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Before passing to the proper content of these lectures, I shall give a

brief survey of a few fundamental faots of the homology theory, in such form as

I shall epply it later. A
4 . A
A complex K is a finite set (£ 0) of elements (called vertices of the
———— (awl alled
complex), in which some subsets are distinguished simplices of the complex);
!\

two conditions must be satisfied: (1) each vertex is distinguished, (2) each
subset of a distinguished set is distinguished. If there is given a fixed
abelian group J{ , then we cen form. in a known manner K-chains (with coefficients
teken from R ) and their boundaries, which leads to the notion of é_yglg_s_ and
homologies. We shall consider also relative cycles and homologies in the sense
of Lefschetz. A subcamplex K; of & complex X is a complex such that (not only
each vertex of K, is a vertex of K but a.lso) every Ke‘-simplex is a K- smplex.

b U‘O v uu_\ / W\"{ LY. YT e \x_q_[ Wl 4" h axi,
Let ¥, = K; & K. Let C%(X) be an (n, X)-chain, We say that c(x) 18 e K -

A

chein. We say that C™(K) is en (n, K)-cyole mod Kp in Ky, if C™(K) < X,

FCB(X) C K,, where the letter F signifies the boundary. We say that Cn(K) is

hamologous to zero mod K, in K; (and we write C®(K)~ O mod Ky in X;), if there

exists an (n+l, K)-chain DR*1(K) = K, such thet (k) = ¢B(k) + E*(X), where
EY(K) ¢ K.

For the later purposes it is essential that the coefficient group 'ﬁ.

be & figld. Therefore, we assume it now. If e X and if C2(X) is en

(n, X)=chain, then we can form the chain n C (K\ in en obvious menner.
Now let R be = topolégical space, that is to say, an abstract set

(whose clements are called points) in which certain sets (called closed sets) are

786538
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' distinguished in such & mamner as to have the following properties: (1) O and
R are closed, (2) the sum of two olosed sets is closed, (3) the intersection of
- any number of closed sets is closed, (4) any set consisting of a single point is
c‘zlosed. A set U < R is called open, if R = U is closed,

A covering 'VL of the space .R is a finite set of open subsets 7( 0 of
R whose sum is the whole R. A covering is a complex by virtue of following
definition: if Uo’ Ul, coe, Un are different vertic:'s (= elements) ofm , then
(Bos By mpus T, 18 & W -simplex if and only if T;f U, £0.

If S € R and if W is a covering of R, then 11(3) will be the sub-
complex of VL defined as folloyzvs: e =-simplex (Uo, Ul, ces, Un) belengs to
WUS)  if and only if > TlI Ui £0. This definition is useful essentially
only for closed subsets S of R,' because we have always W (S) s U(,(;) (the bar
always denotes the closureh If S=S < TsTC R and if C“('V(\. is an
(n, U} )=chain, then we shall write Cﬂ(w) < S instesd of C“(W\C M(S),
we shell say that Cn(UZ) is an (‘l,m) =cycle mod S in T if Cn@ﬂ) is an
(‘H‘m) -cyole mod URE(S) in VI(T) end in a similar We..y we interpret e homology .

c*w)~ © T sintT. 18- 0, we speak' of mbsolute cycles; if T = R,
we leave out the words "in T".

Now let 'UZ and m be two covorings(of the space R; we shall consider
only coverings of R). We say that W isa refinement of W, if it is possibla
to attach te each vertex V of the covering U & vertex Uz=T V.of the cover-
ing ‘Ul such thet V € U. The operation T is celled projection (of’lf) into
UL ); 1in general, there exist many such projections.

If (¥, Vis eoe, Vo) = T, isen (m"Ul) ~gimplex, there are two pos=-

L

sibilitios; either the TV V... WV, are not all different from
3

each other and we put T T,= 0 ; or they are, and then

Un
( \/o, yiE V.. L. ‘-”,.V“) is an (TL’W) -simplex'\and we write T T = g .



This operation of projecting a simplex is to be understood in such a sense that
if T, 1is oriented, then Tr T, also has'la definite orientation (obviously de-
scribable).

Let T, and W, be two projections of ¥) into U snd et C'{1f)
be an (7»,14\ -cycle mod S in T. Then W, C-n(m and T, C“(V)) are two
(vt.v” ~-cycles mod S in T, homologous to each other mod S in T. Hence, al-
though the projection is not determined without ambiguity, it becomes so if ap-
plied to cycles of a definite type .(mod S in T) provided that we idemtify cycles
which are homologous to each other (again moed S im T).

{le retain the notation S=85 € T =T < R. An (n, R)=cyole mod S in

T is e function C" attaching to each covering U of R (as U} =coordinate of Cn)

a definite (n“l/‘l) ~cycle C“(’m) mod S in T, but supposing that the following
condition be verified: If 'l.-? is & refinement of W , then ® ( “(7-4)«; ¢"n)
mod S in T (of course T is a projection of r)[) in‘bovl ). The definition of
a sum C’;_L + szl of two (n, R)=cycles and of the product N Cn (115 R) is ob=
vious. C'w 0O signifies of course C“('Vl)fv O  for each covering .
Although our fundamental assumptions are extremely general (at the
present stage of the geme, it is not very essential that R is a topological

space), we have an imnortant and by no means trivial theorem. It is convenient

",
to stert with e definition: A linear family N (VD) of (W) -cycles mod s

in T is a non empty femily of such cycles having the following property: if
M4 =y C“(U'L)'vn,t (b‘l.)+ft C (7'7—)

C?bk)e /\“hﬂ,ff: (b‘l)ﬁl\“{n\.ﬂ‘éx)mémi\then C“(’Ul,)é A" Q’L\) . Now

we can state the following fundeamental existence theorem:

N ,
Let there be given, for each covering v , & linear family A CUL)
of (‘Vl‘vl.) ~cycles mod S in T such that, if ’V) is a refinement ofw,

Trl\nb/)\ e K? (Ul.\. Then there exists an (n, R)-eyole C” mod S in T



such that C“(’UQ € /\w(ll\ for every LZ

The following three lemmas, which we will find very useful, are im-
mediate corollaries of the fundamental existence theorem. FEach lemms will be
preceded by a quite obvigus remark (independent of the existence theorem).

If ¢® is an (nm, R)-cycle mod S in T and if we set F“"(m):;: C"(‘U‘L)
for every covering m , then ‘A“’-‘ is an absolute (n=1, R)=-cycle in S, which

~4
we shall denote by FC®.*  Evidently "7~ 0 inT. But conversely:

* The following remark is quite useful: If D™ is another (n, R)-cycle mod S in
T, then C% v D mod S implies FPCB ~ FD® in S.

=i
Lemma I. If [ is an absolute (n~1l, R)-cycle in S, which is
~ 0 in T, then there exists en (n, R)-cycle C® mod S in T such that
Fev"~ ™ ins.
If ¢® is an (n, R)-cycle mod S in T and if there exists an absolute

(n, R)-ocycle ™ such that C o~ U™ nog S, then FC® A 0 in S.  But con-

versely:
Lemme II. If C™ is an (n, R)=cycle mod S in T such that FC'~v O in §,
_— "

then there exists an absolute (n, R)-cycle U™ in T such that C% as mod S,

Ir ¢" is an.(n_, R)-cycle mod S, if D® is an (n, R)=cycle mod § in T
end if ¢® ~ D" mod S, then ¢~ Omod T. But conversely:

Lemma III, If C° is an (n, R)-cycle mod S such that C™ ~ 0 mod T,
then there exists an (n, R)-cyole D® mod S in T such that €™ as D" mod S.

Neturelly, very few theorems on homology may be proved without intro-
ducing more particular spaces R. We shall, from this point on, suppose that the

space R is normal. This signifies: If S1 and S2 are two olosed sets such that

i

8,8 0, then there exists two open sets G, and G, such that SIC Gl’ 82C GZ’

2
G1Gp = 0. In a normal space R, the following lemmas IV-VI are true. (The im~

portance of lemma IV is immediately obvious.,)



If §,C R, S, R, then W ($,5.)C VU(S).V(S,)  wutin
general 1/1(5, 51) * W(S.). U'L(S,_): Therefore, c™ (vl) < SI »
) &S, does mot wmply CTQA)C S.Sy . sut still:

Lemme IV.  Given e covering W and given the closed sets S, and SZ
there exists a refinement 70 and a projection W such that C“O/))C. 3\‘ )

"
C‘“UI))C Sz_ implies T C h“)‘c ‘Sn Sz .
In close connection with this is the following
Lemma V. Given S = § and a covering n , there exist an open set
= n
G = Sanda refinement’)/) such that Cﬂb/))c G implies C ('L'))C. 3.
Lempa VI, IfS=SC&CT=TCR, T=-S-= & P,  with mutuelly
separated Pk (in finite number) and if C™ is an (n, R)-cycle mod S in T, then
th ist (n, R)-oycles C, mod SB, =F. - P, in P hthat € ~l, Cp
ere exist (n, R)-oycles p WO A & p in B, suo & ke
mod S in T,
Given a closed subset S of R, we shall denote by M the family of all
n-1 e
absolute (n=1, R)=cycles v in S that are ~~ 0 in R, each such be-

ing regarded as equal to zero if it is ~ 0 in S.* M is a modulus; by this

* n is a given integer; later, n will be the dimension of R,

o

we mean that it is an additive abelian group having multipliers (operators)
ne ZR (each of which determines an automorphism of/'/(, ). Since Df is a
field, M always possesses an independent basis; the number of the elements
of a basis (which is the same for all bases) will be called th; rank of M.
If R is an n-manifold (in the classical sense), the following theorem
is well known: If S=S C R ;( S, then the number p of components of R - § is
=g + 1, 'g being the rank of the modulus v“ﬂ The statement p = g+l may be de-

composed into two halves: p S g+l and p 2 g+l. It is remarkable that the first



half mey be proved in a surprising general case:
Theorem I. Let there exist abselule (n, R)-cycles Q I; 11 &m)

having the following property: If T, and T2 are two closed sets such that

e T, and if A? is an absolute (n, R)-oycle in T. and similarly AIZI

L
n w n
for T,, then the homology ﬁ n, Q{ ~ B ¥ A.,_ implies
\

= s =r_ =0, Let S=S & R¢ If R-S has at least p+l components, then

II."l n

the renk of the modulus »./% is 2 pine

=

Proof. We have R=S = V. with separated B, # 0. By lemma VI,
o .
there exist (n, R)-cycles CI.;k mod S'Ei in -P;‘ (1$18&m 0%k $p) such thet
n "
N7~ €y mod s and, therefore ()%~ C;)  mod BB .  Let
1 ik 1 LR R
r_";; = ¥ C;;a (here and in what follows k runs over the values 1,2,...,p
i
~ on-l -\
only, k = O being left out)s Evidently \ ™ € \A/L Let D r"l‘.b r; e ™ 0
in S. Precisely, we have to prove that all h‘ik= 0. Let us assume that, on

o n .
the contrary, A1 | # 0. Now 2 ﬂik C " is an (n, R)=cycle mod S in R-P,

—

az\d\‘

= g
\L‘ ”’N"Lik ~ O in S. By lemme II, it follows that there exists an
\
nw oo, \ " n
absolute (n, R)=cycle Ao in R--Po such that L IZ‘, Rk Cik N“A & mod S, If
T\ " )

x 2 2, then C%, © R-P.; therefore | M-y, C.p ~ 200, C.  mod R-P,.

ik i SV iR SN | " 1‘n

n n L

1°? we have 2 ni‘ C{' "y A o mod R-Plo But Cli\ Nﬂ {

< n "
Therefore [_, /IU Q $ = A "R O mod R-Pl. By lemma III it

Since S C R=P

mod ‘R-Plc

follows that there exists an absolute (n, R)-cycle A“T C R- p\ such that
" 2} X “ D
Do QLT ~AG+AT L siee AT C R-PBy#F R LATCR-RER,
X 1 -

we have Ty = 0, in particular r.. = O, which is &

11
contradiction.

Corollary. Let R be a compact subset of the euclidean En+1 and let
there exist m*l complementary domains of R (rel. E,4q) having the whole R as
their boundary. Let S bhe a closed subset of R and let g be the (n--l)th Betti

number of Ss Then the set R = S has at mosth [%]+ 1 components.

[
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This corollary was given by Wilder, but .(in the case m 2 2) with g
instead of [ﬁ] + 1, which is weaker except when g $1or g=m-= 2,

Now we shall assume that R has the following two properties:

(1) R is bicompaoct, i.e. if any family # of open sets covers R, then
a finite subfemily of @ covers R.

(2) dim R = n. That signifies: (i) every covering W has & refine=
ment ¥} such that dim W) £ n (dim 'V, being the largest dimension of a }{)
simplex), (ii) not every covering 1/1 has a refinement 7-/) such thet dim 2() { n.

These assumptions imply the following statement: If C® is an (n, R)-
cycle mod S, then there exists a uniquely determined minimal closed T 2D S such
that C" ~ O mod T. The existence of T is a consequence of (1), the uniqueness
follows from (2). e shall call T the carrier of the cycle c™ and we shall
apply it in the following form: If C ~ O mod T, = T["o, then the set T  must
contain the carrier T.

The space R will be called an n-pseudomanifold,* if it has the follow~

L

* A more proper name would be an orienteble pseudemanifold, but I shall not give
here the more general definition.

ing properties: (1) R is a bicompact normal space. (2) dim R = n(= 1,2,3,4.e).
(3) There exists some absolute (n, R)-cg)cle .Q.:n which is not ~v 0. (4) If

= w
S=S < R#S, and if A is an absoluté (n, R)=cycle in S, then A" ~ O,

r g

(6) Given @ point a € R and a neighborhoﬁd ¥ U of a, there exists a neighbor-

** A1l my neighborhoods are open.

hood V < U of a having the following preperty: If C" is any (n, R)-cycle mod
n n n
R=U, then there exists an absolute (n, R)=cycle O_ such that C~ ﬂ

mod R~-V, |
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Everywhere in the sequel, R is aligiven pseudomanifold and S is a given
closed subset of R.
Theorem II. R is a locally connected continuum,

Proof. That R is a continuum, is quite trivial.* U being a given

* As a matter of fact, a far more general property of R is a corollary of the=-
orem I.

——

neighborhood of a point a € R, let ¥ be a smaller neighborhood of & as in prop-
erty (5) in the definition of an n-pseudomanifold. It is sufficient to prove
that the whole set V is a part of one quasicomponent of U. Let us assume the
contrary, They; we have U = P+Q with separate summands such that PV ;! 0 7! Qv.
Let ‘an be an absolute (n, R)-cycle which is not ~ O, Since Qn may be re-
garded as an (n, R)-cycle mod R-U, by lemma VI there exist two (n, R)-cycles:
0™ mod P-U in T and D mod G-U in T such thet SL™ ~ C +D" mod R-U.

By property (5) of a pseudomanifold, there exists an absolute (n, R)-cyole ﬂ‘:
such thab Cm'\'ﬂ: mod R=V. Since C™ C F, we have f)_?, ~ O mod

R=V+P C R~QV. By lemms III it follows that there exists en absolute (n, R)-
cyole A" in R-QV such thet {1y ~A™.  Since R-qV # R, A"~ 0 by
property (4) of a pseudomenifold. It follows thet ﬂﬂo ~ O and, thersefore,
¢® ~ O mod R-V. Similarly we have D® ~~ O mod R=V. Simce {L ' ~ CT4+D"
mod R=U € R=V, we have' ﬂ’ﬂw 0 mod R-V 7( Re By lemma IIT anc} by property
(4) of a pseudomanifold, this implies that ™~ 0 which is a contradietion.,

Lemma VII. Let T be the carrier of the (n, R)=cyele ¢® mod S, Then

the set T=S is open.

Proof. Let there exist, on the contrary, a point

ae (T-3), R-T.
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R

Since U = =8 is a neighborhood of a, we may determine a smaller neigh-
borhood V of a by property (5) of a pseudomanifold. Then there exists an abso-
lute (n, R)=oycle A" such that C"~ A" mod R~V. Since C" ~ 0 mod T,
we have A"~ O mod RV+T. But R-V+T is closed and # R, so that A"~ O by
lemma II and property (4) of a pseudomanifold. It follows that %~ 0 mod R-V.
Since T is the carrier of.Cn, we must have T & R-V, which is evidently wrong.

Now T=S is open, therefore open in R=S, and T=S is also closed in R=S.
Therefore:

Lemme. VIII. Theé carrier T of an (n, R)-cyole C® mod S is the sum of

(some of the)components of R=-S.

Lemma IX. Let P be a component of R~S. Let ¢™ be an (n, R)-cycle

P ——

mod S. Then there exists an absolute (n, R)-cycle Q“ such that C“"'Q“
mod R-P.

Proof. Choose a Doint a € P. Since R is locally comnected and S
is closed, P = U is open and, therefors, it is & neighborhood of a. Let V de &
smaller neighborhood determined by property (5) of a pseudomenifold. It fol-
lows that there exists an absolute (n, R)-cycle ﬂ“ such that cm ""_O-n mod
R-V. Therefore the carrier T of C e .ﬂ.‘n is contained in R=V. By lemmsa
VIII, it follows that T < R-P. But ¢ ~ (0™ mod T by definition of T,

Since T © R-P, we have C® ~ (L™ mod R-P. .

Now let us recall that Al was the modulus of all absolute (n=1, R)-
cycles r“" in S such that r“-'NO in R, such a cycle r“_\ being re-
garded as zero if it is ~ 0 in 8.

We shall consider submoduli J/‘ of 1;he modulus../Vla ‘(called moduli
briefly). If JV‘ is such a modulus, thenﬁ (the "closure" of.Af) is, by éef-

n=~4

inition, the family of all those T € M having the following property:
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Given any coveringw , there exists a An-‘é JVL (depending onw ) such
that
_ r“" (’U‘\) s A,“"('}/Z) in 8.
mvidently N is a moauius (A€ AFc M.
' Everywhere in the sequel, W denotes the Temily of all components of
R-S. If §# W , then J () will denote the point set which is the sum of
all the sets belonging to the femily f. E.g. M (0)= Q,J’L(W\= R-3
and generally ¥b(®)+ Ho(W- $)=R-S, AH(P), X (- d)= 0.
Everywhere in the sequel, if § & QJ) A4 (@) is the set of all those
™ 'e M, for which © "~ O mear - H(P). so M (o) M,
_/(/(,(\\J) = 0. In general, (p‘c- ¢2 C Y implies M (CP') 2 ./1/{_ (Cbz)
i pcC Y, thﬂ(@)i_s a modulus and
MDP)=_MA(P).
From this point on, we shall assume that the n°? Betti number of R
(= the rank of the modulus of all the (n, R)-oycles) is finite. Wo shall da-
note it by m and shall choose, once for all, a fixed Betti basis .().:?

(1 £ 1 $m) for the sbsolute (n, R)-ocycles. By property (3) of a pseudomeni-

I

fold, m > O. We shall see later that in the case n = 1 we must have m = 1.
But for n > 1, every value of m is actually possible. Indeed, Wilder gave an
example in the euclidean En+l' of a compact set R such that R is"the boundary

or
of all vemponents of En+l-R' the number m+l = 2, 3, ... -. m = OO of those com~

A
ponents being given, and each such component being uniformly locally connected.
It is easy to prove (as a corollary of our following theorems) that such an R is
an n-pseudomanifold, for which the number m has the signification given above.

Now we have the following general theorem regarding the separation of

a pseudomanifold by an arbitrary closed subset:
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Theorem III. Let ¢1C ¢2 < \V " Let p be the number of the com-
ponents forming the family ﬂfz-,dl. Let g be the rank of the modulus

MAB) mod M (#)
(= the max. number of cycles T}"ﬂe M () such that LN r:-‘e /%(95,)
implies r, = 0). Let
¢ = 1if bothp > 0 and gy = O,

c=01feitherp=00r¢l7(o.

Then
g = m(p-c).
Proof. Let us assume that g < m(p=c), so that g is finite. Let
P/’? (0 £ k¥ < p) be all the components of R=S belonging to the femily }Zfz-ﬂfl. By

. n o= g = n n
lemma VI, there exist (m, R)-cycles C'Ie mod SP[’ in PI' such that cib ~J Q;
1
-l 2, n-i
mod R-P, .  Let M = FCile  so thet evidently r”’ e M),
Since g < m(p-c), there must exist numbers r,AD which are not all null and such
t

&
that L_, L, g T' '~ O inR~ ¥ (). By lemma I it follows that

l—i fa= ¢
there exists an (n, )-cycle D2 mod S in R~ H, (}252) such that

th’\‘ i /i.{k ’? MS-

It follows that D™ — a 5 Rt L1R is en (n, R)~cycle mod S in
— iz R-e
ki" 'Ph + R - )ﬂ,(ﬁfz), whose boundary is ~» O in S, By lemma II, it follows
L

— o -
that there exists an absolute (n, R)-cycle 7o Nl 8 ’ ‘P;% + = c)(o(‘b)

e f ,,,\ k=c
‘such that V) - ™ NA mod S. New, if ¢ = 1, we have
1 = c

i \+\\-3{ol¢\C_{°\°#R, andifc=0,wehe.ve}251710and
Ey T 4R-ig) SR ER

K-e

inition of a pseudomanifold, it follows that AT o0 and, therefore,
"

‘) ~ Z‘ ZE:I C 'k mod S. Let us choose the value of
124 ko=

by property (4) in the def-
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x(c £k $p). e have DB C R~ '_)C,(;dz).c: R-Pk , B u_ﬂ_:’ mod R~P ,
m

£ e o s .

o~ TR B s L)

s R Pk , DB 112..; k‘:c /Lih ik mod S. Therefore 1{3, /2,1 e ‘Q‘i ~ O
mod R-P By lemme III and by property (4) of a pseudomanifold, this implies

k
_ n .
)_J /lmﬂ,_ ~ 0 and, therefore, Nvip =0, which is a contradiection.

1=

II. Let g > m(p=c), so that p is finite. There exist cycles
F:" € M (¢,) (0 £ A $ m(p~c)) such that
) R id |
22 Ay Ca e AL implies A, = O,

Let P, (0 £k £ p-1) be all components forming the family ﬁz-ﬁl. By lerma I,
there exist (n, R)-oyoles € mod § in R- 3@(;2!1) such thet FC ~v{ An'l in S.
By lemma IX, there exist numbers /?.”“é ?ff such thet

m
" s‘\ n g
C'\ ~s & ﬂ‘ikk D..i modRPh

1 =0

Let us consider the system of linear equations

'n\( ‘C)
hvk}\’b)\: 1 (181%m 0%k p1)
\zop
<
where tl = e»e = %, = 0 in the case = 0. The number of the equations of our

system is less then the number of unknowns; /(Tﬁ being a field, there follows

the existence of a solution A f such that not every A is = 0. Evi-
’\‘v ( A

dently Q-7
m n, T y “ = "
Z Ay C N T-“ ‘A’)_ : mod 3
Eumny o n
therefore the carrier T of S P C g %= E ti Q_ﬂ; satigfies the inclu=~

)
sion T R-Pk » whence TC. R= 2, P, = R-}(o(ﬂfz-ﬂl). In the case o = 0 we
n

A
¢ = 1, because this implies ¥, (ﬁl) = 0. Therefore

T R0 (9-9)4 Xl = R-Hd)

°
have t; = 0, €, € R-3b(fy), whence T C R-H (f;). The seme thing is true if

whence

D oy~ T 0T med R
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and, therefore

-t i e - ~ |
Z:; AArA ~ ZAA\‘(,?'\»O . |'(”%(,¢,_),
which implies the contradietion 4, = O.

Now we shall determine the modulus J(» (}Z‘) in a very general case.

Theorem IV. Let —. be a family of closed subsets of S, Let ¢

b S

be the femily of all those components P of R=S whose boundary P-P does not be=-
long to the family = . Let us supposse that *_ has the following property:
for any set B € = the set (#) is a subset of a conneoted subset of R-B.

Let J/, be the submodulus of A genersted by all | o e M, such that

—

-t
U™ B, B being some set of the femily = . Then we have M () = A .

~i=t

Proofs, I.Let ' < B ¢ =, "™ '~ 0in R By lemme I,
-1
there exists an (n, R)-cycle ¢ mod B such that FC® ~ h in Bs Acocording

to the property assumed of = , there exists a component Q of R=B such that
Yo (d) < Q. By lemma IX, there exist numbers /t; such that C"~y & g Q: .
mod R=Q, so that, by lemme III, there exists an (n, R)-cycle D" mod B in R=Q
such that 8= 2 a; O:: ~ Dm’ mod B, whence FC® ~ FD® in B and, there-
fore, V" '~ FD® in B, But D®C R-Q, so thet
T w0 R-QC R- Hol@)

10, V€ M (). Tt follows that NC M (F), since M(F) = M,
we must have -./FC M (2).

II. It remains to be proved that A (f) < J-l;'- Let 'rw-.e J/((QS)
and let ’VL be a given covering. TWe have to prove the existence of a AT
e XN such that r““@’l.) ~ A“-‘Qf() in S. By lemma V, there
pxists a neighborhood G of S and a refinementm of w such that, for any
(nM] )-chain En('L) ), B (V)\)c @ implies En('l/))c; S. Since

~n—|
|

¢ M (%), by lemme I there exists an (n, R)=cycle C® mod S in R=H, (4)
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such that FOB~ T ™7 in S.  Sinco R-G is bicompact and R is locally con-
nected, R=S has only a finit® number of components P such that both P e Y -g
and P=G # 0. Let P, (1 £k £ p) be all those components and let

Q= %(\4}~¢\—2Ph whence Q@ < G.
Since [R- )(o(ﬂf)] - S = Z, Ptq +Q with separate summands, by lemma. VI there exist
(n, R)=cycles D" mod(S ; & _l;h)in Z ?t-. and E* mod SQ in § such that
¢® A~y DMER mod S, whence c? ~ D™ mod 'Q', wherefore FD11 ~ FR AT " in
TC T by definition of G and W) it follows thet F2(M)) ~ &7 (1)) ins,
whence FD ('VL) ~ r““(m,) in S, since’V) is & refinement of 1T and both
F® and U "' are absolute (n~1, R)~cycles in S. Since D® C 2: "13‘e and

& Fk -S= Pk with separate summends in the righthand side, lemme VI im-

plies the existence of (n, R)-cycles D];lQ mod ?h, -Pk. in ?R, such that

D? e D}, mod S, whence FDU ~ 2 FDI:2 in §. Since P & VY =~ 4, wo have
— - - o= Nn o - - -

Pk- Pk € . .+ Since Dh is a cycle mod Pk Ph in P‘g , it follows thet

m} ¢ N’ ena, therotore A7 = L w0} ¢ N7 But we had 7P (V1) ~T Y
in § and FI® ~J A™'  in S, which implies that YV ™ (U} ~ A™ (Ut
in S.

The significance of theorem IV will appear clearly if we consider some
special cases of it, which, still, are very general.

Case I. Let A be a given subset of S.  (There would be no loss of
generality in assuming A closed.) Let the femily Z. consist of all closed
subsets B of S such that A is not a subset of B, The family @ consists of all
components P of R=S whose boundary contains A. It is easy to verify that, giv-
en B & - 5 3'(0 (ﬁ) is a subset of a comnected subset of R-B. Therefors,
M(ﬂf) =i, where the modulus A" is generated by all absolute (n-1, R)-cycles

r“ﬂ , ~ 0 in R, such that - C B € = . Let us introduce the fol-

lowing notations:



g is the rank of M mod ‘M(ﬁ),

(1) :
g* is the rank of M. (8);

(2) g }is the number of componments P of R=S such that A {ls a sub-

p* is not
set of the boundary of P.

We may epply the‘ore'm III 1{1 two memmers, pgt‘bing first ¢1 = 0, ¢2 = ﬂf
and second }51 = }d, ;Zfz = '¢/ ‘a.nd &v.\.re"l;;vg the’ foilbv;'i;g two statements:

(3) If p=0, then g = 0; if p > O, then g = m(p-1).
(4) If either p* = 0 or p » O, then g* = mp*; if both p* > O and p = O,
then g* = m(p*~1).

Case II. Let there be given a conneoted subset A of S (not necessar-
ily closed). E; is the family of all those closed subsets of S which do not
meet A. # is the family of all components of R=~S whose boundary meets A. As
in case I, it is easy to verify that, given a B € = , the set 2> (f) is a sub-

~——a
set of a connected subset of R-B, Therefore, u% (%) =N , where the modulus

A" is generated by all Ve M. suchthet T < B e = Let us

introduce again the notation (1), and, instead of (2):

meets

. :
(2v) }is the number of components P of R~S whose boundary?

p* does not meet
the set A.
Then we have again the statements (3) and (4). .

The case II may be generalized as follows. Let there be given a sub-
set A of S and a femily | # O of subsets of A such that: (i) if C € V and
C*c.C , then C*e | , (ii) if ¢ € T , then A~C is connected. (In partiocular
A must be connected, since Q € ™ .,) . will be the family of all

B =B C S such that the set AB belongs to | . g will be the femily of all
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components of R=S whose boundary meets A in a set not belonging to ¥ , If we

have (1) and

P
(e") ’13 is the number of components of R~S whose boundary meets A in a
p* .

»

not belonging
set{ { to the femily I |

belonging
then we have again (3) and (4).

It is easy to desoribe ’c.he most gene:.va.l l-pseudomanifold R If S
consists of two points, then the modulus Jf( evidently has renk g = 1, But if
R=S has p components, it follows from theorem III that g = m(p=1). Therefors
m =1, as was announced above, and p = 2, It follows that R has the property
that any two points decompose it in precisely two parts. Therefore, as is well
known, R is the sum of two simply ordered continua having only the terminal
points in common. If R is separable, it is a ocircle.

I shall finish with a very quick summary of further results,

If iﬁf& is en arbitrary collection (finite, countable or uncountable)
of subfamilies of LP ', then \_/W_ LTF ¢'L)‘-‘-' E J/l(¢‘~) where 2:: M (¢,,)
is the minimm modulus containing all Jn(ﬁ&). If the collection iﬂf& is fi-
nite, thlen ‘Z\; JV(. (¢t) = Z -/"l (¢L) .

It is more difficult to desecribe J"(.(E ¢¢.) The result is that

MA(D ¢‘) may be determined by means of the moduli AL (}5") o‘nlye if we kmow,
for each couple (L,N" whether ﬂf‘ ﬁ'f is or is not vacuous. In particular
we have simply M ( E ¢¢)3TT-./%(¢‘)if always }Zf‘ }d't ;( 0.

My further remarks are here stated only for separable (= metri zable)
pseudomenifolds. In theorem III we have p = gn if and only if g = & . But we
can obtain more precise statements. The simplest case is when p is "weakly in-

finite", i.es for every € > O there exists only a finite number of components
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P €& ;52 - ¢l having diemeter > &. The necessary and sufficient condition is

M () mod M(E,)

be, too, "weakly infinite" in the following sense. Given an € > 0, the rank

M (@) mod [ M @,)+ A ]

-
is finite, where -/r; is the modulus generated by all rm c _/"(,(;i_fl) such

that the rank of

of

ny
thet V' c©BC S, the diemeter of B being less then &.
Let us suppose that the family = in the theorem IV has the follow-

ing property: If A, and A are closed subsets of S such that no A, belongs to

:‘:_ , and if lim A = A (in Hausdorff's sense), then A does not belong to =-.
Then (in the notations of theorem IV) we have \/V“—‘.M , if and only if the fol~

lowing statement is true: If Pk e Y- ¢) A = lim P?e , then A € -2 ) The

assumed property of =_ is true in both cases I and II treated above as illus=-
but

trations of theorem IV, " not necessarily in the above generalization of oase

IT,.
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