complete limit point z = {2.}
of 8. According to the way the topology of S was introduced, it is sufficient to
construct the coordinates z, by transfinite induction, choosing each z, € S, in
such a way that it have the following property =, : If there is given a finite
number of subscripts t» < ¢ and, for each ¢, , a neighborhood @, of z,, (in the
space S.,), then the cardinal number of the intersection of A with the set of
those points £ = {z,} for which z,, ¢ G, (for each of the given subscripts ,) is
equal to the cardinal number of A. We need only prove that the definition of
the z/’s by transfinite induction may be carried through. Hence suppose that,
for a definite value \ ¢ Z, the points z, (with property =.) having already been
constructed for ¢ < A, it is impossible to choose 2\ € S, with property my. Then,
for every point y € Sy, there exist: a neighborhood T'(y\) of the point y (in
the space S,), a finite (perhaps vacuous) set M(y») of subscripts « < A and, for
each ¢ e M(y), a neighborhood G(z,, y) of the point 2, (in the space S,) such
that the cardinal number of the set A-H(y) K(y) is less than the cardinal
number of A, where H(y)) is the set of all points 2 = {z.} for which z) ¢ T'(y))
and K(y,) is the set of all points = {z.} for which x, ¢ G(z, , y») for every
te M(y). Since the space S\ is bicompact, there exists a finite set of points

e S(1 £ ¢ = m < »)such that

¢)} Z_:l Ty") = . ’
The cardinal number of the set
@) | 2 A-HO)-KL")

is less than the cardinal number of A. On the other hand, it follows from (1)
that

2H@) =8
=1
8o that the set (2) contains the set

® 4TI KG).
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It follows that the cardinal number of the set (3) is less than the cardinal number
of A. But it is easy to see that this is in.contradiction with property =, ,
choosing u < Aand u = «forevery ¢ e Z.- M),

II

Since a bicompact Hausdorff space is completely regular, every subset of a
bicompact Hausdorff space is also completely regular. Following Tychonoff,
we shall prove conversely that every completely regular space is a subset of some
bicompact Hausdorff space.

Let S be given completely regular space. Let T’ denote theinterval 0 < ¢ S 1.
Let ® denote the set of all continuous functions f in the domain § such that
f(S) € T. Choose a set I having the same potency as the set &, so that there
exists a one-to-one mapping of I into &; let f, be the function corresponding to
tel., Foriel,put T, = T and let R be the cartesian product B.7.. Since
every T, is a bicompact Hausdorff space, R is also a bicompact Hausdorff space.
For any z ¢ S, put g(z) = £ = {£.} ¢ R, where {, = f.(z). Then g is a mapping
of the space S into the space 8* = ¢g(S) C R. 1t is easy to see that the mapping
gishomeomorphic. For:elandfeR,pute.(t) = £ . Thene,isacontinuous
function in the domain R such that ¢,(R) = T. Moreover, we see that ¢.[g(z)] =
Ju(x) for z € S.

If S is a completely regular space, let B(S) designate any topological space
having the following four properties: (1) B(S) s a bicompact Hausdorff space,
(2) S < B(8S), (3) S is dense in B(S) (i.e. the closure of S in the space B(S) is
the whole space 8(8)), (4) every bounded continuous function f in the domain S
may be extended” to the domain B(S) (i.e. there exists a continuous function ¢ in
the domain B(S) such that ¢(x) = f(z) for every z € S).

The space B(S) exists for every completely regular S. Using the above notation,
we easily see that the closure of S* in the space R has the properties (1)-(4)
relatively to S* so that B(S*) exists. Since S and S* are homeomorphic,
B(8) exists as well. v

Given a completely regular space 8, the space B(S) is essentially uniqgue. More
precisely: If B; and B; both have properties (1)-(4) of 8(S), then there exists a
homeomorphic mapping & of B, into B; such that h(z) = z foreach z ¢ S. This
is but a particular case of the following theorem: Let S be a completely regular
space. Let B be a space having properties (1)-(3) of B(S) (but not necessarily
property (4)).  Then there exists a continuous mapping h of B(S) into B such that:
(i) h(z) = z for each x € S, (ii) A[B(S) — S] = B — 8. The mapping h is one-to-
one (and consequently homeomorphic) if and only if B also possesses property (4).
Let I, T, R, g and S* have the above meaning. Divide the set I into two dis-
joined subsets I; and I, putting ¢ ¢ I, if and only if the continuous function f,
may be extended to the domain B. Let R, denote the cartesian product P. T,
where ¢ runs over I; and T, = T for each «. For any z ¢ B, put gi(z) = ¢ =
{&)ce1, € R1, where £ = ¢,(z), ¢. being the extension of f, to the domain B.

12 It follows easily from property (3) that the extended function is uniquely defined by f.
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Then g, is a homeomorphic mapping of the space B into the space B* = ¢,(B) C
R, , just as g was a homeomorphic mapping of S into the space S*. For any
point £ = {£}.er€eR, put k(§) = {&}.er, e Ri. Evidently k is a continuous
mapping of R into By. For z ¢ 8, it is easy to see that k[g(z)] = g:(z) so that
k(S*) < B*. Since k is continuous, it follows that k(S*) C B*, where S* is the
closure of S* in the space R and B* is the closure of B* in the space R, . Since
B* is a homeomorph of B, B* is a bicompact Hausdorff space, whence B* = B*.
Therefore k(S*) C B*, i.e. k defines a continuous mapping k, of S* into a subset
of B*. Since §* was homeomorphic with 8(S), and B* was homeomorphic with
B, ko defines a continuous mapping h of 8(S) into a subspace h[8(S)] of B;
evidently h(z) = z for every z ¢ S. The space h{8(8S)], as a continuous image
of the bicompact space 8(S), must be bicompact. It follows that h[8(S)] is
- closed in B. On the other hand, h[8(S)] D S must be dense in B. Therefore,
h[B(S)] = B, i.e., h is a continuous mapping of B(S) into B. If B possesses
property (4) of B(S), we have I, = I, whence R; = R and k is the identity.
. This readily implies that the mapping % is homeomorphic.

Returning to the general case, we still have to prove that A[B(S) — S] =
B — 8. Of course A[B(S) — 8] D B — 8. It remains to arrive at a contradic-
tion in supposing the existence of a point b € 8(S) — S such that a = h(b) € S.
Since B(S) is a bicompact Hausdorff space, it is completely regular. Hence
there exists a continuous function ¢ in the domain B(S) such that ¢(a) = 0
¢(b) = 1. Let Q be the set of all points z € S such that ¢(z) = 3. ThenQisa
closed subset of S, so that there exists a closed subset P of the space B such that
Q = SP. Since B is a bicompact Hausdorff space, it is completely regular.
Hence there exists a continuous function ¢ in the domain B such that ¢(a) = 0,
Y(z) = 1foreachz e Pand 0 < y(z) < 1foreachz e B. From property (4) of
B(8) it follows that there exists a continuous function x in the domain 8(S) such
that x(x) = y(x) for each z € S, whence x(a) = 0. Since h is a continuous
mapping of B(S) into B, Y[k(z)] is a continuous function in the domain 8(S).
The set C of all points z ¢ 8(S) such that ¢[h(x)] = x(z), is closed in B(S) and
contains the set S which is dense in B(S); therefore C = B(S), whence x(b) =
Y[h()] = ¢(a) = 0. The set D of all points z ¢ 8(S) such that both o(z) > 3
and x(z) < %is open in B(S) and is not vacuous, since b ¢ D. Since S is dense in
B(8), there exists a point ¢ ¢ 8- D. Since ¢ ¢ D, we have x(c) < };sincece S, .
we have x(c) = ¢(c). Thereforey(c) < 3sothatceS:-(B—P)=S—Q. From
the definition of @ it follows that ¢(c) < }; since ¢ e D, this is a contradiction.

Two subsets A; and A; of a topological space S will be called completely
separated if there exists a continuous function f in the domain S such that
f(z) = 0 for each z € A; and f(z) = 1 for each z € 4,.° It is easy to see that A4,
and A, are completely separated if and only if the closed sets A; and A are
completely separated. We know that 8 is completely regular if and only if
any single point z and any closed set not containing z are always completely
separated. We know that S is normal if and only if two closed sets without
common points are always completely separated.
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Let S be a completely regular space. We characterized the space 8(S) by
the properties (1)-(4) given above. We will now show that 8(S) may be also
characterized by the properties (1), (2), (3) and (4'), where (4') means the follow-
ing: If A, and A, are two completely separated subsets of S, then the closures of
A, and A, in the space B(S) are disjoint. Suppose first that 4, and A; are two
completely separated subsets of S. Then there exists a continuous function f
in the domain S such that f(z) = 0 for each x € A; and f(z) = 1 for each z € As .
We may suppose that 0 < f(z) < 1 for each z € S, so that there exists a continu-
ous extension ¢ of f to the domain 8(S). Letting the bar denote closures in the
space 8(S), we have ¢(z) = 0 for each z ¢ A, and ¢(z) = 1 for each z ¢ A3, s0
that indeed 4,4, = 0. Conversely, let the space B have properties (1), (2), (3),
(4’). There exists a continuous mapping h of the space 8(S) into the space B
such that h(zr) = z for each x ¢ S. It is sufficient to prove that the mapping A
is one-to-one. Suppose the contrary. Then there exist two points a ¢ 8(S),
b € B(8S) such that a = b, h(a) = h(b). There exists a continuous function f
in the domain B8(S) such that f(a) = 0, f(b) = 1. Let A, denote the set of all
points z € S such that f(z) < };let A; denote the set of all points z ¢ S such that
f(z) =2 3. Itiseasy tosee that A; and A4, are two completely separated subsets
of 8 so that A; A; = 0 where the bar designates closures in the space B. Since
h(a) = h(b), we shall have a contradiction if we shall prove that h(a) € 4;,
h(b) e A,. Let U be any neighborhood of h(a) in the space B. Then A™(U)
is a neighborhood of a in the space 8(S). Since f(a) = 0 and since S is dense in
B(8), it is easy to see that A~ (U)- A, = 0, whence U-4; > 0. Since U was an
arbitrary neighborhood of h(a) in the space B, we have indeed h(a) e 4; and
similarly we prove that k(b) € 4, .

In the particular case when S i a normal Riesz space, it follows from the
result just proved that 8(S) may characterized by the properties (1), (2), (3)
and (5) where (5) means the following: If F, and F; are two closed subsets of S
without common points, then the closures of Fy and F: in the space B(S) have no
common points. Conversely, if there exists a space B having properties (1), (2), (3)
and (5), then. S is normal and B = B(8). Indeed, it is easy to see that property
(5) is stronger than property (4’) so that B = g(S). If F, and F; are two closed
subsets of S and FyF; = 0, then F;F, = 0, the bar indicating closures in B.
Since B is a bicompact Hausdorff space, it is normal, so that there exists a
continuous function ¢ in the domain B(8) such that ¢(z) = 0 for each z ¢ Fyand
¢(z) = 1for each z ¢ ;. Hence it follows that S is normal.

Let S be a completely regular space. Let T be a closed subset of S; let T'
denote the closure of T in the space 8(S). Then we have T = B(T) (i.e. T
possesses the properties (1)-(4) of B(T)) if and only if every bounded’ continuous
function in the domain T admits of a continuous extension to the domain S. Sup-
pose first that T = B(T) and let f be a continuous function in the domain 7'
such that e.g. 0 < f(z) < 1 for each z ¢ 7. Since T = B(T), there exists a
continuous extension g of f to the domain T'; of course 0 < g(z) < 1foreach z ¢ T
Since B(S) is a bicompact Hausdorff space, it is normal; since T is closed in
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B(S), there exists a continuous extension ¢ of g to the domain 8(S). Hence f
may be continuously extended to the domain B(S) and therefore also to the
domain 8 C B(8S). Conversely suppose that every bounded continuous function
in the domain 7' may be continuously extended to the domain S. Of course T
has always properties (1)-(3) (relatively to T); therefore to prove that 7 = g(T)
it is sufficient to prove that T has property (4’) (again relatively to T). Hence
suppose that A; C T and 4: C T are completely separated in the space T'.
Then there exists a continuous function f in the domain 7 such that f(z) = 0
foreachz ¢ A;, f(z) = 1foreachz e A;and 0 < f(z) < 1foreachz ¢ T. There
exists a continuous extension ¢ of f to the domain S, whence it readily follows
that A, and A4, are completely separated in the space S. Since 8(S) has property
(4") (relatively to S), we have A; A, = 0, the bar indicating closures in the space
B(S). But of course A, and A, are closures of A; and As in the space T, so that T
has indeed property (4') relatively to 7.

The theorem just proved has the following consequence If 8 is a normal
Riesz space, then T = B(T) (the bar indicating closure in B(S)) for every closed
subset T' of S. If the completely regular space S is not normal, then there exists a
closed subset T of S such that T = 8(T).

If & is a family of neighborhoods of a point z of a topological space S, then we
say that ® is complete if, given an arbitrary neighborhood @ of z, there exists a
neighborhood U of z such that both U ¢ ® and U € G. The least cardinal
number of a complete family of neighborhoods of z is called the character™ of z
(in the space S) and is denoted by x(x) = xs(x). If T C Sand z e T, it is easy
to see that

xr(z) S xs(z).
Let S be a completely regular space. Then for every point a € S we have
xs(@) = xa(o(a).

Let & be a complete family of neighborhoods of a in the space S whose cardinal
number is equal to xs(a). It is sufficient to construct a complete family ¥ of
neighborhoods of a in the space 8(S) such that the cardinal number of ¥ does
not exceed xs(a). The family ¥ will be constructed as a transform of the family
&, each U ¢ ® determining a 7(U) ¢ ¥, in the following way,

U) =8(8) -8 ~-T

‘(the bar indicating closures in the space 8(S)). Of course ¥ is a family of neigh-
borhoods of a in the space 8(S) and the cardinal number of ¥ does not exceed
xs(@). Hence we have only to prove that, given a neighborhood G of a in the
space B(S), there exists a U e ® such that 7(U) € G. There exists a continuous
function f in the domain 8(SS) such that f(a) = 0 and f(z) = 1 for each z ¢ 8(S) —
G. Let H denote the set of all points z ¢ S such that f(z) < 3. Then H is a
neighborhood of a in the space S, so that there exists a U ¢ ® such that U C H.

BAU, p. 2.
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It remains to prove that r(U) € G. Supposing the contrary, there exists a
point b e 7(U) — G. Since b eB(S) — G, we have f(b) = 1. Let V be an
arbitrary neighborhood of b in the space £(S). Since f(b) = 1 and since S is
dense in B(S), there exists a point ¢ ¢ SV such that f(¢) > 3. Since U C H,
we cannot have ¢ c U. Thereforece S — Usothat (S — U)V = 0. Since V
was an arbitrary neighborhood of b in the space B8(S), we have beS — U =
B(8S) — r(U), which is a contradiction. :

Let S be a completely regular space. Let A C B(S) — S(A 5= 0) be both closed
and a G5 in B(S). Then the cardinal number of A is = 2%°. Since A is both
closed and a Gs in the normal space 8(8S), there exists a continuous function f
in the domain B(S) such that f(z) = O for each z ¢4 and f(z) > 0 for each
z eB(S) — A. The set of all points z e 8(S) such that f(z) < n7'(n = 1, 2,
3, -+ ) is open and not vacuous. Since S is dense in 8(S), there exists a point
a. € S such that f(a,) < n™". Since AS = 0, we have f(a.) > C. It is evident
that the points a. may be chosen is such a manner that f(an+1) < f(as). Let
us arrange the rational numbers of the interval 0 < ¢t < 1 in a simple sequence
{ra}. There exists a continuous function ¢ in the domain 0 < ¢ < «» such that
0 < ¢(t) <1lande[f(an)] =rn=1,23, ). Sincef(z) > 0foreachz ¢S,
we obtain a bounded continuous function g in the domain S such that g(z) =
¢lf(z)] for each z ¢ S. There exists a continuous extension h of g to the domain
‘B(8). Choose a real number a,0 < « < 1. There exists a sequence 7, < 73 <
73 < -+ such that r;, = a for n — ». Let M, designate the set of points ay,,
Qipyry Qigrgy ** > SOthat M, C S, Mo D My, M, # 0. Since the space g(S)
is bicompact, there exists a point b e ][] M,. Since the functions f and h are
continuous, we have f(M.,) C f(M,), h(M.) C h(M,) = g(M,), whence f(b) ¢ ]|
joryy, k@) eI1 g(M,). Since f(ai,) — 0, g(a;,) — a for n — «, we easily
see that f(b) = 0, k(b)) = a. Since f(b) = 0, we have b e A. Therefore, for
each a such that 0 < a < 1, the set A contains a point b such that () = .
Hence the cardinal number of A is at least 2%,

Let S; and 8; be two completely regular spaces satisfying the first countability
aziom. Let the spaces B(8S:) and B(8S:) be homeomorphic. Then. the spaces S;
and S, are homeomorphic. We may assume that 8(8S;) = B(S:). According to
the preceding theorem no point z € 8(S;) — 8; is a G5 in B(S;). But every
point z € S; satisfies the first countability axiom relatively to S; and, therefore,
after the theorem last but one, relatively to 8(S:) as well and hence z is a G5 in
B(8S:) = B(S:). Therefore S; < 8; and similarly S, < 8,, so that S; = S;.

Let I denote an infinite countable isolated space (e.g. the space of all natural
numbers). It is an important problem to determine the cardinal number
mof 8(I). AllIknow about it is that

2No é m __S_ 2230_

It is easily seen that each point of I is an isolated point of B(I) so that the set I
is open in B(I). Since I is countable, it is an F, in 8(I). Hence S(I) — I is
both closed and a G; in B(I) so that the cardinal number of 8(I) — Iis = 2R°,
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On the other hand, since the set I is dense in the Hausdorff space B(I), it is easy
to see that a point = e 8(I) is uniquely determined knowing the family of all sets
A C I such that z € A, so that the cardinal number of 8(I) is at most equal to
the cardinal number 22"° of all families of subsets of I.

A topological space 8 is called compact if, given any infinite subset A of S,
there exists a point z € S such that z e 4 — z. ‘

Let the normal Riesz space S be not compact. Then the cardinal number of
B(8S) — 8 is at least equal to the cardinal number of B(I) (hence at least equal to
2%),  Since S is not compact, it is well known that S contains a closed subset F
homeomorphic with I. Since S is normal, we have 8(I) = T < B(S), so that
B(I) — I < B(S) — S. But the sets B(I) — I and B(I) have the same cardinal
' number. -

I do not know whether this theorem remains true if we replace normality by
complete regularity. It may be shown that the assumption of normality may
be replaced by the following weaker assumption*: If F; and F; are two closed
subsets of S such that Fy is countable and F1F; = 0, there exist two open sets
Giand Gy suchthat 3 D F, ,Gy D F.,G1G: = 0.

If the space S is compact, then the set 8(S) — S may consist of a single point.
Let S be the set of all ordinal numbers <w;, w; being the first uncountable
ordinal number. Let S, be the set of all ordinal numbers <w,. The topology
of S and S, is the usual topology of an ordered set, an open base being given by
the family of all open intervals. It is well known that S is a compact normal
Riesz space and that S, is a bicompact Hausdorff space. We shall prove that
Sp = B(8). Since it is evident that S, possesses properties (1)-(3) of B(S), it is
sufficient to prove that a continuous function f in the domain S admits of a
continuous extension to the domain S,. This is an easy consequence of the
following theorem. If f is a continuous function in the domain S, then there
exists a point £ ¢ S such that f is constant for x = £. It is sufficient to prove that,
given a number £ > 0, there exists a point £(e) ¢ S such that | f(z) — f(¥) | < &
forzeS,yeS,z> £(e),y > £(). Supposing the contrary, there would exist in
S two sequences {a,} and {b,} such that a, < b, < @.p1and | f(a.) — f(bs) | = &.
But this is impossible, because f would then be discontinuous at a, « being the
first ordinal number greater than each a, .

We say that z € S is a x-point”, if there exists a sequence {z.} C S — (z) such
that lim z, = z, i.e. that, given any neighborhood U of z, we have z, ¢ U except
for a finite number of subscripts n. Alexandroff and Urysohn raised the ques-
tion'® whether there exists a bicompact Hausdorff space which is dense in itself
and which contains no x-point. We shall prove that the space S(I) — I has
this property. Supposing the contrary, there exists a point ¢ e 8(I) — I and a
sequence {a.} < B(I) — I — (c) such that lim a, = ¢. We may suppose that
the points a, are all distinct from one another. Let A, be the set of the points

1 AU, p. 88.
18 AU, p. 53.
16 AU, p. 54,
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Gny Gny1, Gnyz * +* together with the point ¢. It is easy to see that A. is a closed
subset of B(I). We shall construct successively open subsets U, of the space
B(I) as follows. U, contains the point a,, but Uy4s = 0. If, for a certain
value of n, we have already constructed the set U, so that U,-Anp1 = 0, let
Ua+1 be an open subset containing @.,; , but such that Unyy-U; = 0for1 S 1 < n
and Un1-Anps = 0. It is easy to see that the successive construction of the
sequence {U,} may be carried through. Now put & = I3, Uspey, ¥ = I-
> Uz.. Then ¥ = 0 and the sets ® and ¥ are of course closed in I , since I
isanisolated space. Since I is normal, we must have ¥ = 0, the bars indicating
closures in 8(I). On the other hand, since I is dense in 8(I) and U, is open in
B(I), it is easy to see that U, = U, , so that a, e IU, , whence we easily get the
contradiction ¢ e ®V. '

III

We shall say that the space S is topologically complete if there exists a bicompact
Hausdorff space B D S such that Sisa Gyin B. Of course S is then completely
regular. A G; in a topologically complete space is a topologically complete space.
A closed subset of a topolologically complete space is a topologically complete space.

A topological space S 1s topologically complete if and only if it is completely
regular and a G5 in B(S). If Sis a G;in B(8), then it is topologically complete,
since B(S) is a bicompact Hausdorff space. Conversely suppose that S is
topologically complete. Then there exists a bicompact Hausdorff space B O S
such that Sis a Gsin B. Let B, be the closure of S in the space B. Then B,
is a bicompact Hausdorff space and S is dense in By and a G3in B,. We know
that there exists a continuous mapping & of 8(S) into B, such that A™(S) = 8.
Since S is a Gsin By , it is easy to see that k™(S) = Sis a Gsin B(S). .

Let T be a completely regular” space. Let S C T be a topologically complete
space. Then 8 18 a G5 in the closure of S in the space T. Let S, be the closure of
S in the space 8(T). It is sufficient to prove that Sisa Gsin S;. Since Syis a
bicompact Hausdorff space and since S is dense in S, , there exists a continuous
mapping k of 8(S) into S such that A[8(S) — S] = Sy — 8. Since S is topologi-
cally complete, it is a G; in B(S), so that 8(S) — Sisan F,in 8(S). Hence there
exist closed subsets F., of B(S) such that 2, F, = (S) — S, whence Sy — S =
> h(F.). Every F, is a bicompact space, so that every h(F.) is a bicompact
space. Since h(F.,) is a bicompact subset of the Hausdorff space S, , it is closed
in Sy, so that Sy — Sisan F,in S; and finally Sisa Gsin S, .

Let T be a topologically complete space. Let S C T. Then 8 s a topologically
complete space if and only if it is the intersection of a closed subset of T and a G
inT. If 8 = FH,where Fisclosedin T and Hisa Gsin T, then F is a topologi-
cally complete space and S is a G; in F, so that S is a topologically complete
space. Conversely let S be topologically complete.  Then S is a G; in the
closure S of Sin T, so that S = SH, H being a G;in T.

17 I do not know whether this assumption is necessary.
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Let 8 5 0 be a topologically complete space”™. Let {G,} be a sequence of open
and dense subsets of S. Let H = [[ G.. Then H ¢ 0 and, moreover, H ©s dense
tn 8. There exists a regular compact (as a matter of fact, bicompact) space
K D Ssuch that Sisa Gyin K. We may suppose that § = K, the bar denoting
closure in K. The sets G. being open in S, there exist sets I', open in K and
such that G, = S- T, Since Sis a Gs in K, there exist sets A, open in K and
such that § = J] A.. Since S is dense in K and G, are dense in S, the sets G,
are dense in K. Choose an arbitrary point a, ¢ S and an arbitrary neighborhood
V of ay in the space S. All we have to prove is that HV ¢ 0. There exists a
neighborhood U, of a, in the space K such that V = SU,. Since the set G;
is dense in K, there exists a point a, e G4U, = S- T2 U, € AT U,. Hence
A; T, Uy is a neighborhood of a; in the space K. Since K is regular, there exists a
neighborhood U, of a; (in the space K) such that U; < A;T3U,. Generally,
let there be given for a certain value of n a point a. € G. and its neighborhood
U. (in the space K) such that U, € A,TwU,_y. Then a, eG. Sand SU,
is a neighborhood of a, in the space S; since G.,1 is dense in S, there exists a
point @ny1 € GnaUn = 8 ThUn € AppaTnaUn. Hence AppuTnn U, is a
neighborhood of a.41 in the regular space K, so that there exists a neighborhood
Uny1 of @nyg (in the space K) such that Unyy © Appi1Tasa Un.  Thus we construct
a sequence {a,} of points and a sequence {U,} of open sets so that a, € G,Ua,
Uiy © Bps1Tay1Un . Since a. € U,, we have U, # 0. Since K is compact
and U,;; © U,, there exists a point be ] U, = [[ U.. Since Una C
App1TniaUn, we have b eHA,.. H r, = 8- H I, = H G. = H. More-
over b ¢ Uy, so that b e HUy = HV.

Let S be a metric space. A Cauchy sequence in S is a sequence {z,} < S
such that, given a number € > 0, there exists a number p such that the distance
of z,, and z, is less than €, whenever both m and n are greater than p. A metric
space S is called metrically complete if, given any Cauchy sequence {z,} in 8,
there exists a point z ¢ S such that lim z, = z. A topological space is called
completely metrizable, if it is homeomorphic with a metrically complete space.

We next prove our principal theorem: A metrizable space S is topologically
complete if and only if it is completely metrizable.

Let S be a metrically complete space and let p be its distance function. We
may suppose that p(z, y) < 1 for every pair of points, since otherwise we may
replace p by o1, putting pi(z, y) = p(z, y) if p(z, y) S 1L, p(z,y) =1ifp(z,y) > 1
Since S is metric, it is completely regular, so that 8(S) exists. For any given
a €8, p(a, z) is a bounded continuous function in the domain S so that there
exists a continuous function ¢,(x) in the domain 8(S) such that ¢.(z) = p(a, z)
foreachze¢S. If aeS, beS, then the set T(a, b) of all points z € 8(S) such .
that ¢a(z) 4+ c(x) = p(a, b) is closed in B(S) and contains S. Since S is dense in
B(8), we must have T'(a, b) = B(S), i.e. va(x) + en(x) = p(a, b) for each z ¢ B(S).

18 It is evident from the proof that it is possible to replace this by the weaker assumption
that S is a G in some regular compact space.
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ForaeSandn = 1,23, --- let I'(a, n) be the set of all points z ¢ 8(S) such
that ¢a(z) < n*. Since the function ¢, (z) is continuous, I'(a, n) is an open
subset of B(S). Therefore

G. = 2, T(a,n)
ae8

is an open set. We shall prove that S = J] G., so that the set Sis a G, in
B(S) and thus topologically complete. Evidently J[]1G. D 8. Conversely let
G.. We have to prove that b ¢ S. According to the definition of G, ,
there exist points a, € S such that ¢,,(b) < n™'. Therefore
1 1

< 4=
P(an; am) = ¢un(b) + (Oam(b) < n + m)

so that {a.} is a Cauchy sequence in S. Since S is metrically complete, there
exists a point a € S such that a = lim a,. It is sufficient to prove that a = b.
Suppose that a £ b. Since B(S) is a Hausdorff space, there exist two open
subsets U and V of B(S) such thata ¢ U, b e V, UV = 0. Since US is a neigh-
borhood of a in the metric space S, there exists an integer n > 0 such that U
contains every point z ¢ § such that p(a, ) < 2-n~". This can be written in the
form SW < U, W being the set of all points x e 8(:S) such that a(z) < 2-n7"
Since ¢, is continuous, W is an open subset of 8(8). Since S is dense in B(S)
and U, V and W are open in 8(S), wehave W W = SWc U c 8(S) — V, or
WV = 0. Hence for each z N V we have ¢a(z) = 2-n7'; in particular ¢,(b) =
2:n7".  Since p(as, an) < 7' 4+ m™" and lim a, = a, we have p(a a) S n
Hence for each x ¢ S we have p(a, z) = po(q, a,) + p(a,. , 1) 207 4 pan, 1),
whence it easily follows that for each z € 8(:S) we have ¢.(z) £ ¢a,(z) + 7, in
particular o(b) < ¢a,() + 2" < 7' + n™' = 2-n7", which is a contradiction.
Now suppose that the metric space S is topologically complete. Let p denote
the distance function of S; again, we shall suppose that p(z, y) < 1 for every
“couple of points. Since S is topologically complete, there exists a sequence
{F.} of closed subsets of B(S) such that 8(S) — 8 = X, F.. If § = B(S), then
S is a bicompact metric space, and then it is well known that S is metrically
complete. Hence let us suppose that 8 = B(S); we may then assume that
F, # 0 for every n. Given any point a € S, p(a, z) is a bounded continuous
function in the domain 8, which admits of a continuous extension ¢, to the
domain 8(8). If the point b e 8(S) is different from a, then there exist open
subsets U and V of 8(S) such that e e U, b ¢ V, UV = 0. Since SU is a neigh-
borhood of a in the metric space S, there exists a number € > 0 such that U
contains every point z € S such that p(a, ) < e. Since S is dense in g(8), it
easily follows that U contains every point z ¢ 8(S) such that ¢.(z) < €. Since
UcB(8S) —V = B(S) — V, we have U < B(S) — V so that b ¢ 8(S) —
whence ¢q.(b) = €. Thus we proved that ¢.(b) > 0 for every b € 8(S) except
forb = a. Since the set F, 3 0 is closed in the bicompact space 8(S), it is easy
to see that the function ¢.(z), z running over F,, admits of a minimum value
o(a, F,). Sincea ¢S, F.8S = 0,wehave o(a, F,) > 0.
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Ifa € 8, b e 8, then we have p(a, z) < p(a, b) + p(b, z) for every = ¢ S, whence
va(z) = p(a, B) + ¢a(z) for every z ¢ B(8). Therefore o(a, Fa) < p(a, b) +
o(b, F,), and similarly (b, F,) < p(a, b) + o(a, F.). Hence

| o(a, Fu) — a(b, Fu) | = p(a, b).
Now letusput forz e S,y ¢ 8
fn(x: y) = p(z, y) + o(z, F,) + 0'(.'/; F,),

P(x; y)
falz.y)’

po(z, y) = plz, y) + ZI: 27" gu(, ¥).

galz, ) =

Since p(z, ¥) = 0, o(z, Fu) > 0, a(y, Fa) > 0, we have fu(z, y) > 0. Hence
gn(z, y) exists and 0 < ga(z, y) < 1, so that the series D 27" g.(z, y) is conver-
gent. It is evident that po(z, ¥) = po(y, =) and that py(x, 2) = 0, whereas
po(z, ¥) > 0if z > y. Next we shall prove that p(z, 2) S po(z, ¥) + po(y, 2)
forzeS,yeS, zeS. Since

ls
c+h e+t

and since 0 < p(z, 2) < p(z, y) + »o(y, 2), we have

forc>0,0St <t

o(z,y) + p(y, 2)

02 S e T 5, ) ¥ o B oG o)
Since
o(y, Fu) = o(z, y) + o(z, Fa),
o(y, Fn) 2 p(y, 2) + o(z, Fa),
we have

oz, 9) + oy, 2) + oz, Fo) + oz, F) 2 {: g f)) I Zg 1;; :';((Z ﬁg

whence

ga(, 2) = galz, ¥) + ga(y, 2),
so that indeed

po(x, Z) = Po(x; y) + Po('.'l, z)'

Hence py has all the properties of a distance function. Next we prove that
p and py are equivalent metrics in 8, i.e. that for z ¢ S and {x.} C S we have

lim p(z,, ) = 0if and only if lim py(z., ) = 0.
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If im po(zn , ) = 0, then lim p(z., z) = 0, since 0 < p(2a, ) S po(2n, 2).
Conversely suppose that lim p(z., £) = 0. Choose a number ¢ > 0 and an
integer k > 0 such that 27**' < e. Then we have for all values of n

,f};.ﬂ 2z, ) S 20 270 =27 < g,

fm=k+1
whence

\ ‘
po(@ny 2) < p(Za, 2) + E_.; 27 gi(2a, 2) + 3¢

L _ P(x"! z)
S p(2a,2) + § 2 o(2a,2) + o(z, F) +de.

Since lim p(z. , ) = 0, we must have

k
1 9~ _ p(T, 2) =0
nl-{oneo .El p(zn, 2) + o(z, Fo) ’

so that there exists an integer p such that for n > p we have

k
< —i p(Za, 2)
0= 1;12 p(xﬂ)x)-*-a(xip‘) <}e.

Therefore
Po(xu [} x) < P(zn; .’C) + e

for every n > p. Since lim p(z,, £) = 0 and the number £ > 0 was arbitrary,
we have indeed lim py(z» , z) = 0. Thus we proved that p and p are equivalent
metrics in S, i.e. that the metric spaces S = (8, p) and (S, po) are homeomorphic.

It remains to be shown that the metric space (S, po) is metrically complete.
Hence suppose that {z.} is a Cauchy sequence in (S, o). We have to prove
that there exists a point z € S such that lim po(z. , ) = 0, or, what we already
‘know to be equivalent, that lim p(z. ,z) = 0. Since the space 8(S) is bicompact,
it is easy to see that there exists a point z € 8(S) such that, given any neighbor-
hood U of z (in the space 8(S)), we have z, e U for an infinite number of values
of n. It is sufficient to prove that z ¢ S, for then, since {z,} is a Cauchy se-
quence, it is easy to show that lim p(z., ) = 0. Suppose, on the contrary,
that the point z belongs to the set 8(S) — S = > F.. Hence there exists an
integer & > 0 such that z ¢ F), .

We shall prove that o(zx,, Fx) — 0 for n — «. Choose a number e > 0.
There exists an integer p > 0 such that for n > p, m > pwe have p(z.,2m) <
po(Tn ,Zm) < e. Letnbegreater thanp. The number o(z, , Fi) is the minimum
value of ¢,,(y) for y € Fr . Since z ¢ Fi , we must have 0 < o(za, Fi) S ¢.,(2).
There exists a neighborhood @, of z in B(S) such that | ¢.,(2) — ¢.(z) | < €
for every z ¢Q,. There exists an integer m, > p such that z,., ¢ Q,, whence
| @en(Tmy) = 02,(2) | < &,ie. | p(2n , Zm,) — ¢2,(z) | < €. Since n > p, ma > p,
we must have p(z, , Tm,) < €, whence ¢, (z) < 2e. Therefore 0 < o(zw , Fi) <
2e for n > p, so that indeed o(z» , F1) — 0 forn — .
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Since {z.} is a Cauchy sequence in (S, po), there exists an integer p such that
po(Tn , 7,) < 2% *foreachn > p. But

P(xvu xp)
p(Za, 2,) + o(xn, Fi) + o(zp, Fi)’

po(Zn, xp) = 2—kgk(xn) xp) =27

Since
”(xp ) Fk) = P(xﬂ ) xﬂ) + U(xn ’ Fk)r
it follows that

. Tp) Z 2 plan, 25) =0
O N B e AR

so that for every n > p we have

(xn :E)

0 < i 14 3 VP, i <

p(Zns Tp) + o(Zn, Fi) b

whence p(z,, z,) < o(za, Fi). But o(z., Fi) > 0 f ., Therefore

p(zn, 2,) — 0 for n — . Hence there exists an integer ¢ - & h that for
every n > q we have p(zn, 7,) < } ¢,(z). [Since z, ¢ 8, z¢B(S) — 8, we
know that ¢.,(z) > 0.] There exists a neighborhood U of z in the space B(S)
such that ¢, (z) > 3¢.,(z) for any z e U. There exists an integer n > ¢ such
that z, € U, whence p(2s , %,) = ¢5,(xs) > }oz,(x), which is a contradiction.

v

‘Let S be a completely regular space. Let A(S) be the set of all points z € 8(8)
such that z possesses a neighborhood Ul(in the space 8(S)) such that S- U is a
normal space. [U is the closure of U in 8(S)]. It is easy to see that A(S) is an
open subset of 8(S). '

Let Fy and F; be two closed subsets of a completely regular space S such that
F 1 F 2 = 0. Then

Fi F3-\(8S) = 0,

the bars indicating closures in B(S). Supposing the contrary, there exists a
point a e Fy-F3-A(S). Since a ¢ A\(S), there exists a neighborhood U of a (in
the space 8(S)) such that §- U is a normal space. There exists a neighborhood V'
of a such that ¥ < U. Put

® = V-F, & =U-F, + S(U - U).

Then &, and &; are two closed subsets of SU such that & & = 0. Moreover,
it is easy to see that a ¢®,-®,. Since SU is a normal space, there exists a.
bounded continuous function f in the domain SU such that f(z) = 0 for each
z e® and f(z) = 1 for each ze®2. For z ¢ 8 put (i) g(z) = f(z) if z e SU,
(i) g(z) = 1ifz e S — U. Then it is easy to see that g is a bounded continuous
extension of f to the domain S. According to the definition of B(S), there
exists a continuous extension ¢ of g (hence of f) to the domain 8(S). We have
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o(z) = f(x) = 0 for each z € ®, and o(z) = f(z) = 1 foreachz e ®;. Since 4 is
contmuous, we must have ¢(z) = 0 for each z ¢ $, and o(z) = - 1foreachz e 3, ,
so that &;®; = 0, which is a contradiction.

The topological space S will be called locally normal if each point z ¢ S pos-
sesses a neighborhood U such that U is a normal space. Any normal space is
locally normal; more generally, any open subset of a locally normal space is
locally normal.

A locally normal Riesz space S is completely regular. Let a be a given point
of a locally normal space S and let V be a given neighborhood of a. There
exists a neighborhood U of a such that U is a normal space. Also UV is a
normal space, since it is a closed subset of U. Since (a) and UV — UV are two
closed subsets of the normal space UV without a common point, there exists a
continuous function f in the domain TV such that f(a) = 0 and f(z) = 1 for each
xeUV — UV. ForzeSput(i)gl) =fz)if zeUV, (i)glx) =1ifzeS —
UV. Then it is easy to see that g is a continuous function in the domain 8
such that g(a) = 0 and g(z) = 1 foreach z ¢ S — V. Therefore Sis completely
regular. ,

A completely regular space S need not be locally normal. Let w be the first
infinite ordinal number. Let «w; be the first uncountable ordinal number. Let
S: be the space of all ordinal numbers < w. Let $S; be the space of all ordinal
numbers < w;'w. The topology in S; and in 8, is defined in the usual way by
means of intervals. Let S); be the cartesian product of the two spaces S; and
S:.  Let T be the set of all points (x, ¥) € Si2, for whichz =wand y = wi-n(n =
1,2,3,---). Let S = 82— T. Then 8is a completely regular space, but it
is not locally normal.

1t is easy to see that a completely regular space S is locally normal if and only
if S < A(S). I do not know whether there exists a completely regular space
8 7 0 such that S:\(S) = 0.

A Riesz space S 1s locally normal if and only if it ts homeomorphic with an open
subset of a normal Riesz space.”” We know that an open subset of a normal
Riesz space is a locally normal Riesz space. Conversely let S be a locally
normal Riesz space. Let S, be a new space consisting of all points of S and of a
single new point w. The topology of S, is defined as follows. Ifwed C S,
then A iscloszdin Spif and only if A — (w)isclosedin 8. If A C 8 — (w) = S,
then A is closed in S, if and only if (i) 4 is closed in S, (ii) 4 C )\(S), the bar
indicating closure in B(S). It is easy to see that So is a Riesz space and that S
is an open subset of Sy. It remains to be shown that the space S, is normal.
Let Fy and F; be two closed subsets of S, such that F;Fs = 0. Since the point w
belongs at most to one of the two sets F; and Fs , we may suppose that F; C S.
Since F; is closed in S , the closure Iy of Fy in the space B(S) is a subset of )\(S)
Put F; = F; — (w). Then F, and F; are two closed subsets of S and F1F; = 0.
We know that F;- F3-A(S) = 0 (the closures being formed again in 8(S)). But

19 T do not know whether the restriction to Riesz spaces is really necessary in this theorem.
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F, c A\(8S) so that F, and Fs 4+ B(S) — A(S) are two closed subsets of B(S)
without a common point. Since B(S) is a bicompact Hausdorff space, it is
normal, so that there exists 1 continuous function ¢ in the domain B(S) such that
¢(z) = Oforeach z ¢ F; and ¢(z) = 1 for each z ¢ F; and for each z ¢ 8(:S) — A(S).
Let us define a function f in the domain S, in the following way. If x ¢ S, then
f(@) = ¢(z); moreover f(w) = 1. Then it is easy to see that f is a continuous
function in the domain S, such that f(z) = 0 for each z ¢ F; and f(z) = 1 for
each z ¢ F; .

I conclude with two more unsolved questions. A topological space S is
called completely normal if every subset of S is a normal space. S may be called
locally completely normal if every point z ¢ S possesses a neighborhood U such
that U is a completely normal space. S may be called completely locally normal
if every subset of S is a locally normal space. It is easy to see that a locally
completely normal space is completely locally normal. I do not know whether
the converse holds true. Any open subset of a completely normal space is a
locally completely normal space. I do not know whether a locally completely
normal space must be homeomorphic with an open subset of a completely
normal space.

BrNO, CZECHOSLOVAKIA.
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