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Ov N P S E U D O M A N I F O L D S 
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-by 

Edward tfeoh 

Before passing to the proper oontent of these leotures, I shall give a 

brief survey of a few fundamental faots of the homology theory, in suoh form as 

I shall apply it later. i, 
p V 

A complex K is a finite set (/ 0) of elements (called vertices of the 
(a^vl cixiUa. 

ijl complex), in •which some subsets are distinguished simplices of the oamplex); 
n * 

: two conditions must be satisfied: (1) each vertex is distinguished, (2) each 

subset of a distinguished set is distinguished. If there is given a fixed 

abelian group ^ , then we can form, in a known manner K-chains (with coefficients 

taken from^R. ) and their boundaries, which leads to the notion of cycles and 

homologies. We shall consider also relative cycles and homologies in the sense 

of Lefschetz. A subcamplex K^ of a complex K is a complex such that (not only 
—ST — — — — — t- each vertex of K-j_ is a vertex of K but also) every K-i-simplex is a K-simplex. ~ C\K) i-v iî xtti {¿v̂ .vt ..,'tV CA'.-̂  J ;L 
£ Let K2 c Kx c. K. Let Cn(K) be an (n, K)-chain. We say that. Cn(K) is a if-
VO ' • -Q chain. We say that Cn(K) is an (n, K)-cycle mod Kg in if Cn(K) C Klf 
(O 
<n 

Cvi 

FCn(K) C Kg, where the letter F signifies the boundary. We say that Cn(K) is 

t homologous to zero mod Kg in K^ (and we write Cn(K)~- 0 mod Kg in K-̂ ), if there 

exists an (n+1, K)-ohain Dn+1(K) ^ such that FDn+1(K) = Cn(K) + E^K), where 

En(K) C Kg. 

£ For the later purposes it is essential that the coefficient group a 

^ be a field. Therefore, we assume it now. If * <>I and if Cn(K) is an 
V3 
^ (n> K)-chain, then we can form the chain it C in an obvious manner. 

Now let R be a topological space, that is to say, an abstract set 
h 
^ (whose elements are called points) in which certain sets (called closed sets) are 

7 8 6 5 3 8 
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distinguished, in such a manner as to have the following properties: (1) 0 and 

R are closed, (2) the 3um of two olosed sets is closed, (3) the intersection of 

any number of olosed sets is olosed, (4) any set consisting of a single point is 

closed. A set U C- R is called open, if R - TJ is olosed, 
» 

A covering of the space R is a finite set of open subsets / 0 of 
t u 

R whose sum is the whole R. A covering is a complex by virtue of following 

definition: if U , TJ,, ..., U are different vertices (=• elements ) of l/l , then 

(U0, T^, ..., U^) is a -simplex if and only if 

TT ± o 
If S C R and if "VI is a covering of R, then 11 (.3̂  will be the sub-

complex of VL defined as follows: a Ul -simplex (IT , U,, ..., U ) belongs to 
yv i n 

'ol(s) 

if and only if o i l v/j T- O. This definition is useful essentially 

only for closed subsets S of R, because we have always 

(the bar 

always denotes the closure1).. If S => "S C. I ' l C R and if C » is an 

(n,Vl )-chain, then we shall write instead of C 

we shall say that C^CW) is an ( n ^ ) -cycle mod S in T if is an 
(>l Ut̂ J -cyole mod 1)1 (S) in VZ(T) and in a similar way we interpret a homology 

nrvcA-
C^wl) 0 S in T. If S = 0, we speak" of absolute cycles; if T = R, 

we leave out the words "in T". 

Now 1st 
VI and 

V) 

"be two covorings(of the space R; we shall consider 

only coverings of R). We say that 1/) is a refinement of HI , if it is possible 

to attach to eâ ch vertex V of the covering 1/1 a vertex U - T» V ̂  of the cover-

ing Ul such that V C U. The operation Tf is called projection (of "V) into 

Ul ); in general, there exist many such projections. 

If (VQ, V1, ..., Vn) =» T ^ is an ('wVZ) -simplex, there are two pos-sibilities; either the TT Vn yr^i •• • V- are not all different from i * ' each other and we put f T^i 0 ; or they are, and then ( TT \jc 7rV, , . . it M ^ ) is 511 K ^ - ) -simplex and we write ir ~£~ru- cr . 



This operation of projecting a simplex is to be understood in such a sense that 

if Tn is oriented, then 7T T^ also has a definite orientation (obviously de-

scribable). 

Let IT, and TT^ be two projections of 1A into Ul and let ^Clif) 

be an -cycle mod S in T. Then "Tf̂  C^iVj) and TTj. C^iVj) a r e -two 

M l 
-cycles mod S in T, homologous to each other mod S in T. Hence, al-

though the projection is not determined without ambiguity, it becomes so if ap-

plied to cycles of a definite type (mod S in T) provided that we identify cyoles 

which are homologous to each other (again mod S pa T). 

"life retain the notation S = ' S C T = T'C,R. An(n, R)-cyole mod S in 

T is a function Cn attaching to each covering Vi of R (aB -coordinate of Cn) 

a definite ("Yî l/l) -cycle C^(Vl} mod S in T, but supposing that the following 

condition be verified: If 1CJ is a refinement of VI , then 'V C (jJl) 

mod S in T (of course IT" is a projection of U) into VI ). The definition of 

a sum C^ + Cg of two (n, R)-cycles and of the product tl C is ob-

vious. C 0 signifies of course CtVL) -V U for each covering VI. 

Although our fundamental assumptions are extremely general (at the 

present stage of the game, it is not very essential that R is a topological 

space), we have an im-iortant and by no means trivial theorem. It is convenient 

to start with a definition: A linear family AtJtfi of -cycles mod S 

in T is a non empty family of such cycles having the following property: if 
/MfV» ( C tVlVv ft, C >)•/!, C > J 

C > t ) t M u t t o n NOW 
A 

we can state the following fundamental existence theorem: 

Let there be given, for each covering ItL , a linear family A CV^} 

of (^-Vl) -cycles mod S in T such that, if 'V] is a refinement of 1Ht 
TTfCtVj) C ^ ( y O . Then there exists an (n, R)-eyole Cn mod S in T 
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such that for ev'ery It. 

The following three lemmas, which we will find very useful, are im-

mediate corollaries of the fundamental existence theorem. Each lemma will be 

preceded by a quite obvious remark (independent of the existence theorem). 

If Cn is an (n, R)-oycle mod S in T and if we set i" ̂ '(l/ljrf CX^l) 

is an absolute (n-1, R)-cyole in S, which 

we shall denote by FCn.* Evidently ru 0 
in T. But conversely: 

* The following remark is quite useful: If Dn is another (n, R)-cycle mod S in 
T, then Cn «-v D11 mod S implies FCn ̂  FiP in S. 

Lemma I. If is an absolute (n-1, R)~cycle in S, whioh is • 

aj 0 in T, then there exists an (n, R)-cycle Cn mod S in T such that 
Pr TV {—Sv-l 

c ~ \ in s. 

If Cn is an (n, R)-cycle mod S in T and if there exists an absolute 

(n, R)-cycle T" ̂  such that C"*^ f""' mod S, then FCn 0 in S. But con-

versely: 

Lemma II. If Cn is an (n, R)-cycle mod S in T suoh that FCn"<* 0 in S, 
»-it 

r - W « 1 

- - -j in T such that Cfo mod S. 

If Cn is an (n, R)-cycle mod S, if Dn is an (n, R)-cycle mod S in T 

and if Cn ~ Dn mod S, then Cn <«o 0 mod T. But conversely: 

Lemma III. If Cn is an (n, R)-cycle mod S suoh that Cn ̂  0 mod T, 

then there exists an (n, R)-cyole Dn mod S in T such that Cn r^ Dn mod S. 

Naturally, very few theorems on homology may be proved without intro-

ducing more particular spaces R. Vie shall, from this point on, suppose that the 

spaoe R is normal. Thig signifies: If S^ and Sg are two olosed sets such that 
S1S2 = 'fclien "there exists two open sets G^ and Gg such that S^C G^, Sg C Gg, 

G]_Gg =0. In a normal space R, the following lemmas IV-VI are true. (The im-

portance of lemma IV is immediately obvious.) 



If S 1 C R, S2 C R, then TA ( S, S t) C VI (5 Vl($ 0 but in 

general VI(5, ^ "Ul(S,>. "Ulfr i). Therefore, 

C'H'l/O C- does not imply C * ( M ^ C S , . But still: 

Lemma IV. Given a covering "Vl and given the closed sets S-̂  and Ŝ  

there exists a refinement **f and a projection *TT such that 

implies 

In close connection with this is the following 

Lemma V. Given S = S and a covering n , there exist an open set 

G S and a refinement 'Vj such that 

implies 

Lemgia VI. If S = S C T » T C R, I • S = ^ f̂c w i t h mutually 

separated P. (in finite number) and if C11 is an (n, R)-cycle mod S in T, then 

there exist (n, R)-cycles C mod ST̂  = Pft - P^ in ̂  suoh that C ^L* Cjg 

mod S in T. 

Given a closed subset S of R, we shall denote by J/L 
the family of all p-lft-J pfl-i 

absolute (n-1, R)-cycles \ in S that are 0 in R, each suoh » be-

ing regarded as equal to zero if it is ^ 0 in S,* lvH, is a modulus; by this 
* n is a given integer; later, n will be the dimension of R, 
we mean that it is an additive abelian group having multipliers (operators) 

n c (each of which determines an automorphism ofl/K, ). Since 0\ is a 

field, always possesses an independent basis; the number of the elements 

of a basis (which is the same for all bases) will be called the rank of 
JK.. 

If R is an n-manifold (in the classical sense), the following theorem 

is well known: If S = S* C. R / S, then the number p of components of R - S is 

= g + 1, g being the rank of the modulus 

J L The statement p = g+1 may be de-

composed into two halves: p i g+1 and p = g+1. It is remarkable that the first 



half may be proved in a surprising general case: 

Theorem I. Let there exist ab-Sfclwte (n, R)-cyoles ? (1 i i f m) 

having the following property: If T-̂  and Tg are two closed sets such that 

Ti / R / Tg and if A ^ is an absolute (n, R)-cycle in T^ and similarly ¿^ g 

for T„, then the homology t n a " implies 

r^ = ... a rm = 0. Let S = S" C R^ If R-S has at least p+1 components, then 

the rank of the modulus 

is I. pm* 

Proof. We have R-S = ^ ^ with separated P^ / 0. By lemm« VI, 

there exist (n, R)-cycles mod S-^ in ̂  (1 i i i m, 0 i k i p) such that 
O ^ rvi C?1 mod S and. therefore XT1?" ~ C- l. mod R-P, . Let J L i ik 1 t k 

r " ' « F C.1? (here and in what follows k runs over the values l,2,...,p 

only, k = 0 being left out). Evidently I • u 

Let J2 L o 

in S. Precisely, we have to prove that all h,-^- Let us assume that, on 

the contrary, 0. Now f*. ̂  C . ̂  is an (n, R)-cycle mod S in R-P0 
ai\d r !_, n..y. V- a-» V/ in S. By lemma II, it follows that there exists an 

absolute (n, R)-cycle A"^ in R-PQ such that J^ fl̂. ̂  C . ̂  mod S. If 

k > 2, then C?k C R-P j therefore ¿2 ^ Z? 1 { C. ^ mod R-P1. 

Since S C R-P^ we have A c mod R-P^ But C ^ 

mod R-P.. Therefore 
Q : - A " 

„ O mod R-Pn . By lemma III it 
1 • X I 1 o -L 

follows that there exists an absolute (n, R)-cycle A | such that 

E II. C I " ^ " U A 1 : • Since ^ c R . a ^ c v ^ K , 

we have r^^ a 0, in particular r ^ =» 0, which is a 

contradiction. 

Corollary. Let R be a compact subset of the euclidean and let 

there exist m+1 complementary domains of R (rel. E^-^) having the whole R a« 
"hVi 

their boundary. Let S be a closed subset of R and let g be the (n-1) Betti number of S. Then the set R - S has at most + 1 components. 
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This corollary was given by Wilder, but (in the case n 2 2) with g 

instead of + 1, which is weaker exoept when g i l o r g = > m = 2 . 

Now we shall assume that It has the following two properties: 

(1) R is bicompaot, i.e. if any family f> of open sets covers R, then 

a finite subfamily of covers R. 

(2) dim R = n. That signifies: (i) every covering Vt has a refine-

ment V) such that dim V) £ n (dim Vj being the largest dimension of a }Cj 

simplex), (ii) not every covering VI has a refinement Ifj such that dim 2/j < n. 

These assumptions imply the following statement: If Cn is an (n, R)-

cycle mod S, then there exists a uniquely determined minimal closed T 3 S such 

that Cn n 0 mod T. The existence of T is a consequence of (1), the uniqueness 

follows from (2). We shall call T the carrier of the cycle Cn and we shall 

apply it in the following form: If Cn 0 mod Tq = T , then the set TQ must 

contain the carrier T. 

The space R will be called an n-pseudomanifold,* if it has the follow-
i , 

* A more proper name would be an orientable pseudomanifold, but I shall not give 
here the more general definition. 

ing properties: (1) R is a bicompaot normal space. (2) dim R = n(= 1,2,3,;..). 

(3) There exists some absolute (n, R)- cykle A ^ whioh is not cv 0. (4) If 

S = "S C R / S, and if A * is an absolute (n, R)-cycle in S, then A ^ 0. 

(5) Given a point a 6. R and a neighborhood ** U of a, there exists a neighbor-

** All my neighborhoods are open. 

hood V C D of a having the following property: If Cn is any (n, R)-cycle mod 

R-TJ, then there exists an absolute (n, R)-cycle Q suoh that L ~ il 

mod R-V, 
! 
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Everywhere in the sequel, R is ti given pseudomanifold and S is a given 

closed subset of R. 

Theorem II. R is a locally connected continuum, 

Proof. That R is a continuum, is quite trivial.* U being a given 

* As a matter of fact, a far more general property of R is a corollary of the-
orem I. 

neighborhood of a point a € R, let V be a smaller neighborhood of a as in prop-

erty (5) in the definition of an n-pseudomanifold. It is sufficient to prove 

that the whole set V is a part of one quasi component of U. Let us assume the 

contrary. Ther/ we have II = P+Q with separate summands such that F7 / 0 / QV. 

Let be an absolute (n, R)-cyole whioh is not ̂ v 0. Since 0.*̂  may be re-

garded as an (n, R)-cycle mod R-U, by lemma VI there exist two (n, R)-cycles: 

Cn mod P-U in J and Dn mod Q-U in Q such that C A4-f n mod R-U. 

By property (5) of a pseudomanifold, there exists an absolute (n, R)-cyole Ci*̂  

such that C A ~ a n
0 mod R-V. Since Cn C F, we have ~ 0 m o d 

R-V+P C R-QV. By lemma III it follows that there exists an absolute (n, R)-

cyole A n in R-QV such that il" Since R-QV / R, O by 

property (4) of a pseudomanifold. It follows that X\ 0 ~ 0 and, therefore, 

Cn ̂  0 mod R-V. Similarly we have Dn 0 mod R-V. Since DS* ~ C^-V-IT* 

mod R-U C R-V, we have i T ^ O mod R-V / R. By lemma III and by property 

(4) of a pseudomanifold, this implies that X I 0 which is a contradiction. 

Lemma VII. Let T be the carrier of the (n, R)-cyole Cn mod S, Then 

the set T-S is open. 

Proof. Let there exist, on the contrary, a point 
OiG ( T - 5). fiTr. 

/ 
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R 

Since U = -S is a neighborhood of a, we may determine a smaller neigh-

borhood V of a by property (5) of a pseudomanifold. Then there exists an abso-

lute (n, R)-cycle such that C " ^ A * mod R-V. Since Cn ~ 0 mod T, 

we have A n ~ 0 mod R-V+T. But R-V+T is closed and / R, so that 0 by 

lemma II and property (4) of a pseudomanifold. It follows that Cn<v> 0 mod R-V. 

Since T is the carrier of Cn, we must have T C R-V, which is evidently wrong. 

Now T-S is open, therefore open in R-S, and T-S is also olosed in R-S. 

Therefore: 

Lemma VIII. Thé carrier T of an (n, R)-cyole Cn mod S is the stun of 

(some of the)components of R-S. 

Lemma IX. Let P be a component of R-S. Let Cn be an (n, R)-cycle 

mod S. Then there exists an absolute (n, R)-cycle f V such that 

mod R-P. 

Proof. Choose a point a € P. Since R is locally connected and S 

is closed, P = U is open and, therefore, it is a neighborhood of a. Let V be a 

smaller neighborhood determined by property (5) of a pseudomanifold. It fol-

lows that there exists an absolute (n, R)-cycle 
I T such that C ~ X I mod 

n t\ r\ m, 
R-V. Therefore the carrier T of L - L is contained in R-V. By lemma 

VIII, it follows that T C R-P. But Cn mod T by definition of T. 

Since T c; R-P, we have Cn ~ Ci* mod R-P. 

Now let us recall that 
J t was the modulus of all absolute (n-1, R)-

rt»-l r— r\ - ( r* TV I 
in S such that t <"»•» O in R, such a cycle I being re-

garded as zero if it is ™ 0 in S. 

We shall consider submoduli 

Jf of the modulus JA* (called moduli 

briefly). If J f is such a modulus, thenv^ (the "closure" of Jf ) is, by def-

inition, the family of all those having the following property: 
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Given any covering Ul , there exists a 'g (depending onl^I ) such 

that 

Evidently J^f is a modulus (Jf<Z J f C • 

Everywhere in the sequel, \(l denotes the family of all components of 

R-S. If $ , then }& (ĵ ) will denote the point set whioh is the sum of 

all the sets belonging to the family (6. 

E.g. tt(o)*Q 

and generally (fi) -V 

Everywhere in the sequel, if jZf C ty* Jkh ($) is the set of all those 

r ^ - ' e J i , for which r7'"4 O mod R - So (o) --

a 0. In general, C ty implies A t (fy ^ ^ M 

If 0 C ^ , then a modulus and 
X. t_ 

From this point on, we shall assume that the n Betti number of R 

(= the rank of the modulus of all the (n, R)-oyoles) is finite. Yie shall d»-
n ** 

note it by m and shall choose, onoe for all, a fixed Betti basis i. L ^ 

(1 5 i i m) for the absolute (n, R)-cycles. By property (3) of a pseudomani-

fold, m > 0. T/e shall see later that in the case n = 1 we must have m = 1. 

But for n > 1, every value of m is actually possible. Indeed, Wilder gave an 

example in the euclidean Ê +i» of a compact set R suoh that R is'the boundary 
or 

of all components of bhe number m+1 =2, 3, ... -. m =» DO of those com-
A 

ponents being given, and each such component being uniformly locally connected. 

It is easy to prove (as a corollary of our following theorems) that such an R is 

an n-pseudomanifold, for which the number m has the signification given above, 

Now we have the following general theorem regarding the separation of 

a pseudomanifold by an arbitrary closed subset: 
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Theorem III. Let $ C $ C V . Let p be the number of the com-
" 1 1 C 

ponents forming the family ® tlie raIl]c of moclulus 

M . « f > x ) modi 
(=> the max. number of oyoles Tj" k ^VtO^) such that £ 1 f f"^" 

implies r^ = 0). Let 

c =» 1 if both p > 0 and JẐ  =* 0, 

c = 0 if either p = 0 or JẐ  / 0. 

Then 

g = m(p-o). 

Proof. Let us assume that g < m(p-o), so that g is finite. Let 

P (0 i k < p) be all the components of R-S belonging to the family Ĵ g-Ĵ ,. By 
Tl 

lemma VI, there exist (n, R)-cycles Ĉ 1 mod S*̂  in P^ such that C., ~ 

nod E-P^ . Lot r < ( t = P C j fr so that evidently r , v « . M m -

Since g < m(p-c), there must exist numbers r whioh are not all null and such 
rn p ik 

that ft .fo ) . , O in R~ (P2) * By lerama 1 ^ follows that 
J=i /?= C n v there exists an (n, R)-cycle Tr mod S in R- J^ (P2) su°k that 

rvj to 
f b ^ c £ A ^ S . 

It follows that - ^ o A. ¡,t is an (n, R)-cycle mod S in 
\ -. 1 k - c 

J *{> 4. P - ̂ (^2)» whose boundary is /v> 0 in S. By lemma II, it follows 

that there exists an absolute (n, R)-cycle C. V> + K T cKe W>) 
^ -r̂  b ^ ^ \z=c 

such that "V) ~ ¿1/ I I t , C ^ a j A mod S. Now, if c = 1, ̂ ve have 
1:1 be. 

^ - V - X > < ) d £ , and if c = 0, we have ̂  / 0 and 

^ + R- - * t- , p r o p 8 r t y (4) the def-
K-1 

inition of a pseudomanifold, it follows that A ^ 0 and, therefore, 
™ £ r ^ 

^ L.' 1 k 1 k. m0(i s" u s o h o o s e T a l u e 
1=1 k = C 
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k(o 5 k i p). We have D11 C. R- % (jzL) CC R-P, , C* ~ mod R-P^ , 
m » * y^ ^ 

S C. R-P , D11 C 0 /t., ^ , mod S. Therefore / , n. . J X ^ ~ O 
k ^ ** tr; * * 1 

mod R-P. By lemma III and by property (4) of a pseudomanifold, this implies 

£ A,,, il* ^ 0 

and, therefore, a 0» which ia a contradiction. 
i -» 

II. Let g > m(p-o), so that p is finite. There exist oyoles 

rj"' £ (jfy (0 i X < m(p-o)) such that 

implies >6. - O, 

Let P^ (0 i k i p-1) be all components forming the family l0rama 

there exist (n, R)-cycles C^ mod S in R-^&O^) such that PC^ ^ in S. 

By lemma IX, there exist numbers 1ft such that 
yn. 

C * ~ A , ^ f C mod R-P . 
i 

Let us consider the system of linear equations 
-m (p-c 

71t k K * A = i (1 < i < m, 0 i k < p-1) 
U o 

« 
where t^ = ... = tm = 0 in the case = 0. The number of the equations of our 

system is less than the number of unknowns; 

being a field, there follows 

the existence of a solution fi^ such that not every is = 0. Evi-

dently V a f a ^ + k 
L_i A \ v x ^ /_, ij A l . m o d . therefore the carrier T of ft^ C ^ — J^ ̂  i •Q-̂ - satisfies the inclu-

* sion T c. R-P, , whence T C R- £ Pu = R- O^'^i )• I n t h e o a s e 0 = 0 
"'•[ J. 
n 0 T have ti = 0, C^ C R-"Kj(J^), whence T C R-.K. 0^)* be same thing is true if 

o = l, because this implies (jẐ ) =» 0. Therefore 

T c R -t ft ( - 3 U & ) , 

whence ^ 
AV C. » - H i . n . 

Cj * \ \ t t 



13 

and, therefore 
£ * x r T ' ^ 2 n F C ? - o - R - Vt ( A > , 

which implies the contradiction * 0. 

Now we shall determine the modulus ̂'{.(jZf) in a very general case. 

Theorem IV» Let be a family of closed subsets of S, Let <fi 

be the family of all those components P of R-S whose boundary P-P does not be-

long to the family — . Let us suppose that — has the following property: 

for any set B €. "H the set {$) is a subset of a oonneoted subset of R-B. 

Let J f be the submodulus of generated by all I ¿ J t such that 

V C B, B being some set of the family H . Then we have iM. (ĵ ) «* /C-
r— -1 _ <w - 1 

Proof. I. Let \ C B £ - , \ ~ 0 in R. By lemma I, 

there exists an (n, R)-cyole Cn mod B such that FCn ̂  T in B. According 

to the property assumed of , there exists a component Q of R-B such that 

%(fS) C. Q. 3y lemma IX, there exist numbers A ; such that C"*^» £ f l t f l . . 

mod R-Q, so that, by lemma III, there exists an (n, R)-cycle Dn mod B in R-Q 

such that Cn- Z?, Af iV) ~ 5 mod B, whenoe FCn rv FD11 in B and, there-

fore, rvj pen in b. But D11 C. R-Q, so that 
P ^ 0 ^ R - Q ^ ft-

i.e., r " € (0)- It follows that sJTC (ji)t Since iM(fl) JA. (jzf), 

we must have 
JC c ^M, (jrf). 

II. It remains to be proved that ̂ Vi (jZf) C J f . Let T g 
and let 

be a given covering. Vie have to prove the existence of a /I 

<i J C such that ^ in S. By lemma V, there 

exists a neighborhood G of S and a refinement I f ) of ̂  such that, for any 

(nJUj )-chain iPClp, E31 (7/)) e G implies i^i)/})^ S. Since 

J"* ' < (tf), by lemma I there exists an (n, R)-cyole Cn mod S in R-"K?(^) 
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such that FCn ~ T ̂  1 in S. Since R-G is bioompact and R is locally con-

nected, R-S has only a finitfc number of components P suoh that both P g ^ 

and P-G / 0. Let P^ (1 i k £ p) be all those components and let 
Q - ^G(h) - ( f i ) - 12 P^ whence Q G. 

Sinoe (r- %> - S = P̂  +Q with separate summands, by lemma VI there exist 

(n, R)-cycles Dn mod^S, £ P^jin 2 P^ and E11 mod SQ in Q such that 
YV 

Cnr\j D^E11 mod S, whence Cn Aj Dn mod Q, wherefore FDn 'V FCn in 

Q C G; by definition of G and V ) it follows that FDn(V)) ~ '(V) ) in S, 

whence in S, sinceifj is a refinement of VI and both 
FD11 and 1 are absolute (n-1, R)-cycles in S. Since D11 C £ and 

-^ - S = H P^ with separate summands in the righthand side, lemma VI im-

plies the existence of (n, R)-cycles D^ mod P^ -P^ in such that 

Dn ~ 2} mod S, whence FDn ^ ¿D FD^ in S. Since P^ £ ^ - jzf, we have 

P, - P, <£ -Z. . Since D? is a cycle mod P - P in P. , it follows that k K K, ft fc « 
FD"̂  £ JC and, therefore 72 FD* £ JC- But we had FD n ( v t ) '(Vl) 

in S and FDn in S, which implies that T^*1 (l/l̂  A ^ ' ^ O x ) 

in S. 

The significance of theorem IV will appear clearly if we consider some 

special cases of it, which, still, are very general. 

Case I. Let A be a given subset of S. (There would be no loss of 

generality in assuming A closed.) Let the family consist of all closed 

subsets B of S such that A is not a subset of B. The family jzf consists of all 

components P of R-S whose boundary contains A. It is easy to verify that, giv-

en B <£ is a subset of a connected subset of R-B. Therefore, 

JA>(fi) = JP , where the modulus Jf is generated by all absolute (n-1, R)-cyole3 
p" TL - l j Yt ' i 

» , ̂  0 in R, such that > C B C -I. . Let us introduce the fol-

lowing notations: 



g iff the rank of JA, mod iJ/t($), 
(1) 

g* is the rank of 

(2) 
p ris 

y is the number of components P of R-S such that A -J a sub-
p* J Lis not 

set of the boundary of P« 

We may apply theorem III in two manners, putting first = 0, ft? = ¡6 
J • ' ><• - - , r M' 

and second ¡¿-̂  ^ ^ w e have the following two statements: 

(3) If p = 0, then g = Oj if p > 0, then g =» m(p-l). 

(4) If either p* = 0 or p > 0, then g* =» mp*j if both p* > 0 and p » 0, 

then g* = m(p*-l). 

Case II. Let there be given a connected subset A of S (not necessar-

ily closed), is the family of all those closed subsets of S which do not 

meet A. ft is the family of all components of R-S whose boundary meets A. As 

in case I, it is easy to verify that, given a B € 3EL , the set ( j l S ) is a sub-

set of a connected subset of R-B. Therefore, = J f , where the modulus 

J C is generated by all f" ̂  JA^ such that ^ ' C. B t ~ . Let us 

introduce again the notation (1), and, instead of (2)s 
p r meeta 

(2*) V is the number of components P of R-S whose boundary) 
p*j [does not meet 

the set A. 

Then we have again the statements (3) and (4), 

The case II may be generalized as follows. Let there be given a sub-

set A of S and a family T ^ O of subsets of A such that: (i) if C € and 

C*CC , then C* € , (ii) if C £ P , then A-C is connected. (in particular 

A must be connected, since O e r .) — will be the family of all 

B = B C 5 such that the set AB belongs to V . fi will be the family of all 
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components of R-S whose boundary meets A in a set not belonging to * , If we 

have (1) and 

P 
(2") "1 is the number of components of R-S whose boundary meets A in a 

p* J 
• not belonging 

set, to the family 1 , 
_belonging 

then we have again (3) and (4). 

It is easy to desoribe the most general 1-pseudomanifold R. If S 

consists of two points, then the modulus o K evidently has rank g = 1. But if 

R-S has p components, it follows from theorem III that g => m(p-l). Therefore 

m => 1, as was announced above, and p = 2. It follows that R has the property 

that any two points decompose it in precisely two parts. Therefore, as is well 

known, R is the sum of two simply ordered continua having only the terminal 

points in common. If R is separable, it is a oircle. 

I shall finish with a very quick summary of further results. 

If is an arbitrary collection (finite, countable or uncountable) 

of subfamilies of l)J , then J f t i T T * ^ ) - 72 where 72 ($,,) 

is the minimum modulus containing all JlfL(fî )» If the collection ̂ J^ is fi-

nite, then TL/ 

It is more difficult to describe ^"L ( <C The result is that 

i_>Vt may be determined by means of the moduli (ĵ  ) only if we know, 

for each couple (i^f ̂  whether ji jzf̂  is or is not vacuous. In particular 

we have simply ^AL ( 72i t ̂  - TTOVtC^^f always fS^ fi / 0» 

My further remarks are here stated only for separable (= metri zable) 

pseudomanifolds. In theorem III we have p =» <jo if and only if g = OO , But we 

can obtain more precise statements. The simplest case is when p is "weakly in-

finite", i.e, for every £ > 0 there exists only a finite number of components 
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P € ~ having diameter > The necessary and sufficient condition is 

that the rank of 
m o d M f a ) 

be, too, "weakly infinite" in the following sense. Given an £ > 0, the rank 

°f J t ( < f i , ) m Q i [ M ( & ) + J l ] 

is finite, where is the modulus generated by all ^ ^ ' <£ such 

that I C B C S, the diameter of B being less than <e . 

Let us suppose that the family JL in the theorem IV has the follow-

ing property: If An and A are closed subsets of S such that no A^ belongs to 

7. , and if lim An = A (in Hausdorff's sense), then A does not belong to — . 

Then (in the notations of theorem IV) we have 

J T , if and only if the fol-

lowing statement is true: If P^ 41 ~ $ } A = lim P^ , then A €. JZ- The 
assumed property of .7. is true in both cases I and II treated above as illus-t-ut 
trations of theorem IV, " not necessarily in the above generalization of oase 

II. 
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