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CHAPTER V 

SEPARATION 

(Sections 26-30) 

This chapter is devoted to the separation properties of closure spaces. It is rather dif-
ficult to say what is meant by a separation property. Given a single-valued relation a 
for closure spaces and proximities (in some cases generalized proximities, usually 
such that a * is a proximity for not necessarily continuous), and a property of 
pairs of closure spaces and proximities, we ask whether <*, a*> has the property 
E.g., if means that any two distinct points of * are distant under a*, or that a * in-
duces the closure structure of then the relation a = {&—> [X —> Y \ X and Y are 
not semi-separated in * } } leads to the so-called semi-separated spaces (each single-
ton is closed) or semi-uniformizable spaces, respectively, and the relation a = { * 

{X Y| X and Tare not separated in * } } leads to the separated spaces or regular 
spaces, respectively. If means that a * is uniformizable and induces the closure 
structure of 8?, and if a * is the proximity ( l - > y | I n ? + f ) } , then we obtain 
normal spaces. It should be noted that we do not intend to give a theory of separa-
tion; we are interested in those separation properties which often enter into important 
theorems; e.g., the following conditions on a space* are equivalent: * is separated, 
each net in * has at most one limit point, if / is a continuous mapping of a space 
into * then gr / is closed in D*/ x 

Section 26 is concerned with an investigation of those properties which depend on 
closures of finite sets. Section 27 is devoted to an examination of separated and regular 
spaces; these appear in essential assumptions of many results. We mention the unique-
ness theorem for mappings into separated spaces, the theorem on simultaneous con-
tinuous extension of a mapping into a regular space, and the theorem on removable 
discontinuities of a mapping into a regular space. Section 28 is devoted to uniform-
izable spaces, i.e. spaces whose closure structures are induced by uniformities. It is 
to be noted that these spaces are often termed completely regular. The exposition is 
based on the results of sections 23 — 25 on uniform and proximity spaces. In addition 
some purely topological proofs are sketched. Section 29 is devoted to normal spaces. 
Particular attention is given to counter-examples and uniformizable covers. Here 
we shall prove that every open cover of a pseudometrizable space has a locally finite 
cr-discrete open refinement. The development is again based upon sections 23 — 25. 
The last section is devoted to some special kinds of normal spaces, namely hereditarily 
and perfectly normal spaces, paracompact spaces and hereditarily paracompact 
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spaces. Here we shall prove the Bing-Nagata-Smirnov metrization theorem. Special 
attention is given to localization of properties in paracompact and hereditarily para-
compact spaces. It will be shown in the exercises to 41 that paracompactness is a 
separation property in the sense explained above. 
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26. Q U A S I - D I S C R E T E SPACES 

Let <P, u> be a closure space; for each X c P let vX be the set of all y e P such 
that y e u(x) for some x in X. It is easily seen that {X -* vX \ X c P} is a closure 
operation. This closure is called the quasi-discrete modification of u, and a closure is 
said to be quasi-discrete if it coincides with its quasi-discrete modification. In subsection 
A quasi-discrete spaces are investigated. In this connection the important notions of a 
discrete family and a quasi-discrete family of subsets of a closure space are introduced. 
In subsection B we shall be concerned with the examination of some of those pro-
perties of a closure operation which depend only on the quasi-discrete modification; 
namely, we shall introduce feebly semi-separated spaces (sometimes called T0-spaces) 
and semi-separated spaces (sometimes called Tj-spaces). It has already been shown 
(17 C.18) that every closure space admits an embedding into a product PN where P 
is a certain three-point space and X is a suitable cardinal. Now we shall prove three 
interesting theorems of this type, namely that every topological space can be embed-
ded into a product of two-point topological spaces, every feebly semi-separated topo-
logical space can be embedded into a product of two-point topological feebly semi-
separated spaces and finally, every semi-separated space <P, u> can be embedded 
into the product <P, t>)exp p where v is the coarsest semi-separated closure for P. 

A. QUASI-DISCRETE MODIFICATION 

26 A.l . Definition. The quasi-discrete modification of a closure operation u 
for a set P is defined to be the closure operation v = {X -»• U{"(*) | x e X} | X <= P} 
for P. A closure operation u will be called quasi-discrete if u coincides with its quasi-
discrete modification, that is, if uX = U{u(x) | * for each X <= P. A space is 
termed quasi-discrete if its closure structure is quasi-discrete. 

For example discrete, accrete and finite spaces are quasi-discrete. 
26 A.2. Theorem. Suppose that <P, u> is a closure space and v is the quasi-discrete 

modification of u, and consider the relation 

g = E{<x, y}\xeP,ys u(x)} = E{m(x) | x € P} . 

Then the relation g is a reflexive relation on P (i.e. Jp ci g) and the closure v is the 
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expansion of g (i.e. vX = for each X cz P). Next, g is symmetric if and only if 
the closure operation u is semi-uniformizable, and g is transitive (i.e. g o g = g) 
if and only if the closure v is topological. 

Proof. The relation g is a reflexive relation on P because x e u(x) for each x e P. 
Clearly = U{e[(x)] | x e l } = U{"(*) | x eX} and the latter set is, by de-
finition, vX. The relation g is symmetric if and only if y e u(x) implies x e u(_y), and 
(by 23 B.3) this is a necessary and sufficient condition for the closure u to be induced 
by a semi-uniformity. The equivalence of the transitivity of g to the fact that v is 
topological is evident. 

According to this result every quasi-discrete closure operation for a set P is the ex-
pansion of a reflexive relation on P, i.e. of a vicinity of the diagonal of P x P. Con-
versely, if g is a vicinity of the diagonal of P x P, then obviously the expansion u 
of g, i.e. the relation {X q\X~\ | X <= P}, is a quasi-discrete closure for P. It is to be 
noted that this result was proved in Example 14 A.5 (f). This result and a related 
simple result are stated in the proposition which follows. 

26A.3. Suppose that P is a set, R is the set of all vicinities of the diagonal of 
P x P (thus R is the uniformly discrete uniformity for P) and ug is the expansion 
of g for each g in R. Then the relation {g -> ue | g e i?} is one-to-one and ranges on 
the set of all quasi-discrete closure operations for P; next, g => a if and only if the 
closure ue is coarser than u„. 

Thus the study of quasi-discrete closure operations is reduced to the study of 
reflexive relations. 

26 A.4. The quasi-discrete modification of a closure operation v is the coarsest 
quasi-discrete closure finer than u. — Evident. 

Now we proceed to various characterizations of quasi-discrete spaces. The required 
concepts are introduced in the following definition. 

26 A.5. Definition. Let 0 be a closure space. The star of a subset X of 0 (in the 
space is the intersection of all neighborhoods of X. A family {Xa} of subsets of 0 
will be called discrete if {Xa} is closure-preserving and {ATa} is disjoint. A family {Xa} 
will be called quasi-discrete if is disjoint and closure-preserving. 

26 A.6. The star of a subset X of a spaced is the set of all points x of F the clo-
sure of which intersects X, that is, the star of X is the set E{x | (3c) n X 4= 0, x e 
In particular, ifU is a neighborhood of a set X, and a point x does not belong to the 
star ofX, then U — (x) is a neighborhood of x. 

Proof. If (x) n X 4= 0, then every neighborhood U of X contains x, because U 
is a neighborhood of some y eX n (x). Conversely, if (x) n X = 0, then for each y 
in X there exists a neighborhood Uy of y such that x $ Uy. The union U of [Uy \ y e X} 
is a neighborhood of each point of X, and hence of X, and does not contain the 
point x. 
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It is to be noted that the star of a point x in a space SP need not be identical with 
the star of x in the cover {(y) | y £ 0} of 0 (as may be verified by examples). 

26 A.7. Remark. For each closure u for a set P let u* be the single-valued relation 
on exp P which assigns to each X cz P the star of X in <P, u>. It is easily seen that 
each u* is a quasi-discrete closure for P and (u*)* is the quasi-discrete modification 
of u. In particular, if u is a quasi-discrete closure, then (u*)* = u. Finally, the inverse 
of the relation {<x, | y e u(x)} is identical with the relation {<x, y} | y e u*(x)}. As 
a consequence, u = w* if and only if u is a semi-uniformizable quasi-discrete closure 
operation. 

A comment on quasi-discrete and discrete families may be in place. First, a quasi-
discrete family need not be discrete; e.g. if SP is an accrete space, then the family 
{(x) | x e0} is evidently quasi-discrete (because (x) = \SP\ for each x) but not discrete 
whenever the underlying set of SP contains at least two points (because (x) n (y) = \SP\ 
for each x and y in SP\ Moreover, this example shows that a quasi-discrete family 
need not be locally finite. By 14 B.18 a family {Xa} is locally finite if and only if the 
family {Xa} is point-finite and the family {Xa} is closure-preserving. Thus everv 
discrete family is locally finite. Now we shall prove essentially more. 

26 A.8. Theorem. A family {Xa | a e A} of subsets of a space SP is discrete in 0 
if and only if each point xeSP has a neighborhood intersecting at most one member 
of{Xa). 

Proof. If the condition is fulfilled, then clearly the family {Xa} is locally finite, and 
hence closure-preserving (by 14 B.17), and evidently the family {Xa} is disjoint. Con-
versely, suppose that the family {Xa} is discrete. If x e then x sXa for at most one 
index ae A (because { X j is disjoint) and hence U = \SP\ — U{X. | a 6 a =(= a} is 
a neighborhood of x because {Xa} is closure-preserving and hence the closure of 

- U is | a e A, a * a}. 
A space 0 is discrete if and only if the family {(x) | x e 3P\ is discrete. Similar 

characterizations for quasi-discrete spaces are listed in the following theorem. 

26 A.9. Theorem. Each of the following conditions is necessary and sufficient 
for a closure space SP to be quasi-discrete: 

(a) The family {(x) | x £ is quasi-discrete. 
(b) Every family of subsets of 0* is closure-preserving. 
(c) For each subset X of SP the star of X is a neighborhood of X. 
(d) For each xeSP the star of x is a neighborhood of x. 
Proof. It will be shown that (a) is necessary, (a) => (b) => (c) => (d) and (d) is suf-

ficient. The necessity of (a) is obvious, and clearly (a) implies (b). Suppose (b) and let 
H be the neighborhood system of a subset X of We must show that V = f)<% is 
a neighborhood of X. Since each U e "U is a neighborhood of X we have 
X n \SP\ - U = 0 for each U in According to (b), \&\-V= (j{\S?\ - U \ U e H] 
and consequently \SP\ — Vn X = 0, which means that V is a neighborhood of X. 

31—Topological Spaces 
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The implication (c) => (d) being self-evident, it remains to prove the sufficiency of (d). 
If x e X, then every neighborhood of x intersects X, in particular the star V of x inter-
sects X. By definition of stars, x e (J) for each ye V n X. 

Corollary. A closure space SP is quasi-discrete if and only if 3P is of a finite local 
character. 

26 A.10. Theorem. Subspaces and sums of quasi-discrete spaces are quasi-discrete 
spaces. The product of a family {*„} of non-void spaces is quasi-discrete if and only 
if all SPa are quasi-discrete spaces and all, excepting a finite number of are ac-
crete spaces. 

Proof. The invariance of the class of all quasi-discrete spaces under formation of 
sums and subspaces is evident. Suppose that * is the product of a family [SPa | a e A} of 
quasi-discrete spaces such that for some finite subset A0 of A all 8Pa, a e A — A0, are 
accrete spaces. If A0 = 0, then 8? is obviously an accrete space and hence a quasi-
discrete space. If A0 #=0 and xeSP, then the collection of all the canonical neighbor-
hoods of x of the form E{x | a e A0 => pra x e Ua} is a local base at x. Now apply 
26 A.9 (d). Conversely, if 8P is quasi-discrete, then all coordinate spaces are quasi-
discrete because each coordinate space can be embedded in the product. The fact 
that almost all 8Pa must be accrete spaces follows from statement 17 ex. 3c asserting 
that an infinite product is of an infinite local character whenever none of the coordin-
ate spaces is an accrete space. 

Remark. According to 17C.18 every closure space can be embedded into the 
product space where * is certain three-point space and X is a suitable cardinal. 
Consequently, every closure space can be embedded into a product of quasi-discrete 
spaces. 

B. SEMI-SEPARATED SPACES 

Let <P, u> be a closure space and let us consider the relation g = E«x, y} | y e 
e m(x)}. We know that g is symmetric if and only if the space <P, u > is semi-uni-
formizable, and g is transitive if and only if the quasi-discrete modification of u is 
topological. Here we shall investigate spaces <P, u} such that either g n g~l or g 
is the diagonal of P. For the sake of completeness we shall first state the basic pro-
perties of the class of all semi-uniformizable spaces and of the class of all spaces 
whose quasi-discrete modification is topological; only then we shall turn to the 
proper subject of this subsection. 

26 B . l . Theorem. The class of all semi-uniformizable spaces as well as the class 
of all spaces whose quasi-discrete modification is topological is hereditary and 
closed under sums and products. 

Proof. A simple proof consists in showing that the symmetry and the transitivity 
of the relation g, mentioned above, is preserved under the operations in question. 
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Moreover, an alternate proof of the statements concerning semi-uniformizable spaces 
was given in 23 D.11. 

Later we shall need the following simple proposition: 

26B.2. The following condition is sufficient for a closure space 8P, to be semi-
uniformizable: if U is a neighborhood of x in <P, m>, then U is a neighborhood 
of any y e (5c) (i.e. ifU is a neighborhood of a point x, then U is a neighborhood of 
the closure of the singleton (x)). If 0> is topological, then this condition is also 
necessary. — Obvious. 

26 B.3. Definition. A closure space 3P will be termed feebly semi-separated if 
x e(y), y e (x) imply x = y. A closure space 0 will be termed semi-separated if 
each two distinct points of 0 are semi-separated, i.e. ((x) n (yj u ((5c) n (_y)) = 0 
whenever x 4= jy. It is to be noted that feebly semi-separated spaces are often called 
T0-spaces, and semi-separated spaces are called ^-spaces. 

In the series of theorems which follows we shall give various characterizations 
of feebly semi-separated and semi-separated spaces, and we shall derive basic 
properties of the class of all feebly semi-separated spaces and of the class of all 
semi-separated spaces. The proofs are simple and therefore often omitted. 

26 B.4. Theorem. Each of the following three conditions is necessary and suf-
ficient for a closure space 0 to be feebly semi-separated: 

(a) For any two distinct points x and y of 0 either the star of x is disjoint with (y) 
or the star of y is disjoint with (x). 

(b) At least one of any two distinct points of SP possesses a neighborhood which 
does not contain the other point. 

(c) If x,ye0, x #= y, then either \SP\ — (x) is a neighborhood of y or \0>\ — (j>) 
is a neighborhood of x. 

26 B.5. Theorem. Each of the following conditions is necessary and sufficient 
for a closure space 0 to be semi-separated: 

(a) Every one-point subset of 3P is closed in 
(b) 0 is simultaneously semi-uniformizable and feebly semi-separated. 

Proof. Obviously (a) is necessary and (a) implies (b). Assuming (b), if x e (y), 
then y e (5c) because 0 is semi-uniformizable, and finally x = y because 0 is feebly 
semi-separated. Thus (b) is sufficient. 

26 B.6. Theorem. The class of all feebly semi-separated spaces as well as the 
class of all semi-separated spaces is hereditary and closed under products and sums. 

Proof. The assertions concerning the invariance under sums and the operation 
of forming subspaces are obvious and the assertion concerning products follows 
from the fact that the product closure of the product of sets coincides with the pro-
duct of closures (by 17 C.2). 

31 
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26 B.7. Suppose that a closure u is finer than a closure v. If v is feebly semi-separ-
ated or semi-separated, then u possesses the same property. 

If u is a closure for a set P and v is the quasi-discrete closure for P such that x e v(y) 
if and only if y e u(x), then v is feebly semi-separated if and only if u is feebly semi-
separated, and no closure coarser than both u and v is feebly semi-separated provided 
that u is not semi-separat?d. It follows that the least upper bound of two feebly semi-
separated closures need not be feebly semi-separated. On the other hand, we shall 
prove that the least upper bound of two semi-separated closures is a semi-separated 
closure, and moreover there exists a coarsest semi-separated closure for a given set. 

26B.8. The coarsest semi-separated closure operation for a given set 
P. Let P be a set. By . 14 A.5 (a) there exists exactly one topological closure oper-
ation u for P such thatX cz P is open if and only if either X = 0 or the complement 
P — X of X is finite. A subset X of <P, u> is closed if and only if X is finite or 
X = P. In particular, all one-point sets are closed, and the space is semi-separated 
according to 26 B.5. It will ve shown that u is the coarsest semi-separated closure 
for P. Let v be any semi-separated closure for P. We must show that v is finer than u. 
It is sufficient to prove that each closed subset of <P, u> is closed in <P, u>. This is 
evident, however, because each one-point subset and hence each finite subset of 
•<P, v} is closed. 

Now we proceed to the embedding theorems. Let us recall that each closure space 0 
can be embedded in the product 2* where 2 is a certain three-point space and X 
is a suitable cardinal depending on 0* (17 C.18). The section concludes with three 
similar embedding theorems. 

26 B.9. Theorem. Let 01 be the two-point set (0, 1) endowed with the accrete 
closure operation, and lei 02 be the two-point set (0, 1) endowed with the closure 
operation defined as follows: (0) = (0), (1) = (0, 1). Then 

(a) In order that a closure space 0 be a feebly semi-separated topological space 
it is necessary and sufficient that 0 can be embedded into the product space 0* 
where X is a cardinal depending on 0 (for X one may take card exp \0\). 

(b) In order that a closure space 0 be topological it is necessary and sufficient 
that 0 admit an embedding into the product space 0*' x 0*" where X ' and 
X" are suitable cardinals depending on 0 (one may take X" = card exp \0\, 
X' = card \0\). 

Corollary. Every topological space admits an embedding into the product of 
topological quasi-discrete spaces. 

Proof. I. The conditions in (a) and (b) are sufficient because both spaces 0 y and 
are topological, 02 is feebly semi-separated and the class of all topological spaces 

as well as the class of all feebly semi-separated topological spaces is hereditary and 
closed under products. 
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II. Let 0 be a topological space and let 38 be an open base of 0. For each B in 38 
let fB be the mapping of 0 into 02 which is 1 on B and 0 on \0\ — B, i.e. fBx = 1 
if x e B and fBx = 0 if x e \0\ - B. Obviously the mapping fB : 0 -* 02 is con-
tinuous for each B in 38 (inverse images of open sets are open). Let us consider the 
reduced product / of the family {fB\Be 38}, that is / = {x { f B x \ B e 38}} : 
: 0 -> 0 f . According to 17 C.13 the mapping/ is continuous. Let 2 be the subspace 

/[¡0j] o f 0 f . We shall prove that 

(*) if xe\0\,X c \0\, x$X, t h e n / x i / [ X ] , 

Indeed, if x$X, then x e B cz j0j — X for some B in 38\ we have fBx = 1 and 
/ B [X] c (0), and consequently the set E{x | x e 0 f , prB x = 1} is a neighborhood 
of fx in 02 which does not intersect f\X~\ <= E{x | x e0®, prfl x = 0}; it follows that 
f x t J v q ^WT-

III. If / is a one-to-one mapping, then / is necessarily an embedding because / is 
continuous a n d / - 1 : 2 -*• 0 is continuous by (*). If 0 is feebly semi-separated and 
x, y e \0\, x + y, then there exists a B in 38 (38 is an open base) which contains only 
one of the points x or y. It follows that fBx =|= fBy and consequently fx 4= fy. Thus/is 
an embedding whenever 0 is feebly semi-separated, which establishes the necessity of 
the condition in statement (a). 

IV. It remains to prove the necessity of the condition in the statement (b). For 
each x in 0 let gx be the mapping of 0 into 01 such that gxx = 1 and gxy = 0 for 
y #= x. For each x e 0 the mapping gx\0-^0l is continuous because 0t is an 
accrete space and any mapping into an accrete space is continuous. Let g be the re-
duced product of the family {gx | x e 0}, that is, gx = {gyx \ y e 0} e for each 
xs0. By 17 C.13 the mapping g is continuous and again by 17 C.13 the reduced 
product h = {x -* (fx, gx}} : 0 (0® x ) is continuous. The mapping h is 
one-to-one because g is obviously one-to-one. To prove that h is an embedding it 
remains to show that 

(**) if x e \0\, X c \0\, x$X, then hx i h[X\ 
But this follows from (*). Indeed, if n is the projection of 0® x onto 0®, then 

/ = n o h and hence nhx = fx, Ttf/ifA']] = / [ X ] ; since n is continuous, hx e h[X] 
implies fx = nhx e 7t[/i[X]] = f\X\ but this contradicts (*). This contradiction 
establishes (**) and concludes the proof. 

26 B.10. Theorem. A necessary and sufficient condition for a closure space 0 to be 
a semi-separated topological space is that 0 be homeomorphic to a subspace of 
a product space 2?, where 2 is a set of an appropriate cardinal endowed with the 
coarsest semi-separated closure operation and K is an appropriate cardinal. 

Proof. The sufficiency is an immediate consequence of 26 B.6 and 26 B.8. To 
prove necessity, let us suppose that 0 is a topological semi-separated space. Let 2 
be a set with cardinal at least that of 0 endowed with the coarsest semi-separated 
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closure operation and let ^ be a closed base ofSP. Clearly for each C in ^ there exists 
a mapping fc of 0> into 2 such that / c [C] is a point of 2,fc[C~\ n/c[\0>\ - C] = 0 
and the restriction of/ c to \SP\ — C is a one-to-one mapping. Since the inverse images 
under fc of points are closed and 2 is endowed with the coarsest semi-separated 
closure operation, the mapping fc is continuous (see 26 B.8). By 17 C.13 the reduced 
product / of the family { f c | C e ^ } is also continuous. Since clearly / is also 
one-to-one, to show that / is a homeomorphism it remains to prove the following 

(*) ifxe\0>\, X c \0>\,x$X, then fx $/[X]. 
<<? being a closed base of we can choose a C in ^ with X <= C <= — (x). We 

have fc\X] <= / c[C], (/ cx) 4= / c[C]. If nc is the C-th projection, i.e. nc of = fc, then 
71c1 [/c[C]] and n c \ f c * \ are disjoint closed sets, the first one containing/[X] 
and the second one fx. Thus/x / [X] , which establishes (*) and completes the proof. 

Remark. It is easy to show that in 26 B.10 the cardinal of 2 essentially depends 
on P (see ex. 8). 

26 B.ll. Definition. A coarse semi-separated closure operation is defined to be 
the coarsest semi-separated closure for some set. A coarse semi-separated space 
is a closure space whose closure structure is a coarse semi-separated closure. 
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27. SEPARATED A N D R E G U L A R SPACES 

In the preceding section we studied those properties of closure spaces which depend 
only on the quasi-discrete modification, i.e. on closures of finite sets. Here we begin 
the study of separation properties of spaces which cannot be described by means 
of the quasi-discrete modification. 

A closure space is said to be separated if any two distinct points are separated, and 
a space is said to be regular if x £ X implies that the sets (x) and X are separated. It 
turns out that each separated space is semi-separated, a separated space need not be 
regular and a regular feebly semi-separated space is separated. The class of all separ-
ated spaces as well as the class of all regular spaces is hereditary and closed under 
sums and products. 

It will appear that both separatedness and regularity often enter into definitions 
and theorems. The significance of separated spaces is seen from the fact that each of 
the following two conditions is necessary and sufficient for a closure space 0 to be 
separated: (a) each net in * has at most one limit point (Theorem 27 A.6); (b) if/and g 
are continuous mappings of a space â into 8? and if / and g coincide on a dense subset 
of â, then / = g (Theorem 27 A.8). 

The importance of regularity will be shown by theorem 27 B.10 on the continuous 
extension of mappings (if g is a mapping of a topological closure space J? into a 
regular space 0> such that the domain restriction of g to each subspace R u (x) of 2 
is continuous, where R is a dense subspace of M, then g is continuous) and by theorem 
27 B.17 on removable discontinuities of a mapping into a regular space. The purely 
topological theorem 27 B.10 mentioned above will be applied to uniformly continu-
ous extensions of uniformly continuous mappings for uniform spaces (27 B.16). 

A. SEPARATED SPACES 

27 A.l. Definition. A closure space 9 is said to be separated if any two distinct 
points of 3? are separated. It is to be noted that separated topological spaces are often 
called Hausdorff spaces or T2-spaces. 

Since any two separated sets are semi-separated, every separated space is semi-
separated. On the other hand, a semi-separated space need not be separated. For 
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example, an infinite set endowed with the coarsest semi-separated closure operation 
is not separated. By 20 A.5 two sets X and Y are separated if and only if the closure 
of a neighborhood of X does not intersect Y. This fact enables us to restate the de-
finition of separated spaces as follows: 

27 A.2. In order that a closure spaced be separated it is necessary and sufficient 
that, for each point x of the intersection of closures of all neighborhoods 
of x is (x). 

27 A.3. Theorem. The class of all separated closure spaces is hereditary and 
closed under sums and products. 

Proof. If 2 is a subspace of * and U and Fare disjoint neighborhoods of x e 2 
and y e 2 in then U n \2\ and Vr> \2\ are disjoint neighborhoods of x and y in 2. 
It follows that subspaces of separated spaces are separated. That the class is closed 
under products and sums follows from the following more general result. 

27A.4. Each of the following two conditions is necessary and sufficient for a 
closure space * to be separated: 

(a) For any distinct points x and y of 0 there exists a continuous mapping f of 0 
into a separated space 2 such that fx 4= fy. 

(b) For each point x of 0 there exists a neighborhood U of x such that the sub-
space U of 0 is separated. 

Indeed, if * is the product of a family {* a } of separated spaces and x and y are 
distinct points of then there exists an index a such that 7tax # 7tay, where na is the 
projection of * onto * a . If * is the sum of a family {* a } of separated spaces, then 
the subspace inja [ * a ] = E{<a, x ) | x e * a } of * is simultaneously open and closed 
(17 B.2) and homeomorphic with 0>a (17 B.2). 

Proof of 27 A.4. I f * is separated, * = 2,/is the identity mapping of * onto * 
and U = |*|, then conditions (a) and (b) are fulfilled. The sufficiency of (a) is a con-
sequence of the fact that inverse images under a continuous mapping of separated 
sets are separated (see 20 A.8). To prove that (b) is sufficient, assume x, y sF, x + y 
and U is a neighborhood of x such that U is a separated subspace of If y $ U, 
then x and y are obviously separated. If y g U, then there exist disjoint neighborhoods 
Ut of x and of y in U. Obviously, and Vt u (|*| — U) are disjoint neighbor-
hoods of x and y in 

27 A.5. Examples, (a) Every generalized ordered space is separated. To prove 
this, let u be a generalized order closure for a monotone ordered set <P, ) and let x 
and y be any two distinct points of P. We have x < y or y < x. We may and shall 
assume that x < if the interval ] x, y [ is empty then the intervals [ <-, [ and ] x, 
-»• ] are disjoint neighborhoods of x and y in <P, u>, and if J x, y [ 4= 0, then we 
can choose a z such that x < z < y, and then clearly [ <-, z [ and ] z, -» ] are 
disjoint neighborhoods of x and y in <P, u>. In particular, the space of reals is sepa-
rated. By 27 A.3 subspaces of products of generalized ordered spaces are separated. 
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(b) Every metrizable space is separated. Indeed, if a closure u for a set P is induced 
by a metric d and if x and y are distinct points of <P, u> then / = {z d(x, z>} : 
<P, u> -> R is a continuous mapping of <P, u> into a separated space such that 
fx 4= fy-

(c) Every feebly semi-separated pseudometrizable space is metrizable and hence 
separated. Indeed, if a feebly semi-separated closure u for a set P is induced by a 
pseudometric d, then clearly d is a metric. 

(d) According to Conventions 23 C.6 a semi-uniform space <P, IIs) is said to be 
separated, semi-separated or feebly semi-separated if the induced closure space has 
this property. It is easily seen that a semi-separated semi-uniform space need not be 
separated, and the following conditions on a semi-uniform space <P, 1l~) are equivalent: 
<P, 11s) is semi-separated, <P, IIs) is feebly semi-separated, the intersection of 11 is the 
diagonal of P x P. On the other hand a semi-separated uniform space <P, IIs) is neces-
sarily separated. Indeed, if x and y are distinct points of P and <x, y~) £ U e then 
we can choose a symmetric element Fof 1l so that Va V <= U; clearly F[x] and F[y] 
are disjoint neighborhoods of x and y in (P, 11s). 

(e) It is worth noticing that each of the following two conditions is necessary and 
sufficient for a uniform space <P, 11s) to be separated: if x and y are distinct points 
of P then there exists a uniformly continuous or continuous pseudometric d for 
<P, 11s) such that d(x, y} 4= 0. 

(f) Condition (b) of 27 A.4 cannot be weakened by requiring U to be a separated 
subspace instead of U being separated. For example, let x be a cluster point of a 
separated space <P, v) and let Q be a set consisting of all elements of P — (x) as 
well as two distinct elements x t and x2. Let us consider the closure u for Q such that 
P — (x) is a subspace of both <P, v> and <Q, u> and, i f l c Q, then X; e uX if and 
only if X; e X or xe v(X n (P — (x)). Clearly (Q, u) is a semi-separated space. On 
the other hand, <Q, u> is not separated because the points xx and x2 are not separ-
ated. Moreover, both Q — (x;), i = 1, 2, are open subspaces of Q homeomorphic 
to the separated space <P, u>. 

We have already shown that a net in a closure space may be convergent to many 
points, and moreover, in an accrete space, every point is a limit point of every net. 
Now it will be shown that in a separated space a net possesses at most one limit point 
and that this property characterizes the separated spaces. 

27 A.6. Theorem. In order that a closure space 0 be separated it is necessary 
and sufficient that every net in 0 possess at most one limit point. 

Proof. If x is a limit point of a net N, and if U is any neighborhood of x, then 
clearly all accumulation points of N are elements of U. If 8P is separated, then the 
intersection of closures of neighborhoods of x is a one-point set (x). The necessity 
follows. Conversely, suppose that 0 is not separated. There exist two distinct points x 
and y of 0> such that W = U n V 4= 0 for any neighborhoods U of x and V of y. Let 
W be the collection of all such W and {Nw \ We i f ] a family such that Nw e W for each 
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WinW.Obviously^ is directed by the inverse inclusion => and the net {Nw} is con-
vergent to both x and y. 

27 A.7. Each of the following three conditions is necessary and sufficient for 
a closure space 0 to be separated: 

(a) If 2 is a space and { f a \ a e A} is a family of continuous mappings of 2 into 
0, then the set D = E{x | x e 2,faix = fB2x for each ay and a2 in A} is closed in 2. 

(b) If 2 is the product of a family {2a \ a e A} of subspaces of 0 then the set 
E{x | x = {x0} e 2, xai = xa2 e (\{2a \ a e A) for each a1 and a2 in A} is closed in2. 

(c) The diagonal A( = E{<x, x> | xe0j) of 0 x 0 is closed in the product 
space 0 x 0 . 

Proof. It will be shown that (a) implies (b), (b) implies (c), condition (c) is suf-
ficient and (a) is necessary. 

I. The implication (a) => (b) is almost self-evident. For each a in A let fa be the 
mapping prfl : 2 -* 0. Since x e D if and only if praix = prflJx for each a t and a2 

in A, the set D from (a) coincides with the set described in (b). 
II. Applying (b) to A = (1, 2), 2y = 22 = 0, ft the identity mapping of 2t 

onto 0, we obtain (c), because fi x f2 is a homeomorphism of 2 onto 0 x 0 which 
carries the set from (b) onto the diagonal of 0 x 0. 

III. The sufficiency of (c) is proved as follows. Let us suppose that A is closed in 
0 x 0. If x and y are two distinct points of 0, then <x, y) £ A, and consequently 
there exists a canonical neighborhood U x Vof <x, j>> which does not intersect A, 
that is, U n V = 0. Now the sets U and V are disjoint neighborhoods of x and v 
respectively. 

IV. It remains to prove the most delicate part, namely, the necessity of condition (a). 
Suppose that 0 is separated. To prove that D is closed, that is, D <= D, it is sufficient to 
show that if N is a net in D which converges to a point x of 2, then x e D. Let N = {Nb} 
be a net in D which is convergent to a point x of 2. Since all mappings fa are continuous, 
for each a in A the net fa o N is convergent to the point fax. However, N is in D and 
hence faiNb = faiNb for each at and a2 in A. It follows that all nets faoN coincide, and 
consequently, all points fax are limit points of a net in 0. According to the preceding 
theorem, all points fax, aeA, coincide. By the definition of D, x e D; this establishes 
the necessity of (a) and concludes the proof of the theorem. 

The preceding theorem has two corollaries which will be stated as theorems 
because of their importance. 

27 A.8. Uniqueness Theorem. Let f and g be two continuous mappings of a clo-
sure space 2 into a separated closure space 0. If fx = gx for each x from a dense 
subset X of 2, then f = g. 

Corollary. If 0 is a separated space and the density character of a space 2 is at 
most X, then the cardinal of C ( 2 , 0 ) is at most (card \0\f- In particular, if 2 is 
of a countable density character, then the cardinal of C {2 , R) is exp X0 . 
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Proof. Let X be a dense subset of 2 with cardinal at most X. Let n be the mapping 
of C(2,0) into C(X, 0) which carries each / into its restriction / | X to X. According 
to the preceding uniqueness theorem, the mapping is one-to-one, and consequently 
the cardinal of C(2, 0) is less than or equal to the cardinal of C(Z, 0). But the car-
dinal of C(X, 0 ) is less than or equal to the cardinal of all mappings of X into 0 , 
that is, (card |^|)card x g (card|^[)N. The second part is an immediate consequence 
of the facts that R is separated (example 27 A.5), the cardinal of R is exp X0 and 
(exp X0)Ko = exp (K0 . K0) = exp K0. 

27 A.9. Theorem. The graph of a continuous mapping f of a closure space 0 into 
a separated closure space 2 is a closed subset of the product space 0 x 2 . 

Proof. The graph of/is the set of all points <x,/x> e 0 x 2,xe0. The mappings 
f1 = {<x, _y> -» ;>} and f2 = {<x, j>> -* fx} of 0 x J into 2 are continuous because 
/ j is the projection of the product onto a coordinate space and/2 is the composite of 
the projection of 0 x 2 onto 0, which is continuous, and of the mapping / which 
is continuous by our assumption. But the graph of / is identical with the set D of all 
z e0 x 2 such that f t z = f2z, and the set D is closed in0 x 2 by 27 A.7. 

Remark. If the graph of a mapping/ of a space 0 into a space 2 is closed in the 
product space 0 x 2 , then / need not be continuous (see ex. 5), but it is continuous 
if 0 is compact (41 C.6). 

27 A.10. Definition. A subset Z of a closure space 0 will be called relatively dis-
crete if X is a discrete subspace of 0, that is, if the family {(x) | x e X} is discrete in 
the subspace X of 0. A subset X of 0 is called discrete if the family {(x) | x e Z} is 
discrete in 0. It is to be noted that in the literature a relatively discrete subset of 0 
is sometimes called an isolated subset of 0 or a discrete subset of 0. 

27 A. l l . Let 0 be a closure space. Every discrete subset of 0* is relatively discrete. 
A closed relatively discrete subset of 0 is discrete. A discrete subset of a semi-separ-
ated space is closed. In particular, in a semi-separated space a set is discrete if and 
only if it is closed and relatively discrete. 

Proof. If Z is a closed relatively discrete subset of a space 0, then \0\ — X is 
a neighborhood of each of its points which intersects no member of {(x) | x e Z}, 
and (y) u (\0\ — X), y eX, is a neighborhood of y which intersects exactly one 
member of the family, namely (y). If Z is a discrete subset of 0, that is, the family 
{(x) | x e Z} is discrete, then the family is closure-preserving, and consequently 
Z = U{(x) | x e Z } . If 0 is semi-separated, then the one-point sets are closed and 
hence X = Z which means that Z is closed. The remaining statements are obvious. 

It should be noted that a relatively discrete set need not be discrete. For example, the 
set Z of all 1 ¡n, n = 1, 2,. . . , is relatively discrete but not discrete in R (each neigh-
borhood of zero meets X in an infinite set). 

A semi-separated infinite space may contain no infinite relatively discrete subset. 
For example, no space whose closure structure is the coarsest semi-separated closure 
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contains an infinite relatively discrete subset. This is not the case, however, if the space 
is separated, as stated in the following proposition. 

27 A.12. Every infinite separated space P contains an infinite relatively discrete 
subspace X, that is, an infinite discrete space. 

Proof. If P is discrete, then we can put X = P. I. If P is not discrete, then there 
exists a point x of P such that xe P — (x). By induction it is easy to prove that there 
exists a sequence {x„} of points and a decreasing sequence {[/„} of neighborhoods 
of x such that 

(a) x„ e int (P - U„) = P - T3„ for each n; and 
(b) x„+m e Un for each n e N and m e N . m ^ l . 

Indeed, if x0 is any point of P — (x), then there exists a neighborhood U0 of x such 
that x0 V0 because of 27 A.2. If finite sequences {Un \ n g k} and {x„ | n g k) 
possess the required properties, (condition (b) under the additional hypothesis 
n + m g k), then we can choose an xk+l in Uk — (x) for x e Uk — (x) because Uk 

is a neighborhood of x and x e P — (x). By 111 A.2 we can choose a neighborhood V 
of x such that xk+1$ V. Setting Uk+1 = Uk nV we obtain finite sequences 
[U„ | n g k + 1} and {x„ | n g k + 1} with the required properties, condition (b) 
being fulfilled under the additional hypothesis that n + m g k + 1. 

II. Now let {[/„} be a decreasing sequence of sets and {x„} a sequence of points 
such that conditions (a) and (b) are fulfilled. If n > m, then xm e (P — Um) 
and x„ £[/„_! <= Um and hence x„ # xm. It follows that the sequence {x„} is one-to-
one and hence the set X of all xn, n e N, is infinite. If y is any point of X, say y = x„, 
then P — U„ is a neighborhood of x„ which contains xk for k g n only. Since P is 
separated and hence semi-separated, the set (x0, x 1 ; . . . , x, ,^) is closed and the set 
(P — [/„) — (x0, Xi x„_ is a neighborhood of x„ = y which intersects X in only 
one point, namely y = x„. 

Corollary. The cardinal of the collection of all closed subsets of an infinite separ-
ated topological space is at least exp K 0 . 

Proof. If & is an infinite separated space, then there exists an infinite relatively 
discrete subset X of The cardinal of exp X is at least exp K0. If Xt, X2 e exp X, 
Xt =|= X2, then X^ +X2 because X1nX = X1 * X2 = X2 nX. It follows that F} 
is a one-to-one mapping of exp X into exp 0*. If 0 is topological, then each Y is closed, 
and consequently <& = E{F | Ye exp X} is a collection of closed subsets of 0 and 
the cardinal of is that of exp X. 

B. REGULAR SPACES 

We begin with a definition and various characterizations of regular spaces. 

27 B.l. Definition. A closure space 0 is said to be regular if for each point x of 0 
and each subset X of 0 such that x $ X there exist neighborhoods U of x and V of X 
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such that U n V = 0; stated in other words, if x e \0\ — X, then the sets (x) and X 
are separated. 

From the definition we obtain immediately the following characterizations of 
regular spaces (compare with 27 A.2): 

27 B.2. Each of the following two conditions is necessary and sufficient for 
a closure space 0 to be regular: 

(a) For each x in 0 and each neighborhood U of x in 0 there exists a neighbor-
hood V of x such that V <=• U. 

(b) The closure of any subset X of 0 is the intersection of closures of neighbor-
hoods of X. 

Corollary. In a regular space any closed set is the intersection of closures of its 
neighborhoods. 

The non-trivial part of the next theorem, which corresponds to a similar result in 
27 A.4 for separated spaces, asserts that a space is regular whenever there exist 
sufficiently many continuous mapping into regular spaces as well as whenever 
the space satisfies a somewhat stronger condition than "feeble local regularity". 

27B.3. Each of the following two conditions is necessary and sufficient for 
a closure space 0 to be regular: 

(a) If x e \0\ — X, then there exists a continuous mapping f of 0 into a regular 
space such that fx does not belong to the closure off\X\. 

(b) Each point of 0 has a neighborhood W in 0 such that the subspace W of 0 is 
regular. 

Proof. Clearly both conditions are necessary. I. Assuming (a), let x e (\0\ — X) 
and / be the corresponding continuous mapping into a regular space. Since the sets 
(fx) and f[X] are separated in E*/, by 20 A.8 the sets/ _ 1[ /x] and/ _ 1 [ / [X] ] are 
separated in 0 and hence the sets (x) and X are separated. 

II. Assuming (b) we shall prove that condition (a) of 27 B.2 is fulfilled. Let U be 
a neighborhood of x in 0 and let W be a neighborhood of x in 0 such that the sub-
space W of0 is regular. The set W n U is a neighborhood of x in 0 and hence in W, 
and therefore, by 27 B.2, there exists a neighborhood F of x in W such that the 
relative closure F n W of Fin Wis contained in Wr\U. Clearly Fis a neighborhood 
of x in 0 and F <= Wn U c U (observe that F <= Wand hence F = F n W). 

In 25 A.18 we introduced various continuous proximities for a closure space 
<P, u>. If p is the proximity E{<_X", 7 ) | X and Y are not semi-separated}, then p 
induces the closure u if and only if <P, u> is semi-uniformizable, and each two dis-
tinct points x and y are distant in <P, p} if and only if the space <P, u) is semi-
separated. Now let p be the proximity E{<X, 7 ) | X and 7 are not separated in 
<P, u>}; we have seen that every two distinct points of 0 are distant in <P, p> if 
and only if the space <P, u) is separated. From the definition of regularity we obtain 
immediately the following 
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27 B.4. Theorem. A closure space 0 is regular if and only if the closure structure 
of 0> is induced by the proximity E{<X, Y} \ X c \0>\, Y c \0>\, X and Y are not 
separated in In particular, every regular space is semi-uniformizable. 

According to Definition 21 A.9 a space is said to be locally closed if each neighbor-
hood of any point x contains a closed neighborhood of x. Evidently every locally 
closed space is regular, but example 27 B.9 (f) will show that a regular space need 
not be locally closed. Nevertheless, for topological spaces, the property of being 
locally closed is equivalent to regularity as stated in the next theorem. 

27 B.5. Theorem. Each of the following two conditions is necessary and suf-
ficient for a topological space 0> to be regular: 

(a) 0 is locally closed. 
(b) Every closed subset of 0 is the intersection of closures of its neighborhoods. 
Proof. If 0 is a topological space, then conditions (a) of 27 B.2 and (a) of 27B.5 

are equivalent, and similarly for conditions (b) of 27 B.2 and (b) of 27 B.5. 
Sometimes the following two characterizations are convenient: 

27 B.6. Each of the following two conditions is necessary and sufficient for a 
topological space 0 to be regular: 

(a) Every open subset U of0 is the union of open sets whose closures are contained 
in U. 

(b) Every closed subset of 0 is the intersection of its neighborhoods. 

Now we turn to an examination of the class of all regular spaces. 

27 B.7. Every uniformizable space, in particular, every pseudometrizable space, 
is regular and every regular space is semi-uniformizable. A feebly semi-separated 
regular space is separated. 

Proof. The first statement follows from 24A.2(b), the second has already been 
proved (27 B.4) and the last one can be proved as follows: if x and y are two distinct 
points of a feebly semi-separated space then one of them does not belong to the 
closure of the other one, and hence, by regularity, the sets (x) and (y) are separated. 

On the other hand a regular space need not be uniformizable (the corresponding 
example is not trivial, see example 33 D.6) nor separated (every accrete space is 
regular), and a semi-uniformizable space need not be regular (27 B.9). 

27 B.8. Theorem. The class of all regular spaces is hereditary and closed under 
products and sums. 

Proof. I. If 2 is a subspace of a regular space 0 and U is a neighborhood of x 
in 2, then there is a neighborhood Ul of x in 0 such that Ui n 12\ = U; by 27 B.2 
we can choose a neighborhood Vl of x in 0 so that Ff ci Ul. Clearly the closure in 2 
of the neighborhood V1 n \2\ of x is contained in U. By 27 B.2 2 is regular. 

II. Invariance under sums follows from 27 B.3 because, if 0 is the sum of a family 
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{* a } of closure spaces, then the subspace inja [ * a ] of * is a homeomorph of *„ and 
the set inja [ * a ] is simultaneously closed and open in * . 

III. Now let * be the product of a family { * a | a e A) of regular spaces and let W 
be a neighborhood of a point x of* . Choose a canonical neighborhood U = E{x | a e 
e A0 => pra x e Ua} of x contained in W, where A0 is a finite subset of A and each 
Ua, a e A0, is necessarily a neighborhood of pra x in 8?a. For each a in A0 let V„ be 
a neighborhood of pra x such that the closure of Va (in * a ) is contained in Ua. Clearly 
the closure of the neighborhood V = E{_y | a e A0 => pra y e Va} of x is contained 
in U. 

27B.9. Examples, (a) Every generalized ordered space is regular because, for 
each point x, the order-closed intervals which are neighborhoods of x form a local 
base at x, and order-closed intervals are closed. 

(b) Every regular quasi-discrete space is topological. Assuming xe(y), ye(zj, 
we shall prove x e Jz). The space is regular and therefore it is sufficient to show that 
the closure of each neighborhood of x contains z. Let U be a neighborhood of x. We 
have y e U becaeus x e (y). Next, the space is regular and so semi-uniformizable, and 
hence y e Jz) implies z e (j>). Thus xeU. 

(c) A regular separated space need not be topological; e.g. take a separated regular 
space * such that the set X of all cluster points of * is infinite and discrete in * 
(e.g. take an infinite separated regular space * with exactly one cluster point and 
put * = E { * | a e A} where A is an infinite set), choose a free filter ® on X (i.e. 
a filter ® o n X such that 0% = 0) and add a point, say x, to the set |*|; now consider 
the closure space 2 such that \2\ = |*| u (x), * is an open subspace of 2 and 
(x) u \fU\ is a local base at x. It is easily seen that 2 is a regular space (the set X u (x) 
is closed in 2, and hence every set (x) u U, U e is closed in 2). On the other hand, 
2 is not topological because the closure of |*| — X is |*| and the closure of |*| is 

( + | * | ) . 
(d) Let <P, w> be a closure space and let X be a subset of P. Consider the closure v 

for P such that vY = X n uY if Y c X and vY = uY if Y <= (P - X). Notice that 
the relativizations of u and v to X coincide and X is closed in <P, u> if and only if 
u = v. Always v is finer than u and X is closed in <P, Now if <P, «> is a topological 
space, if P — X is dense in <P, u> and there exists an x e uX — X, then the space 
<P, u) is not regular because the closure (in <P, t?>) of each neighborhood of x in 
<P, v) intersects X but P — X is an open neighborhood of x in <P, d). 

(e) Let <P, u} be the space R of reals and let X be the set of all rational numbers. 
The space <P, u) is regular and separated but the space <P, v), where v is the closure 
constructed in (d), is not regular by (d). 

(f) If <P, u) is the ordered space [ 0, 1 ] and X is the set consisting of all n~', 
n = 1, 2,..., then space <P, u> is not regular (by (d)) but <P, u> is clearly locally 
regular, i.e., every point has arbitrarily small neighborhoods U such that the subspace 
U of <P, u> is regular. Moreover, <P, v> is separated because <P, u> is separated 
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and v is finer than u. Thus a separated locally regular space need not be regular. 
Now we proceed to the domain-extension of continuous mappings. Let/ be a conti-

nuous mapping of a subspace 0 of a space 2 into a space 0. It is natural to ask under 
what conditions there exists a continuous mapping g of 2 into 0 such that / is the 
restriction of g, i.e., under what conditions / has a continuous domain-extension to 2. 
Here we will be concerned with the case when 0 is dense in 2. The answer is simple 
if 12\ — \M\ is a singleton, say (x), and either the set (x) is closed or both spaces 
0 and 2 are semi-uniformizable. Then, by 17 ex. 4, there exists a continuous 
domain-extension of / to 2 if and only if there exists a point y of 0 such that each 
neighborhood Vof y contains a set f\U n \8%\\ where U is an appropriate neighbor-
hood of x (depending on V). The following important theorem (with the essential 
assumptions that 2 is topological and 0 is regular) reduces the general problem to 
the existence of continuous domain-extensions to each subspace \0\ u (x) of 2. 

27 B.10. Extension Theorem. A continuous mapping f of a dense subspace 81 
of a topological space 2 into a regular space 0 has a continuous domain-extension 
to 2 if and only if f has a continuous domain-extension on each subspace M u (x). 
x e | Jj — \St\. 

Proof. Every restriction of a continuous mapping is a continuous mapping and 
therefore "only if" is true without any assumption on 0, 0 and 2. Suppose that for 
each x in \2\ — \8k\ there exists a continuous domain-extension gx of/to the subspace 
M u (x) of 2, and let us consider the mapping g of 2 into 0 such that gx = fx if 
xe0 and gx = gxx if x e \2\ — \8k\. By definition, g is a domain-extension of / 
to 2\ we shall prove that g is continuous. I. First we shall prove that 

(*) g[V]Cf[Un\8i\y 

for each open subset U of 2. Assuming xsU, it is required to show that gx 
belongs to the closure in 0 of the set / [ [ / n If x e 01, then gx = fx and hence 
gx belongs to the set f\JJ n ¡0j] and therefore to its closure. Now suppose x e 
e \2\ — \0t\. The set U is a neighborhood of x and therefore x e U n \8&because 
0 is dense in 2. It follows that x belongs to the closure of U n \8fc\ in 0t u (x). Now 
the mapping gx is continuous at x and hence the point gxx belongs to the closure of 
g[U n \8t\\ in 0\ but f[U n \0\\ = gx[U n and gx = gxx and therefore 
gx e / [ [ / n \8t\Y- ~ H. N o w let x 6 J and let Wbe a neighborhood of gx in 0. We 
must find a neighborhood U of x so that [/] c W. First, 0 being regular, we can 
choose a neighborhood V of gx the closure of which is contained in W. Now if 
x e 01, then we can choose a neighborhood U1 of x in 0t so t h a t / f ^ ] c ^(because 
/ is continuous at x), and then an open neighborhood U of x in 2 such that U n \8k\ <= 
<= C/i; by (*) g[U~\ is contained in f[U n \8t\f cz J[U{f c V9 and hence in W. 
If x e 12\ — \0l\, then we can choose a neighborhood U1 of x in \8&\ u (x) such 
that ffjft/i] cz F(since gx is continuous at x and gx = gxx), and then an open neigh-
borhood U of x in 2 such that U n (¡8tj u (x)) <= and hence (U n \8&\) c 
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c (t/i n Now by virtue of (*) the set g[U] is contained in the closure of 
f[U n |*|] <= / [ t / j n |*|] = ^[t/j. n |*|] <= g^U^ <= F and hence in W. 

27B.11. Theorem. Suppose that f is a continuous mapping of a dense subspace 
* of a topological space 2 into a regular space *. There exists a unique subspace 
SP of 2 with the following property: if g is any continuous domain-extension of f 
to a subspace SP t of 2, then g is the domain-restriction of some continuous domain-
extension o f f to the subspace SP of 2, and in particular I^J t= \SP\. 

Supplement. SP consists of all the points x of 2 such that / has a continuous 
domain-extension to the subspace * u (x) of 2, i.e., at least if 2 is semi-uniformiz-
able then SP consists of all xe 2 for which there exists a y e * such that each neigh-
borhood F of y contains a set /[|*| n (7] where U is a neighborhood of x in 2. 

Proof. Let SP be the subspace of 2 consisting of all points x such that/ has a con-
tinuous domain-extension to the subspace * u (x) of 2. For each x in SP let Yx be 
the set of all y e * such that gx = y for some continuous domain-extension g of / . 
By the preceding theorem g is a continuous domain-extension of / to a subspace of 
2 if and only if Dg <= SP and gx e Yx for each x e Dg \ the theorem follows. 

Combining Theorem 27 B.11 with the uniqueness theorem (27 A.8) we obtain the 
following important theorem which, roughly speaking, asserts that every mapping 
of a dense subspace bf a topological space 2 into a separated regular space possesses 
a largest continuous domain-extension to a subspace of 2. 

27B.12. Theorem. Suppose that f is a continuous mapping of a dense subspace 
* of a topological space 2 into a separated regular space *. There exists a unique 
continuous domain-extension g of f to a subspace of 2 such that every continuous 
domain-extension of f to a subspace of 2 is the restriction of g. 

It is to be noted that the above three theorems apply to continuous functions 
because the space R of reals is separated and regular. Now we shall prove that each 
of these three theorems is true for uniformly continuous mappings of uniform spaces 
(but not semi-uniform spaces). The crucial fact which is needed is the following 
theorem which is important by itself. Keep in mind that every uniformly continuous 
mapping is continuous but a continuous mapping for uniform spaces need not be 
uniformly continuous. 

27 B.13. Theorem. If g is a continuous mapping of a uniform space <Q, iPy 
into a uniform space <P, HP}, and if there exists a dense subspace <R, "Wy of 
<Q, Yy such that the domain-restriction f of g to <R, 11s) is uniformly continuous, 
then g is uniformly continuous. 

Proof. Remember that, by 24 A.2, the open elements of a uniformity as well as 
the closed elements of a uniformity form a base for this uniformity. I. Let v be the 
closure induced by "f. We shall show that the closure in the product space (Q, v) x 
x (Q, v) of each element of 11 is an element of iP. Let L / e f . Since °U is a relativiza-

tion of V we can choose a in 11P so that (Fx n (R x R)) cz U. Since open elements 

32—Topological Spaces 
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(in (Q,,v} x <Q, u>) ofY form a base for Y we can choose an open element V of Y 
contained in Vx. The set R is dense in (Q, v) and therefore the set R x R is dense in 
<2, v) x (Q, v). However, V is open and consequently the set (R x R) n V is 
dense in V, i.e. the closure of (R x R) n V contains V. Since (Kn (R x R)) c U, 
the closure of U also contains V, and hence the closure U belongs to Y. — II. Now 
we shall prove that g is uniformly continuous. It is sufficient to find a base H" 
for HP such that each set (g x g)'1 \W~\, WeiV", contains an element of Y (depend-
ing on W). Let Hr' be the collection of all closed elements of Hr (i.e., those W e f 
which are closed in the product space <P, w> x <P, w> where w is induced by HP). 
We know that HP' is actually a base for HP. The mapping g is continuous and there-
fore the product mapping g x g is also continuous. It follows that (g x g)'1 [IT] 
is a closed set in the product space (Q, v) x (Q, v) for each W in HP'. Next, the 
domain-restriction / o f g to (R, 11} is uniformly continuous and ( / x / ) - 1 [W] be-
longs therefore to 11 for each W'vxHP and hence each W in HP'. By I the closure of 
each set ( / x / ) - 1 [ W ] , WeW belongs to Y. However, ( / x / ) " 1 [W] = 
= (R x R) n (g x g)~1 [IF] for each W in HP and therefore the closure of each 
(g x g)'1 [W], We HP belongs to Y. Now, if We HP', then (g x g)'1 [W~\ is closed 
and hence belongs to Y. 

Remark. The preceding theorem remains true if (P,H/") and <Q,Yy are semi-
uniform spaces such that the closed elements of HP form a base for HP and the open 
elements of Y form a base for Y. Actually, only these properties of HP and Y are 
required in the proof. 

27 B.14. Corollary. Let f be a uniformly continuous mapping of a dense subspace 
* of a uniform space 2. into a uniform space A domain-extension of f to a sub-
space of 2 is uniformly continuous if and only if it is continuous. 

Since every uniform space is regular we obtain from Corollary 27 B.14 and from 
Theorems 27 B.11 and 27 B.12 the following important theorem. 

27 B.15. Theorem. Suppose that f is a uniformly continuous mapping of a dense 
subspace M of a uniform space 2 into a uniform space There exists a unique 
subspace SP of 2 with the following property: if g1 is any uniformly continuous 
domain-extension of f to a subspace SP^ of 2, then is a subspace of SP and there 
exists a uniformly continuous domain-extension g off to SP such that gi is the restric-
tion of g. The set SP consists of all points x of 2 such that f has a continuous 
domain-extension to the subspace u (x) of 2. In addition, if SP is separated, 
then there exists a uniformly continuous domain-extension g of f to a subspace 
of 2 such that every uniformly continuous extension of f to a subspace of 2 is 
a restriction of g. 

The assumption of regularity of the range carrier of a mapping enters into the 
situation which is going to be described. Let / be a mapping of a closure space 2 
into another one SP such that, for each x in 2, either / is continuous at x or/ has a re-
movable discontinuity at x, i.e. by changing the value of / at x we obtain a mapping 
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continuous at x. More precisely, let / be a mapping of 2 into 0 such that there 
exists a family {gx \ x e 2} of mappings of 2 into 0 such that each gx is continuous 
at x and agrees with / on 2 — (x). Let g be the mapping of 2 into 0 such that 
gx — gxx for each x in 2. The mapping g need not be continuous even if HP = R 
and 2 c: R. E.g. if 2 is a space with exactly one cluster point, say x, and / is the 
function on 2 which is 0 at x and 1 otherwise, gx= {z -> 1} and gy, y 4= x, are 
appropriate functions such that gyy = 0, then g is not continuous. 

On the other hand, if gxx = fx whenever x is an isolated point (in particular, if 
gxx = fx whenever / is continuous at x), 2 is topological and semi-separated and 
3P is regular, then g is necessarily continuous as is stated in the following theorem. 

27B.16. Theorem. Let f be a mapping of a topological semi-separated space 2 
into a regular space 2P and let {gx \ x e 2} be a family of mappings of 2 into 3P 
such that each gx is continuous at x and agrees with f on \2\ — (x) and moreover, 
if x is an isolated point of 2, then gxx = fx (the latter condition is fulfilled if 
fx = gxx whenever fis continuous at x). Then the mapping g = {x -* gxx} : 2 8P 
is continuous. 

Proof. I. First we shall prove that the set is contained in the closure (in 3P) 
of the set/[£/] for each open subset U of 2. Let x e.TJ. If x is an isolated point of 2, 
then fx = gxx = gx and hence gx belongs to/[i/]. If x is not isolated then x belongs 
to the closure (in 2) of U — (x), and gx being continuous, gxx belongs to the closure 
of gx\U — (x)]; however gx = gxx and f\U — (x)] = gx\JJ — (x)]. (Notice that 
no assumptions on the spaces 0 and 2 were needed.) — II. Now let x e 2 and let W 
be a neighborhood of gx in SP. Choose a neighborhood V of gx so that V <= W. The 
mapping gx is continuous at x, gxx = gx and 2 is topological, and therefore there 
exists an open neighborhood U of x such that <= V. The set Ul = U — (x) 
is open in 2 (because (x) is closed since 2 is semi-separated). By I the set g[Uis 
contained in the closure of the set f[U j] which coincides with gx\U j], and con-
sequently g[Ui] <= V c W. 

In conclusion we shall state results obtained by combining the preceding theorems 
on continuous or uniformly continuous extensions with the result mentioned above 
that, under certain assumptions, / : 0 -» 0> has a continuous domain-extension on a 
space 2 such that \2\ — \Sk\ = (x) if and only if there exists a y in \SP\ such that each 
neighborhood of y contains / [ [ / n \<%\\ for some neighborhood U of x in 2, i.e. 
such that the neighborhood system of y in 0 is contained in the /-transform of the 
filter n where °U is the neighborhood system of x in 2. 

27 B.17. Theorem. Let f be a continuous mapping of a dense subspace Si of 
a topological semi-uniformizable space 2 into a regular closure space 8P. Then 

(a) / has a continuous domain-extension to 2 if and only if for each x in 
\2\ — there exists a y in 8P such that each neighborhood of y contains a set 
f\U n where U is a neighborhood of x in 2. 

32» 
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(b) A domain-extension g of f to 2 is continuous if and only if the following 
condition is fulfilled: for each x in \2\ — |*|, each neighborhood of gx contains 
the set f\U n |*|] for some neighborhood U of x in 2. 

Remark. In 15 ex. 7 we defined what is meant by a filter converging to a point 
in a space. Clearly statements (a) and (b) can be formulated as follows: 

(a') / has a continuous domain-extension on 2 if and only if the /-transform of 
the filter n |*| converges in * for each x in \2\ - where %x is the neighbor-
hood system at x. 

(b') A domain-extension g of / to 2 is continuous if and only if the /-transform 
of the filter [Wx] n |*| converges to gx for each x in \2\ — |*|, where °UX is the 
neighborhood system of x in 2. 

27B.18. Let f be a uniformly continuous mapping of a dense subspace ¡ft of 
a uniform space 2. into a uniform space Then 

(a) / has a uniformly continuous domain-extension to 2L if and only if for each 
x in \£t\ — there exists a y in |*| such that each neighborhood of y contains 
the set / [|*| n [/] for some neighborhood U of x in J. 

(b) A domain-extension g of f to 2. is uniformly continuous if and only if the 
following condition is fulfilled: for each x in \2\ —1*|, each neighborhood of gx 
contains /[|*| r> C/] for some neighborhood U of x in 2. 

We leave to the reader the task of formulating (a) and (b) in a manner similar to 
(a') and (b') in the remark following 27 B.17. 
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28. U N I F O R M I Z A B L E SPACES 

By Definition 24 A.1 a closure space <P, «> is said to be uniformizable if the 
closure u is induced by a uniformity 11 for P; this means (by definition 23 A.3) that 
the set of all C/[x], U e 1l, is the neighborhood system at x in <P, u> for each x in P, 
or equivalently (by 23 B.5), that uX = \Ue1i] for each subset X <= P. 
For example every pseudometrizable space is uniformizable; in particular every dis-
crete space, every accrete space and the space R of reals are uniformizable. Indeed 
if d is a pseudometric inducing the closure structure of a space <P, u), then u is 
induced by the uniformity induced by d. It is to be noted that uniformizable spaces 
are often termed completely regular spaces (see Remark 28 A.6). It seems that the 
class of all uniformizable closure spaces is the most important class of spaces in 
general topology; probably because it is precisely the uniformizable spaces which can 
be described in terms of continuous functions; more precisely, a space <P, u> is 
uniformizable if and only if u is the coarsest closure for P such that all functions con-
tinuous in u are continuous, i.e. if v is a closure for P such that / : <P, u> -» R is con-
tinuous whenever/ e C«P, w>, R) then v is finer than u (see Remark 28 A.6). In terms 
of Section 32 we can formulate this condition as follows: a spaced is uniformizable 
if and only if 0 is projectively generated by functions. Roughly speaking, a space 0 
is uniformizable if and only if there are "enough" continuous functions on 0 (see 
28 A.5 (e), (f)). A great deal of the results of this section (mainly subsections A and C) 
is an immediate consequence of the results of sections 23, 24 and 25. Nevertheless, 
the theory of uniformizable spaces can be built up independently of the theory of uni-
form spaces and, in fact, in this section we shall prove most of the topological 
results without any reference to sections 23 — 25. 

In the first subsection we shall prove, besides various characterizations of uniform-
izable spaces, that the class of all uniformizable spaces is hereditary, closed under 
products and sums, and contained in the class of all regular spaces. One of the most 
important results is Theorem 28 A.9 which states, in the terminology of Section 32, 
that a space 0 is uniformizable if and only if it is projectively generated by a mapping 
into a product RN, and its Corollary 28 A.10 which states that a separated space 0 is 
uniformizable if and only if 0 is the homeomorph of a subspace of a cube RK (i.e. 0> 
admits an embedding into a cube Rx). In subsection B we shall introduce exact open 
sets (as the sets of the form / _ 1 [G] where/ is a continuous function and G is open 



502 V. S E P A R A T I O N 

in R) and exact closed sets (as the sets of the form / ^ 1 [F] where / is continuous 
and F is closed in R), in another terminology N-sets and Z-sets, and we shall prove 
that a space is uniformizable if and only if it is locally exact open (compare with 
similar characterizations of topological spaces), i.e. the exact open sets form an open 
base. We shall show that two sets Xl and X2 are distant with respect to the Čech 
proximity of a space * if and only if there exist exact closed sets Yh i = 1,2, such 
that Xi c Yi and 7 r n Y2 4= 0. 

In the last subsection the uniformizable modification of a closure operation u will 
be introduced (the finest uniformizable closure coarser than u) and studied. It is 
easily seen that the uniformizable modification of a space*is the unique uniformizab-
le space 2 such that |*| = | J>|, and / : * -* R is continuous if and only if / : 2 -> R is 
continuous. Thus the uniformizable modification of a space * is uniquely determined 
by the graphs of continuous functions. Moreover we shall show that the uniformizable 
modification 2 of * is uniquely determined by the exact open sets; the exact open 
sets of * form an open base for 2. 

It is to be noted that a great deal of the results of this section are also corollaries 
of the results of Chapter VI. 

A. PROPERTIES OF UNIFORMIZABLE SPACES 

28 A.l. Definition. A uniformity 11 for a closure space * will be termed the fine 
uniformity of 0 if 11 is the uniformly finest continuous uniformity for * , i.e. 1l is 
a continuous uniformity for * and if is a continuous uniformity for * then ir is 
contained in 11. A uniformity 11 will be termed a fine uniformity if 1l is a fine uniform-
ity of some closure space * . The proximity p induced by the fine uniformity 11 of 
a closure space * will be termed the Čech proximity o f * and the unique proximally 
coarse uniformity proximally equivalent with 1i will be termed the Čech uniformit yoí 3?. 

28 A.2. Theorem. Let * = (P, u> be a closure space. There exists a unique fine 
uniformity of *. If H is the fine uniformity of *, then 

(a) 1l consists of all uniformizable neighborhoods of the diagonal of * x * , 
that is, of all U <=. P x P for which there exists a sequence {(/„} of semi-neighbor-
hoods of the diagonal of * x * such that U => U0 and U„+1 o Un+l cz XJ„ for 
each n. 

(b) A pseudometric d for P is a continuous pseudometric for * if and only if d 
is a uniformly continuous pseudometric for <P, IIs). 

(c) A cover 3C of P is a uniformizable cover of * if and only if 3C is a uniform 
cover of <P, 11s). 

(d) If f is a real-valued relation on P, then the function f : * -» R is continuous 
if and only if the function f : <P, IIs) -> R is uniformly continuous. 

Proof. Existence and uniqueness were proved in 24 B.11,statements(a),(b)and(c) 
were proved in 24 B.14,24 B.12 and 24 E.3, respectively. If/ : <P, IIs) R is uniformly 
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continuous, then evidently the function / : 0 R is continuous. Finally, if 
is continuous and d = {<*, y> -> | fx — f y |}, then" d is a continuous 

pseudometric for 0 and hence, by (b), d is a uniformly continuous pseudometric 
for <P, 11s). On the other hand, the function / : <P, d} -> R is Lipschitz continuous 
with bound 1 and hence uniformly continuous. Thus / : <P, -» R is uniformly 
continuous as the composite ot two uniformly continuous mappings, namely of 

J : <P, 11s) - <P, d> and / : <P, d} R . 

28 A.3. Theorem. Let 0 = <P, uy be a closure space. There exists a unique 
Čech uniformity of 0. If Y is the Čech uniformity of P, then 

(a) Y is the uniformly finest proximally coarse continuous uniformity for 0. 
(b) The finite square uniformizable neighborhoods of the diagonal of 0 x 0 

form a base for Y. 
(c) A pseudometric d for P is a uniformly continuous pseudometric for <P,Y} 

if and only if d is a totally bounded continuous pseudometric for 0. 
(d) A function f on <P,Y> is uniformly continuous if and only if f : 0 ^ R 

is a bounded continuous function. 
Proof. Let 1l be the fine uniformity of 0. The existence and uniqueness of Y 

follow from the existence and uniqueness of 1l and the fact that any uniformity is 
proximally equivalent to exactly one proximally coarse uniformity (25 B.9). By 
25 B.8 the finite square elements of a proximally coarse semi-uniformity i f form a 
base for i f and therefore statement (b) follows from 28 A.2 (a). Statements (c) 
and (d) follow from 28 A.3, (b) and (d), and Theorem 25 B.21. 

28 A.4. Theorem. Let 0 = <P, u) be a closure space. There exists a unique 
Čech proximity of SP. If p is the Čech proximity of SP, then 

(a) p is the proximally finest continuous uniformizable proximity for 
(b) A function f on <P, p> is proximally continuous if and only if the function 

f \3P R is continuous. 
(c) X non pY if and only if X <= P, Y <= P and there exists a continuous function 

f on 3P which is 0 on X, 1 on Y and all its values lie between 0 and 1. 
(d) The fine uniformity of is the uniformly finest uniformity inducing p. 
(e) A pseudometric d for P is a proximally continuous pseudometric for <P, p> 

if and only if d is a continuous pseudometric for 0. 
Proof. Statement (a) is evident, statement (b) follows from 25 A.12 and 28 A.2 (d), 

statement (c) is an immediate consequence of (b) and Theorem 25 C.5. Statement (d) 
is obvious and (e) is a consequence of (d), 28 Á.2 (b) and 25 B.22. Indeed, if 11 is 
the fine uniformity of 0, the continuous pseudometrics for 0 coincide with the uni-
formly continuous pseudometrics for <P, 1l~}. Now the statement follows from (d) 
and 25 B.22. 

We proceed to uniformizable closures. 
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28 A.5. Theorem. Each of the following conditions is necessary and sufficient 
for a closure space 0 = <P, u) to be uniformizable: 

(a) The fine uniformity of 0 induces u. 
(b) The Čech uniformity of 0 induces u. 
(c) The Čech proximity of 0 induces u. 
(d) If x e P, 0 4= X c P and x $ uX, then the distance from x to X is positive for 

some continuous pseudometric d for 0. 
(e) If x e P and U is a neighborhood of x in 0, then there exists a continuous 

function f on 0 such that 0 g f g 1, fx = 1 and f y = 0 for each y in P — U. 
(f) If x e P, X cz P andx $ uX, then there exists a continuous functions f on 0 such 

that fx $J\pT\. 
Proof. I. It follows from definition 28 A.1 that conditions (a), (b) and (c) are 

equivalent. Evidently (a) is sufficient. We shall prove that (a) is necessary. If u is 
uniformizable and W is a uniformity which induces u, then is a continuous uni-
formity for 0 and hence "W is uniformly coarser than the fine uniformity °U of 0. 
As a consequence, the closure u, which is induced by "fV, is coarser then the closure 
induced by 11 which is coarser than u. Thus both uniformities are topologically equi-
valent. 

II. Since continuous pseudometrics for 0 coincide with uniformly continuous 
pseudometrics for <P, IIs), where 1l is the fine uniformity of 0, the set of all continu-
ous pseudometrics for 0 generates the fine uniformity of 0 and hence, by the de-
scription 23 B.8 of a semi-uniform closure, condition (d) is equivalent to con-
dition (a). 

III. It remains to show, e.g., that (d) implies (e), (e) implies (f) and (f) implies (d). 
Assuming (d) let U be a neighborhood of a point x of 0. If U = P then we can take 
the constant function {x -» 1} as/. If U 4= P then by (d) we can choose a continuous 
pseudometric d for 0 such that the distance from x to P — U is positive, say r. 
Consider the function g = {y -» dist (y, P - U)} : 0 -» R. By 18 A.12 the function g 
is continuous and clearly gx = r, gy = 0 for y e(P — U). Now clearly the function 
/ = inf ( r - 1 . g, 1) has the required properties. Thus (d) implies (e). The implication 
(e) => (f) is almost self-evident. Indeed, if x $ uX, then U = P — X is a neighbor-
hood of x in 0 and if / is a continuous function on 0 such that fx = 1 and 
/ [P - Č7] c (0), then evidently fx if\X], Finally, assuming (f) let xeP, 0 * 
+ X <= P, x £ uX. By condition (f) there exists a continuous function / on 0 such 
that fx does not belong to the closure of f\_X] in R and hence, the distance from fx 
to f[X] is positive (in R) because f\X~\ 4= 0. The relation d = {<x, y} |fx - fy\ | 
<x, y} e(P x P)} is a continuous pseudometric for 0 (by 18 C.10) and the distance 
from x to X in <P, ď) is equal to the distance from fx to f[X~\ in R. 

28 A.6. Remark. Uniformizable spaces were introduced by A. Tichonov in 1931 
under the name of completely regular spaces. Uniform spaces were introduced by 
A. Weil in 1937. Tichonov defined uniformizable spaces by equivalent conditions 
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(e) and (f) of the last theorem. It is to be noted that Tichonov only considered separ-
ated uniformizable spaces, and many authors employ the term Tichonov space for 
separated uniformizable spaces. It seems that the original term completely regular 
space appears more frequently in the literature than the term uniformizable space 
introduced by N. Bourbaki. 

The theory of uniformizable spaces can be built up independently of the theory of 
uniform or proximity spaces and, in fact, the concept of a uniformity was introduced 
only after the theory of uniformizable spaces had been developed. The properties of 
uniformizable spaces to follow are immediate consequences of the results of sections 
23 — 25. Nevertheless we wish to outline topological proofs which are based upon 
the purely topological characterizations 28 A.5 (d), (e) and (f), the equivalence of 
which was proved without any reference to semi-uniform or proximity spaces. 

Finally, let us prove that condition (f) of 28 A.5 is equivalent to the following 
condition 

(*) If v is a closure for P such that / e C«P, u>, R) implies that / : <P, v} -» R 
is continuous, then v is finer than u. 

If (f) is satisfied, v fulfils the assumption of (*) and x e vX, then fx e f\X~\ for each 
continuous function on <P, u>, and hence x e uX by (f), which shows that v is finer 
than u. Conversely assuming (*) we shall prove (f). Let us define a single-valued 
relation v on P ranging in exp P such that x e vX if and only if fx ef[X~\ for each 
continuous / on <P, u>. It is easily seen that v is a closure operation for P and v 
fulfils the assumption of (*). Thus v is finer than u and hence (f) is fulfilled. 

28 A.7. Theorem. The class of all uniformizable spaces is hereditary and closed 
under products and sums. Every uniformizable space is a topological regular 
space and every feebly semi-separated uniformizable space is separated. 

Proof. If 2 is a subspace of a uniformizable space 3P and if ^ is a uniformity 
inducing the closure structure of 3P, then the relativization of "U to \2\ is a uniformity 
(24 A.8) inducing the closure structure of 2 (23 D.2). If 0 is the product (sum) of 
a family {0>a} of uniformizable closure spaces and if 1la is a uniformity inducing 
the closure structure of SPa for each a, then the product (sum) of {Wa} is a uniform-
ity (24 A.8) which induces the closure structure of We have already proved that 
every uniformizable space is regular (27 B.7) and topological (24 A.2). Finally, if 
a uniformizable space 0 is feebly semi-separated then 0> is separated by 27 B.7 be-
cause & is regular. 

Alternate proof. If 2 = <Q, y) is a subspace of a uniformizable space 3? = 
= <P, u> and x £ vX, where x e Q, X <= Q, then x$uX and, as 2 is uniformizable, 
we can choose a continuous function / on 2? such that fx does not belong to the 
closure of f\X\ in R; the domain-restriction g of / to 2 is continuous and gx = fx, 
g[X] = f\X\. Hence gx $ g[X]. lf& is the product of a family {&a} of uniformizable 
spaces and U is a canonical neighborhood of a point x = {xfl}, U = E{y \ a e A' => 
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=> pra y e Ua} where A' is a finite subset of A, and if /„ is a continuous function on 
* f l such that faxa = 1, /„[|*a| - t/a] c (0), then the function / = {y -
-»• n{/a pra y I a e A'} \ y e |*|} : * -»• R is continuous on 0>, fx = 1, f y = 0 for 
y £ - [/). If * is the sum of a family {* a } and U is a neighborhood of <a, x> 
in then K = U n ((a) x |*a|) is also a neighborhood of <a, x>. Since the sub-
space * a = (a) x of * is a homeomorph of * a we can choose a continuous 
function g on * a such that g(a, x} = 1 and g is 0 outside V. If / is the domain-
extension of g on * such that g is 0 outside |*a|, then/ is continuous,/<a, x} = 0 
and / is 0 outside V and hence also outside U. Now let * be uniformizable. If U is 
a neighborhood of a point x in 0 and / is a continuous function on * such that 
fx = 1 and/ is 0 outside U, then the set F = / - 1 [ ] 2 - 1 , -»• ] ] is open and con-
tained in U and the set W = / _ 1 [ [ 2 _ 1 , —• ] ] is a closed neighborhood of x con-
tained in U. Thus * is both locally closed and locally open, i.e. * is a topological 
regular space. The last statement is evident. 

28 A.8. Remark. We shall show in 33 D that a separated regular topological 
space need not be uniformizable; moreover, we shall outline a construction of an 
infinite separated regular topological space * such that each continuous function 
on * is constant. It is to be noted that first constructions of a separated regular 
topological space without non-constant continuous function were given by E. Hewitt 
and J. Novák. Our construction is an adaptation of Novák's construction. 

28 A.9. Theorem. Each of the following two conditions is necessary and suf-
ficient for a closure space * = (P, u> to be uniformizable: 

(a) There exists a mapping h of <P, m> into [ 0, 1 ]N for some cardinal X such 
that x £ uX if and only if hx e h[X~]. 

(b) There exists a mapping h of <P, u) into a uniformizable space 2. such that 
xeuX if and only if hx e h[X]. 

Proof. Since every metrizable space is uniformizable, the unit interval [0, 1 J is 
uniformizable, and by 28 A.7 every cube [ 0, 1 is also uniformizable. It follows 
that (a) implies (b). It remains to show that (a) is necessary and (b) is sufficient. 
I. Suppose that <P, u> is uniformizable. By 28 A.5 (condition (f)), there exists a col-
lection of continuous functions on <P, u> such that each / from # satisfies the 
inequality 0 g f 5S 1 and that if x $ uX then/x $ f\X\ for some / in Consider 
the mapping h of <P, u) into the product space 2 = [[ 0, 1 ]* which assigns to each 
xeP the point hx = {fx |/e of 2. Thus h is the reduced product of the family 
{ / : * [ 0,1 ] | / e «"}. Since each / : <P, u> -»• [ 0, 1 ], / e <é, is continuous, the 
mapping h is continuous by 17 C.13, that is, xeuX implies hx e Now, converse-
ly, if x e P, X <=. P,x$ uX, then there exists an/ in # such that fx $ f[X\- Since the 
projection of 2 onto the/-th coordinate space is continuous and nf 0 h = / , in 
particular fx = nfhx and f\X~\ = 7iy[/7[X]], we obtain hx$h\X~\, which con-
cludes the proof. 
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II. Suppose that there exists a mapping h of <P,.u> into a uniformizable space 2 
such that x e uX if and only if hxe h[X~\. To prove that <P, w> is uniformizable, 
it is enough to show that condition (f) from 28 A.5 is fulfilled. Let x e P, X <= P, 
x i uX. By our assumption hx $ h\_X~\. Since 2 is uniformizable, by 28 A.5 (f) there 
exists a continuous function g on 2 such that ghx £ gh[X~\. Since h is continuous, 
the function / = g o h is continuous on <P, u>. Obviously fx $ f\X\. 

Remark. Let h be a mapping of a space <P, u) into a space 2 such that xe uX 
if and only if hx e h[X]. Evidently, if h is a one-to-one mapping, then h is an em-
bedding. If <P, u> is feebly semi-separated, that is, if x, y e P, x 4= y imply x £ u(y) 
or y $ u(x), then h is one-to-one. Indeed, if x 4= then x ^ u(y) or y $ u(x), which 
implies hx $ (hy) or hy $ (hx) and yields hx 4= hy. 

28A.10. Corollary. A closure space <P,u> is a separated uniformizable space 
if and only if <P, «> admits an embedding into a cube [0, 1 ]N, that is, <P, u) is 
homeomorphic with a subspace of a cube [ 0, 1 

Proof. The space [ 0 , 1 ] is separated and hence each subspace of any cube is 
separated. Thus each subspace of any cube is a separated uniformizable space. 
Conversely, if <P, u> is uniformizable, then (by 28 A.9) there exist a mapping h 
of <P, u) into a cube [ 0, 1 ]N .such that x e uX if and only if hx e /i[X]; if in ad-
dition, <P, u) is separated, then by the remark following 28 A.9 the mapping h is 
an embedding. 

28 A . l l . Corollary. A closure space <P, w> is uniformizable if and only if <P, u> 
admits an embedding into the product of an accrete space with a cube [ 0, 1 ]N . 

Proof. As the class of uniformizable spaces is hereditary and completely produc-
tive and accrete spaces and the space [ 0, 1 ] are uniformizable, every space <P, w> 
admitting an embedding under question is necessarily uniformizable. Conversely, let 
us suppose that <P, u> is uniformizable. By Theorem 28 A.9 there exists a mapping h 
of <P, u> into a cube 2 = [ 0, 1 such that xeuX if and only if hx e h[X~\. Let 
v be the accrete closure for P, I the identity mapping of <P, u> onto <P, u>, and 
last let / be the reduced product of the mappings h and I, i.e. D*/ = <P, u>, E*/ = 
= E*h x <P, v), fx = <hx, x ) for each x e P. It is obvious that x e uX if and only 
if fx 6 f\X\ Since / is a one-to-one mapping, / is an embedding by the remark 
following 28 A.9. 

Remark. Since the class of all uniformizable spaces is completely productive and 
hereditary and contains all pseudometrizable spaces, each subspace of the product 
of a family of pseudometrizable spaces is a uniformizable space. On the other hand, 
by 28 A.11 every uniformizable space is homeomorphic with a subspace of the product 
of pseudometrizable spaces (every accrete space and the space [0,1] are pseudometriz-
able). Thus a closure space is uniformizable if and only if it admits an embedding 
into the product of pseudometrizable spaces. It is to be noted that this result is an im-
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mediate consequence of Theorem 24 A.11, which asserts that a semi-uniform space 
is uniform if and only if it admits a uniform embedding into the product of a fa-
mily of pseudometrizable uniform spaces, the elementary fact that every uniform 
embedding is a closure embedding, and Theorem 24 A.8, which asserts that the pro-
duct of any family of uniform spaces is a uniform space. 

B. EXACT OPEN AND EXACT CLOSED SETS 

28B.1. Definition. Let (P, u> be a closure space. An exact closed (exact open) 
subset of <P, u> is a set of the form/_ 1[0] ( / - 1 [ R — (0)], respectively), where/ is 
a continuous function on <P, u). 

It should be remarked that exact closed sets are often called zero-sets or Z-sets and 
exact open sets are called cozero-sets or N-sets. The set/ - 1[0] is often denoted by Z(f) 
and the set / _ 1 [ R — (0)] by N(f). This notation and terminology will not be used 
in the sequel. 

If X = / _ 1 [0 ] , then X = |/|_1 [0] and also X = (inf.(|/|, l)) - 1 [0]. Similarly 
/ _ 1 [ R - (0)] = (inf (|/|, l))"1 [R - (0)]. It follows that every exact closed (exact 
open) set X in <P, u> is of the form/ - 1[0] ( / - 1 [ R — (0)]), where/ is a continuous 
bounded non-negative function on <P, u>. 

28 B.2. Theorem. Let <P, u ) be a closure space. A subset X of <P, u} is exact 
closed if and only if its complement P — X is exact open. Every exact open set is 
an open Fg-set and every exact closed set is a closed Gs-set. The collection of all 
exact closed sets is closed under finite unions and countable intersections (i.e. is ad-
ditive and countably multiplicative). The collection of all exact open sets is closed 
under finite intersections and countable unions (i.e. is multiplicative and countably 
additive). The sets 0 and P are simultaneously exact open and exact closed. 

Proof. I. The first statement is evident. 
II. Let X be exact closed, that is, X = / _ 1 [ 0 ] for some continuous function / 

on <P, u>. The set X is closed as the inverse of a closed set under a continuous map-
ping. The set (0) is a Ga in R because (0) = fl{ ] - 1 jn, 1/« [ | n = 1, 2, ...}. It 
follows that X = D { / _ 1 [ ] -11", ! / " [ ] } is a Ga i n <-P> ">• I f x is e x a c t °Pen i n 

<P, u>, then P — X is exact closed, and consequently P — X is a closed G^ It fol-
lows that X is an open Fff. 

III. Let {Xa} be a finite family of exact closed sets. Choose a family {/„} of con-
tinuous functions on <P, u) such that Xa = /a_1[0]. Clearly / = n{/ a} ( = {x 
-»• Il{/ax}}) is continuous and/ - 1[0] = U{Xa}- Now let {X„ | a e A} be a countable 
family of exact closed sets in <P, u>. We may assume A <= N. Let {/a} be a family 
of continuous functions such that Xa = /a-1[0], and moreover, 0 g f a g 2~a for 
each a in A; such fa can be chosen because, if ga is continuous and Xa = gJ^Oj.then 
fa = inf (|<7fl|, 2~") possesses the required properties. Consider the series E{/01 a e A}. 
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Since 0 g /„ g 2 the series is uniformly convergent and its sum / is a continuous 
function. It is almost self-evident that/ - 1[0] = H { X \ aeA). 

IV. The invariance of the collection of all exact open sets under finite intersections 
and countable unions is an immediate consequence of the "dual" assertion for exact 
closed sets (use the first statement and the de Morgan formula). 

V. The constant functions = {x. -» 0} and f2 = {x ->• 1} are continuous and 
P = / r 1 [ 0 ] = / 2 1 [ R — (0)]. It follows that P is simultaneously exact closed and 
exact open. In consequence, the complement P — P = 0 of P is also exact open and 
exact closed. 

28 B.3. If f is a continuous mapping of a space 0 into a space 2 and if Y is an 
exact closed or exact open subset of 2, then X = /_1[Y] possesses the corresponding 
property in Indeed, if g is a continuous function on 2 then h = g of is a con-
tinuous function on and if, in addition, Y = £ - 1 [0 ] or Y= g_ 1[R — (0)], then 
X = / i _ 1[0] or X = Ji_1[R — (0)] respectively. Each closed (open) subset X of 
a pseudometrizable space 0 is exact closed (exact open). Indeed, if d pseudo-
metrizes & and X is closed, then X = / _ 1 [ 0 ] where / = {x dist (x, X)}. Com-
bining the two foregoing results we obtain at once that if f is a continuous mapping 
of 0 into a pseudometrizable space 2 and Yis closed (or open) in 2, then f~l\X~\ 
is exact closed (or exact open) in In particular, if f is a continuous function on 

then the inverses under f of closed sets (open sets) are exact closed (exact open). 
IfX is simultaneously open and closed in a spacethenX is simultaneously exact 
open and exact closed in Indeed, the function which is 0 on AT and 1 on \0>\ — X 
is continuous and X = / _ 1 [ 0 ] = / _ 1 [ ] -1/2, 1/2 [ ] . 

In general, a closed subset (open subset) of a closure space need not be exact closed 
(exact open). For example, if 0 is the product of an uncountable family of at least 
two-point semi-separated spaces, then each point of 0 is closed but no one-point 
subset of 9 is a Gs, and consequently no onê point subset of 0 is exact closed. 

Let us consider the space <R, u> where u is the topological closure operation 
for R such that X c R is open if and only if, for each x in X, there exists a neighbor-
hood U of x in the space R of reals such that U n Q c: X. Clearly Q is dense in 
<R, u) and each subset X of R — Q is closed in <R, u>. Moreover, each subset X 
of R — Q is a in <R, u>. Indeed, on arranging Q into a sequence {q„} and putting 
U„ = (X u Q) — U{(<?;) | ' = n ] f°r n e N, we obtain a sequence of open subsets 
of <R, u> such that n{£/„} = X. On the other hand, a u-closed X c (R - Q) need 
not be exact closed; it will suffice to show that X c R is exact closed in <R, u> if and 
only if X is exact closed in the space R. Indeed, for example R — Q is closed in 
<R, u> but not in R. The identity mapping I of <R, u> onto the space R of reals is 
continuous. It follows that i f / is continuous on R then / is continuous on <R, u>. 
Conversely, from theorem 27B.10 on extension of mappings into regular spaces it 
follows at once that each continuous function on <R, u) is also continuous on the 
space R. 



510 V. S E P A R A T I O N 

The space <R, u> is not even regular and thus certainly not uniformizable. In the 
exercises examples are given of a uniformizable space in which there exists a closed 

which is not exact closed. 
Now we proceed to the description of the Cech proximity in terms of exact closed 

sets. 

28 B.4. Theorem. Two subsets Xj. and X2 of a closure space <P, u> are function-
ally separated if and only if there exist disjoint exact closed sets Yl and Y2 such 
that Y; 3 Xt. Stated in other words, two subsets Xi and X2 of a closure space 
<P, u> are proximal relative to the Cech proximity of <P, u} if and only if the 
following condition is fulfilled: If Y) are exact closed in <P, u> and Y; => Xt, i = 
= 1, 2, then Yt n Y2 * 0. 

Proof. Of course, both formulations are equivalent. I. First suppose that X t and 
X2 are functionally separated (i.e., non-proximal relative to the Cech proximity). 
From 28 A.7, there exists a continuous function / on <P, w> which is 0 on X1 and 1 
on X2. If Yj = / _ 1 [ 0 ] and Y2 = / _ 1 [ l ] , then Y( are disjoint exact closed sets and 
clearly X; <= Yf. — II. Now suppose that there exist exact closed sets Yy and Y2 

such that Yx n Y2 = 0 and X; <= Y; for i = 1,2. Choose non-negative continuous 
functions f such that Y; = / _ 1 [ 0 ] . The function f1 + f2 is positive. Indeed, if 
(/i +fz)x = 0, then f,x = 0, i = 1,2, and hence x e ^ ' p J n / j ' f O ] ) = Yt n Y2 = 0 
which is impossible. It follows that the function g = / i /( /i + f2) is defined and 
continuous. Now, if x e Yt then gx = 0 / f2x = 0, and if x e Y2 then gx=fixj fxx = 1. 
By 28 A.7 the sets Y(, and hence also the sets X h are functionally separated. 

Let us recall that a closure space is topological if and only if it is locally open. 
Now we shall prove a similar characterization of uniformizable spaces. 

28 B.5. Theorem. Each of the following three conditions is necessary and suf-
ficient for a closure space 0* to be uniformizable. 

(a) 9 is locally exact open. 
(b) 0 is a topological space and the collection of all exact open sets in an open 

base of 0. 
(c) 0 is a topological space and the collection of all exact closed sets is a closed 

base of 0. 
Proof. Since X c j0j is exact closed if and only if the complement \0\ — X is 

exact open, conditions (b) and (c) are equivalent. Obviously (a) implies (b). It remains 
to show that (a) is necessary and (b) is sufficient. 

I. Suppose that the space 0 is uniformizable, x is a point of 0, and U is a neigh-
borhood of x. By 28A.5 (cond. (e)) we can choose a continuous function / on 0 
so that fx = 1 and f\\0\ - C7] c (0). Put V = f~l[R - (0)].The set Fis exact open 
and clearly xe V cz U. 

II. Suppose that condition (b) holds, x is any point of 9 and U is any neighbor-
hood of x in 0. It is to be proved that there exists a continuous function / on 0 
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such that fx = 1 and / [ \ 0 \ —[/]<= (0). Since 0 is topological and exact open sets 
form an open base for the space 0, we can choose an exact open set V so that 
xeV a U. Let g be a continuous function on 0 such that V = — (0)]. Since 
gx =t= 0, the function / = glgx is defined and clearly / possesses all the required 
properties. 

C. UNIFORMIZABLE MODIFICATION 

By Definition 24 B.13 the uniformizable modification c of a closure operation u 
is the finest uniformizable closure coarser than u. The space <P, v} will be termed 
the uniformizable modification of <P, u>. Evidently, u = v if and only if u is uni-
formizable. By 24 B.16 the uniformizable modification of a closure space 0 is the 
unique uniformizable space 0 such that \0\ = \ě\ and that a mapping of 0 into any 
uniformizable space is continuous if and only if the mapping / : .2 -> E*/ is con-
tinuous. 

It is clear (and it was stated in 24 B.11) that if 1l is the fine uniformity of a closure 
space <P, u> and v is the closure induced by 11, then v is the uniformizable modifica-
tion of w; clearly 11 is the fine uniformity of <P, v). Hence and from the fact that the 
fine uniformity, the Čech uniformity and the Čech proximity of a given closure space 
are topologically equivalent, we obtain the following result. 

28 C.l. Theorem. Each of the following conditions is necessary and sufficient 
for a uniformizable closure space 2 to be the uniformizable modification of a given 
closure space 0: 

(a) The fine uniformities of 0 and 2 coincide. 
(b) The Čech uniformities of 0 and 2 coincide. 
(c) The Čech proximities of 0 and 2 coincide. 
28 C.2. Corollary. Let H be a fine uniformity (Čech uniformity, Čech proximity) 

for a set P and let T be the set of all closures u such that 1l is the fine uniformity 
(Čech uniformity, Čech proximity) of <P,u}. There exists a unique coarsest 
element v of T, and v is the uniformizable modification of each element of T. 

A uniformizable closure space is uniquely determined by the collection of all exact 
open sets (28 B.5). We shall describe the uniformizable modification of a given closure 
space 0 by the collection of all exact open sets of 0. 

28 C.3. Theorem. Let 9£ be the collection of all exact open sets of a closure 
space <P, w> and let T be the set of all closures u such that 3C is the collection of all 
exact open sets of (P, u>. There exists a unique uniformizable closure v in T. The 
closure v is the coarsest element of T and 3C is an open base for <P, u). The set T 
is the set of all closures u such that v is the uniformizable modification of u. 

Proof. I. Notice that the Čech proximity p of a closure space <P, w) is completely 
determined by the collection SC of all exact open sets. Indeed, by 28 B.4 Xt non pX2 

if and only if there exist exact open sets Y; such that X; c P — y(, i = 1, 2, 
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and (P — Yx) n (P — Y2) = 0. As a consequence, two spaces have the same Čech 
proximity if and only if the collections of exact open sets coincide. — II. It follows 
from I that F is the set of all closures u for P such that the Čech proximity of <P, u> 
coincides with the Čech proximity of <P, w>. Let v be the uniformizable modification 
of w. Again by I and by 28 C.1 the closure v belongs to F, and v is the uniformizable 
modification of a closure u if and only if u e F. The uniformizable modification v 
of a closure u is always coarser than u and v = u if and only if u is uniformizable. 
Thus v is the unique uniformizable closure of r and v is the coarsest element of F. 
Finally, 3C is an open base for <P, v) by 28 B.5 because v is uniformizable. 

Remark. One can prove the last theorem without any reference to proximity 
spaces or uniformity spaces. By 28 B.5 a space 9 is uniformizable if and only if 9 
is topological and exact open sets of 9 form an open base for 9. As a consequence, 
a space 2 is the uniformizable modification of a space 9 if and only if the exact open 
sets of 9 and 2 coincide, 2 is topological and the exact open sets form an open base 
for 2. Now, given w, the collection $ is a base for a topological space <P, v> and 
clearly v belongs to F. The remainder is left to the reader. 

28 C.4. Let <& be the collection of all exact closed sets of a closure space <P, w> 
and let F be the set of all closures u such that 3C is the collection of all exact closed 
sets of <P, m>. There exists a unique uniformizable closure v in F. The closure v is 
a coarsest element of F and 3C is a closed base for <P, v}. The set F is the set of all 
closures u such that v is the uniformizable modification of u. 

Proof. A set is exact open in <P, u> if and only if its complement in P is exact 
closed in <P, w>. Apply 28 C.3. 

28 C.5. Let <Q, v} be a subspace of a closure space <P, w>. If ut is the uniformiz-
able modification of u, then the relativization Uj of uy to Q is a uniformizable 
closure coarser than v but vt need not be the finest uniformizable closure coarser 
than v (compare with the corresponding result 17 A.6 for the topological modifica-
tion). Moreover if <Q, is a uniformizable subspace of a space <P, «>, then v 
is the uniformizable modification of itself but v need not be a relativization of the 
uniformizable modification of <P, u>. For example let <P, u> be an infinite separated 
space such that every continuous function on <P, u> is constant (see ex. 1), Q be 
an infinite isolated subset of P, and let v be the relativization of u to Q. Then v is 
a discrete closure and thus certainly a uniformizable closure, the uniformizable 
modification Uj of u is the accrete closure for P and the relativization Uj of Wj to Q 
is also an accrete closure. Thus v + v1. 

28 C.6. It is easily seen that the uniformizable modification of the sum of a family 
{9a} of closure spaces coincides with the sum of the family {2a} where 2a is the 
uniformizable modification of 9a, stated in other words, the uniformizable modifica-
tion commutes with the operation of forming sums. Denoting by u9 the uniformizable 
modification of a space 9 we can write 

u Z{9„} = I{u9a} . 
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On the other hand it seems nothing is known about the commutativity of the uniform-
izable modification and the operation of forming products. 

28 C.7. We have introduced the concept of the uniform modification of a semi-
uniformity (as the uniformly finest uniformity uniformly coarser than °Tl) and 
the concept of the uniformizable modification of a proximity p (as the proximally 
finest uniformizable proximity proximally coarser than p), and we have proved that 
the proximity q induced by the uniform modification Y of a semi-uniformity is 
the uniformizable modification of the proximity induced by °U (25 C.2). On the other 
hand, if a closure u is induced by a proximity p then the uniformizable modification q 
of p induces a uniformizable closure v which is coarser than u but which need not be 
the finest uniformizable closure coarser than u. For example, we shall construct 
a proximity p inducing the closure structure of the space R of reals such that the uni-
formizable modification of p is the proximally accrete closure for |R|. Let p consist 
of all <X, Y> such that either X and Fare proximal in R or both X and Yare infinite. 
It is easily seen that p is a proximity inducing the closure structure of R (p is even the 
proximally coarsest proximity with this property). If x and y are any two points of R 
and U and Fare neighborhoods of x and y respectively, then Up V because both sets 
are infinite, and so certainly U q V. As a consequence (x) q (y) for each x and y in R. 

33—Topological Spaces 
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29. NORMAL SPACES 

A uniformizable space is said to be normal if every two disjoint closed sets are func-
tionally separated, i.e. are distant with respect to the Cech proximity of the space. 
It turns out that every pseudometrizable space as well as every generalized ordered 
space is normal (29 B.1), and that a uniformizable space need not be normal. While 
all the classes of spaces considered up to now were hereditary and closed under finite 
products, the class of all normal spaces is not hereditary and the product of two 
normal spaces need not be normal. On the other hand, normal spaces have many 
significant properties, e.g., normal spaces are characterized among all the uniformiz-
able spaces by each of the following two important properties: every continuous 
function on a closed subspace of a normal space is the restriction of a continuous 
function on the whole space (the Urysohn-Tietze extension theorem 29 A.12); if "U is 
an open point-finite cover then there exists an open cover {Vv | U eH} such that 
Vv <= U for each U in 11 (Theorem 29 C.1 on shrinkability of open covers). 

Subsection A is concerned with various characterizations of normal spaces. In the 
second subsection we shall prove that every generalized ordered space is normal and 
we shall show, by various examples, that a subspace of a normal space need not be 
normal and the product of two normal spaces need not be normal. The closing sub-
section C examines properties of covers of normal spaces. The most profound results 
are Theorem 29 C.8 asserting that every open cover of a pseudometrizable space has a 
c-discrete locally finite open refinement, and Theorem 29 C.1 asserting that for each 
point-finite open cover 1l of a normal space there exists an open cover {Vv | U e H) 
such that the closure of each Vv, U e"U, is contained in 17. As an immediate conse-
quence we obtain that a cover 1l of a normal space is uniformizable if and only if 
H has an open locally finite refinement. 

A. CHARACTERIZATIONS OF NORMAL SPACES 

29 A.l. Definition. Given a closure space 3P, the proximity E {<X, 7> | X n F + 0} 
for SP will be called the Wallman proximity of SP. A closure space 0 will be called 
normal if the Wallman proximity of 3P is uniformizable and induces the closure of 8P. 

We begin with a discussion of the definition of normal spaces. 
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29 A.2. The Wallman proximity of a closure space * is a continuous proximity 
for and it is proximally finer than the Čech proximity of The Wallman pro-
ximity coincides with the Čech proximity if and only if the Wallman proximity 
is uniformizable. 

Proof. By definition a proximity p for * is a continuous proximity if the closure 
induced by p is coarser than the closure of that is, if x eX implies (x) pX. Since 
xeX implies (x) n X 4= 0, the Wallman proximity is continuous. To prove that the 
Wallman proximity of * is proximally finer than the Čech proximity p we must show 
that X n F * 0 implies X p Y, i.e. that X n F 4= 0 implies that X and Y are not 
functionally separated. But this is obvious, for if / is a continuous function on * which 
is 0 on X and 1 on Y, then / is 0 on X and 1 on F and this implies X n Y = 0. 
Since the Čech proximity of * is the proximally finest continuous uniformizable pro-
ximity for * and the Wallman proximity is always proximally finer than the Čech 
proximity, the last assertion follows. 

Corollary. Given a closure space the Wallman proximity of * coincides with 
the Čech proximity of * if and only if X n Y = 0 implies that X and Y are func-
tionally separated. 

Some generalities will be needed. By definition a proximity p for a closure space* 
induces the closure structure of * if and only if x eX o (x) pX. The implication 
x e X => (x) p X means that p is a continuous proximity for Thus a continuous 
proximity p for * induces the closure of * if and only if (x) pX implies x eX.lt 
follows that the Wallman proximity induces the closure structure of the space if and 
only if 

(*) (x) n X 4= 0 implies xeX. 
Let us recall that if the closure structure of a space * is induced by a proximity, then 

it is induced by the proximity E {<X, 7> | (X n Y) u (X n F) 4= 0} which is the finest 
proximity inducing the closure, and the closure of a space * is induced by a proximity 
if and only if it is induced by a semi-uniformity, which is equivalent, by 23 B.3, 
with the implication 

(**) . xe(y) implies yejx). 
It is to be noted that (**) also follows from (*) directly. Indeed, if x e (yj, then 
(y) n (x) 4= 0 and by (*) y e (x). It is easy to show by examples that (**) does not 
imply (*). For instance, if * is the three-point set (0,1, 2) endowed with the (quasi-
discrete) closure operation u satisfying the equalities u(0) = u(l) = (0, l), m(2) = 
= (0, 2), then * satisfies (**) but not (*). Thus the closure u is induced by a proximity 
but not by the Wallman proximity. 

29 A.3. Theorem. Let * be a closure space. Each of the following conditions 
is necessary and sufficient for the closure of * to be induced by the Wallman pro-
ximity of 0>\ 

(a) I f x e * , X c (5č) n X 4= 0, then xeX. 

33' 
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(b) / / x, y e 3P, x e (y) and U is a neighborhood of y, then U is a neighborhood 
of x. 

(c) If x,y and x e Jy), then U <=• \8P\ is a neighborhood of y if and only if U 
is a neighborhood of x. 

In particular, if SP is semi-separated (i.e. each one-point set is closed), then the 
closure structure of 0 is induced by the Wallman proximity. If SP is a topological 
semi-uniformizable space, then the closure of 0 is induced by the Wallman pro-
ximity. 

Proof. I. It has already been shown that condition (a) is both necessary and suf-
ficient for the closure structure of 0 to be induced by the Wallman proximity. It 
remains to prove (a) => (b) => (c) => (a). Suppose that (a) holds, x e (y) and U is 
a neighborhood of y; then y £ \dP\ — U and hence (y) n \3P\ — U = 0 by (a), in 
particular, x $ — U which means that U is a neighborhood of x. Now suppose 
(b) holds and x t e (77j- From condition (b) it follows at once that yt e (XjJ. Indeed, 
if U is a neighborhood of ylt then U is a neighborhood of xL by (b), in particular, 
xt e U, that is, ( x j n U 4= 0 which implies yt e (Xi). Now (c) follows from (b) by 
twofold application of (b), namely to x = xu y = yy and x = yj and y = x t . Finally, 
suppose (c) holds and (x) n X + 0. Choose a point y in (x) n X. If U is a neighbor-
hood of x, then U is a neighborhood of y by (c) and hence U n X + 0. It follows 
that x e X . 

II. If 2P is semi-separated, then (x) = (x) for each x and condition (b) is auto-
matically fulfilled. 

III. If 0 is a topological semi-uniformizable space, x e (y) and U is an open neigh-
borhood of y, then y e (x) since 3P is semi-uniformizable and hence x e U; but U 
is open and hence U is a neighborhood of x. Since open neighborhoods of y form 
a local base at y {8P is topological) the condition (b) follows. 

Now we return to normal spaces. It has already been observed that the Wallman 
proximity is uniformizable if and only if it coincides with the Cech proximity. By 
Theorem 25 B.2 a proximity p for a set 3P is uniformizable if and only ifXt non pX2 

implies that U1 n U2 = 0 for some proximal neighborhoods Ut of Xt (i = 1, 2). 
(Recall that U is a proximal neighborhood of X if and only if (¡0j — U) non pX.) 
Applying this theorem to Wallman proximities we obtain that the Wallman proximity 
of a closure spaced is uniformizable if and only if the following condition is fulfilled: 
if X n Y = 0, then the sets X and Y are separated, i.e. there exist neighborhoods U 
of X and V of Y such that U n V = 0. Indeed by the definition, a subset U of a clo-
sure space 0 is a proximal neighborhood relative to the Wallman proximity of 
a subset X of 0> if and only if \0>\ — U n X = 0 which means that U is a neighbor-
hood of X. Combining this result with 29 A.3 we obtain from definition 29 A.1 the 
following fundamental result: 

29 A.4. Theorem. A closure space 0 is normal if and only if the following two 
conditions are fulfilled: 
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(a) if X c= \0>\, Y c \0>\, X n F = 0, then the sets X and Y are separated; 
(b) x e \0\, X <= \0>\, (3cJ n X 4= 0 imply xeX. 

Condition (b) may be replaced by equivalent conditions (b) or (c) from 29 A.3. 

Remark. It is to be noted that the foregoing theorem is not trivial. Its proof de-
pends essentially upon rather profound theorems, mainly on Theorem 25 B.2 
which gives a simple necessary and sufficient condition for a proximity to be uniform-
izable, and upon the description of a uniformity in terms of uniformly continuous 
pseudometrics, that is, certain uniformly continuous functions on the product; the 
latter theorem is a consequence of the metrization lemma 18B.10. Nevertheless, 
without analysing the proof it is clear that the proof cannot be trivial: from assump-
tions (a) and (b) which do not refer to R explicitly there follows existence of suffici-
ently many continuous functions. 

Corollary. A closure space 9 is normal if and only if it is a semi-uniformizable 
topological space such that every two disjoint closed sets are separated. 

Proof. If SP is normal then 9 is uniformizable (by definition) and hence SP is 
semi-uniformizable and topological. The condition (a) of the theorem implies that 
every two disjoint closed sets are separated. Conversely, if SP is topological and every 
two disjoint closed subsets are separated, then the condition (a) of the theorem is 
fulfilled, and if & is also semi-uniformizable, then condition (b) of the theorem 
follows from the last assertion of 29 A.3. By the theorem, SP is normal. 

For convenience we shall prove some restatements of the condition in the corollary. 

29 A.5. Theorem. Each of the following conditions is necessary and sufficient 
for a semi-uniformizable topological space 9 to be normal: 

(a) Every two disjoint closed subsets of 3P are separated. 
(b) IfU is a neighborhood of a closed subset X ofthen there exists a neighbor-

hood V of X such that V <= U. 
(b') For every closed subset X of 9 the collection of all closed neighborhoods 

of X is a base of the neighborhood system at X. 
(c) If U and V are open subsets of SP such that U u V = \SP\ then there exist 

closed subsets X and Y such that X <= U, Y <= V and X u Y = 

Corollary. Every pseudometrizable space is normal. 
Proof of Corollary. By 20 A.4 every two disjoint closed subsets of a pseudo-

metrizable space are separated. 

Proof of 29 A.5. Condition (a) is simultaneously necessary and sufficient by virtue 
of the corollary of 29 A.4. Since conditions (b) and (b') are obviously equivalent, 
it will suffice to prove (a) => (b) => (c) => (a). Write P instead of \3P\. 

I. Suppose (a) holds and U is a neighborhood of a closed subset X of SP. Since 9 
is topological, 7 = P - U is closed. Clearly X n Y = 0. By (a) we can choose neigh-
borhoods 1/j of X and U2 of y such that U1 nU2 = 0. Now is a neighborhood 
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of X and U1 c P - U2 cz P - Y for Y <= int U2. Since P — Y <=. U, we obtain 
Ui <= U. 

II. Now suppose (b) and let U and F be open subsets of 8P such that [/ u F = P. 
The sets P — U and P — V are closed and disjoint and F is a neighborhood of 
P — U. By (b) we can choose a neighborhood U1 of P — U such that Ut <= V. 
Put Y = TJl and X = P — int U1. Since 0 is topological the sets X and Fare closed. 
Clearly X u Y = P, Y = TJi a F and X = P - int Ut c P - (P - U) cz 17. 

III. Finally suppose (c) and consider two disjoint closed subsets X and Y. Put 
U = P— Y, V=P — X. The sets U and F are open and U u V = P. By (c) there 
exist closed sets Xt cz U and Y[ <= Fsuch that Xt u Yt = P. Clearly P — Xx and 
P — Yj are disjoint neighborhoods of Y and X respectively. 

Theorem 29 A.5 admits the following generalization. 

29 A.6. Theorem. Each of the following conditions is necessary and sufficient 
for a topological semi-uniformizable space 0 to be normal. 

(a) Every open finite cover of 8? possesses a closed finite refinement. 
(b) If {Va} is an open finite cover of 8? then there exists a closed cover [Xa] of 0 

such that Xa c Vafor each a. 
(c) Every open finite cover of 0 is semi-uniformizable. 
(d) Every open finite cover of 8P is uniformizable. 
Proof. It will be shown that (d) => (c) => (b) o (a), (b) is necessary and sufficient 

and implies (d). Evidently (d) => (c), (b) => (a) and (b) is sufficient, because (b) implies 
the condition (c) of 29 A.5. Write P instead of 

I. To prove (c) => (b), suppose (c) holds and consider an open finite cover 
{Va} of P. Since {Va} is semi-uniformizable, by definition there exists a semi-neighbor-
hood U of the diagonal such that the cover {t/[x] | x e P} refines {Va}. Let Ya be 
the set of all x e P such that [/[x] <= Va and put Xa = Yfl. Since 8P is topological, the 
sets Xa are closed, and {Za} is a closed cover of P because {Ya} covers P. Since U 
is a semi-neighborhood of the diagonal, we have Y„ c L/[Yj Va which shows that 
Xa a Va for each a. 

II. To prove (a) => (b), suppose that (a) holds and consider an open finite cover 
{Fa} of P. By (a) there exists a closed finite refinement 3C of {Va}. Let Xa be the union 
of all X e 9C,X a Va. Clearly {Xa} has the required properties. 

III. The necessity of (b) follows by induction from the condition (c) of the fore-
going Theorem 29 A.5. 

IV. It remains to show that (b) implies (d). Suppose (b). We have proved that (b) 
is sufficient and hence we can suppose that the space 0 is normal, i.e. that every two 
disjoint closed subsets of P are functionally separated. Let {Fa} be an open finite 
cover of P. By (b) there exists a closed cover {X,,} such that Xa <= F„ for each a. 
Choose a family {/„} of non-negative continuous functions on 3P such that fax = 1 
if x eXa and fax = 0 if x e (P — Va). Such a family exists because Xa and P —Va 
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are functionally separated for each a. Consider the function 

d = {<x, y) "L{\fax — fay\}} 

on P x P. Clearly d is a continuous pseudometric for It is easy to show that d 
is subordinated to {Va} with r = 1, that is, each open 1-sphere is contained in some 
Va. Indeed, if x e P, then x e X„ for some a; now, if y e (P — V), then | f a x — fay\ = 
= |l — 0| = 1, and hence d{x, y) 1, which implies that the open 1-sphere about x 
is contained in Va. By 24 E.11, {Va} is uniformizable. The proof is complete. 

29 A.7. A closed subspace of a normal space is a normal space. The sum of any 
family of normal spaces is a normal space. 

Proof. I. Let X be a closed subspace of a normal space P. Since the class of all 
topological semi-uniformizable spaces is hereditary, to prove that X is normal it is 
enough to show that every two disjoint closed subsets of X are separated in X. 
If Xi and X2 are closed and disjoint in X, then Xt and X2 possess the same property 
in P and hence, P being normal, the sets X1 and X2 are separated in P and thus 
in X. — II. Now let P be the sum of a family {Pa} of normal spaces. By 17 B.2 and 
26 B.1 P is a semi-uniformizable topological space since all Pa are such spaces. To 
prove P is normal, by 29 A.5 it remains to show that every two disjoint closed sub-
sets Xt and X2 of P are separated. If P'a is the image under the canonical embedding 
of Pa into P, for each a, then {Pa} is a disjoint open cover of P. For each a, the 
sets Xla = XLn P'a and X2a = X2 n P'a are closed in P'a. Since each P'a is normal, 
Xla and X2a are separated in P'a for each a. Thus we can choose families {Ula} and 
{U2a} such that Xia cz Uia <= P'a, Ula n U2a = 0 and Uia is open in P'a for each a. 
If 17; = (J{£/,„}, then are open in P, Ul n U2 = 0 and X{ <= [/¡, which shows 
that X1 and X2 are separated. 

On the other hand, we will show that the product of two normal spaces need not 
be normal (29 B.3), and that a subspace of a normal space need not be normal (29 B.6). 
Thus the class of all normal spaces is neither productive nor hereditary. From this 
fact it will follow that a uniformizable space need not be normal; indeed, the class 
of all uniformizable spaces is hereditary and productive and it contains the class of 
all normal spaces. Before proceeding to the examples in question we shall 
strengthen the first result of the foregoing theorem. 

29 A.8. Theorem. If X is a F^-subset of a normal space P, then the subspace X 
of P is normal. 

The proof of the theorem is based on the following lemma. 

29 A.9. Lemma. Every two semi-separated Fa-subsets of a normal space are 
separated. 

Indeed, clearly it is enough to show that every two disjoint closed subsets of X 
are separated, and this fact is obtained from the lemma as follows. Let X1 and X2 
be two disjoint closed subsets of X. By 20 A.3 they are semi-separated in X and 
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hence in P. Since clearly both sets Xt are Fff-subsets of P, they are separated in P (by 
the lemma), and hence in X, which establishes the theorem. 

Proof of 29A.9. Let X1 and X2 be two semi-separated Fff-subsets of a normal 
space P. By definition, 

( F n I 2 ) u ( ť n P ) = 0 and X1 = | n e N} 

where F^ are closed. It will suffice to construct sequences {[/̂  | n e N}, i = 1, 2, of 
open sets such that 

K = U'n and t / ; n [ / i = f 
for i 4= j and for each n, m e N. Indeed, if U' = | n 6 N}, then U' are open, 
U' => X' (i = 1, 2) and U1 n U2 = 0 because n UJ

n = 0 and C/'n = 0-
The existence of such sequences {Ul

n} will be proved by induction. Let Ice N and 
let {U'n | n < k] be sequences of open sets such that 

A) <= U'n for each n < k, i = 1,2. 
B) t / _ j n r = 0 for each n < k, i,j = 1, 2, i * j. 
C) t / j n U£ for each n, m < k, i 4= j. 

We shall find U'k, i = 1, 2, such that the conditions remain true with fc replaced by 
k + 1. Since P is topological, the set U | n < k} u Z 2 is closed and clearly dis-
joint with X1 (by B and P n X ' = 0), and hence with the closed set Fl <= X1. 
Since P is normal, there exists an open neighborhood of Fk such that 

U\ n (U{tŽf | n < k} u XI) = 0 . 
Similarly, the set X1 u | n ^ /c} is closed and disjoint with X2 and hence with 
the closed set F2. Since P is normal, there exists an open neighborhood of F2 

such that 
Ul n (\j{m \ngk}uX*) = <D. 

Obviously the conditions A) — C) are fulfilled with k replaced by k + 1. 
In conclusion we shall prove some important characterizations of a normal space 

which will imply the Urysohn-Tietze extension theorem. 
Recall that the relativization of the Čech proximity (uniformity) of a closure 

space 9 to a subspace 2, of 9 is proximally (uniformly) coarser than the Čech pro-
ximity (uniformity) of 2, and it follows from the next theorem that the relativization 
of the Čech proximity (uniformity) may be strictly coarser than the Čech proximity 
(uniformity) of a closed subspace. 

29 A.10. Theorem. Each of the following two conditions is necessary and suf-
ficient for a topological semi-uniformizable space 0> to be normal: 

(a) The Čech uniformity of each closed subspace of SP is the relativization of the 
Čech uniformity of 

(b) The Čech proximity of each closed subspace of SP is the relativization of the 
Čech proximity of 3P. 
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Proof. Evidently the conditions are always equivalent. Suppose (b); to prove 
that SP is normal, by 29 A.2, corollary, it is enough to show that each two disjoint 
closed sets X and Y are functionally separated, i.e. are distant relative to the Čech 
proximity of Let X and Y be closed and disjoint and consider the subspace 2 = 
= X u Y of SP. Since both X and Y are simultaneously closed and open in 2, they 
are necessarily functionally separated in 3 (the function which is 0 on Z and 1 
on Yis continuous) and therefore, by (b), they are distant with respect to the Čech 
proximity of Conversely, if SP is normal and X and Y are distant relative to the 
Čech proximity of a closed subspace 2 of then the sets Xx = X& and Yx = Ys 

are disjoint, and 2 being closed in SP, the sets and Yt are closed in SP. Since SP is 
normal, the sets X t and Yt are distant with respect to the Čech uniformity of 

29 A. l l . Theorem. In order that a topological semi-uniformizable space 0 
be normal it is necessary and sufficient that every bounded continuous function 
on any closed subspace of SP have a continuous domain-extension on SP. 

Proof. If the condition is fulfilled and X and Yare disjoint closed subsets of SP, 
then clearly the function / on the subspace Q = X u Y of SP, which is 0 on X and 
1 on Y, is continuous and bounded; and if g is a continuous extension off on SP, then 
g is 0 on X and 1 on Y and therefore X and Y are functionally separated in SP. By 
29 A.2, SP is normal. Conversely, if SP is normal and / is a bounded continuous func-
tion on a closed subspace 2 of then / is uniformly continuous with respect to the 
Čech uniformity of 2, which is the relativization of the Čech uniformity of SP (by 
29 A.10) and therefore, by 25 F.2,/ is the restriction of a uniformly continuous function 
on <%} where is the Čech uniformity of SP. 

29 A.12. Urysohn-Tietze extension theorem. Every continuous function on a 
closed subspace of a normal space 0 has a continuous domain-extension on SP. 

Proof. For bounded functions the theorem follows from 29 A.11. The general case 
is easily reduced to this case, see ex. 4. 

B. EXAMPLES 

Here we shall show that a subspace of a normal space need not be normal and the 
product of two normal spaces need not be normal. Up to now we only know one 
example of a normal space, namely, by Corollary of 29 A.5, every pseudometrizable 
space is normal. The class of all pseudometrizable spaces is hereditary and closed 
under countable products and therefore we must look for a different kind of normal 
spaces. 

29 B.l . Theorem. Every generalized ordered space is normal. 
Proof. Let u be a generalized closure for a monotone ordered set <P, Since 

u is a separated (27 A.5 (a)) topological closure (15 A.14), to prove that u is normal 
it is enough to show that every two disjoint closed subsets Xx and X2 of <P, u) are 
separated. Suppose that Xt and X2 are disjoint closed subsets of <P, u). 
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I. Consider the relation 

g = E{<x, ^ l l M l u l p J c i - ^ u X j ) } . 

It is easily seen that g is an equivalence on G = P — (X1 u X2). Let / : G/g -»• G be 
a mapping such that/R e R for each equivalence class R e G/g. 

II. We shall construct families {Ut (x) | x e i = 1,2, such that Ut (x) is a neigh-
borhood of x and Uf = | x i = 1, 2, are disjoint neighborhoods of 
Xt and X2. 

III. Fix i = 1, 2 and let j 4= i, j = 1,2 (thus i = 1 and j = 2, or i = 2 and j = 1). 
Let x be a fixed element of Xh The neighborhood Ut (x) will have the form U~[(x) u 
u l/t(x). For the sake of brevity we shall write simply U, U* and U~. First we shall 
define U~ : (a) If the point x is left-isolated, then U~ = (x). (b) If each neighborhood 
of x contains at least one y eXh y < x, then U ~ = ] y, x ] where y is a point of 
Xi, such that y < x and Xj n ] y, x [ = 0. Such a point y exists because P — Xj 
is a neighborhood of x. (c) In the remaining case, the point x is not left-isolated and 
there exists a neighborhood V of x such that x is the least element of F n X, (i.e. 
[ <-, x ] n Vn X; = (x)). Since P - Xj is a neighborhood of x, the set W = V — Xj 
is a neighborhood of x. If y eW, y < x, then clearly ye G. Since x is not left-isolated 
we can choose a y < x, y e G n W. The point y belongs to an equivalence class 
g\_y\ and we define U~ = ] z ,x] , where z = fg[y\ Since y < x and <z,y} eg, 
we find that z < x. The set U+ is defined similarly; moreover, it is enough to replace 
left-isolated, y < x, least element, U~ by right-isolated, x < y, greatest element, U + , 
respectively. 

IV. We must show that n U2 = 0. Clearly, t ^ n X2 = U2 |n Xt = 0. If 
y eUi n G (i = 1, 2) then one of the following three cases obtains: (a ¡) there exist 
xkeXi, k = 1,2, such, that c ] xu x2 [ <= P - Xy, (b;) y > fg[y\, and there 
exists inf {x | x e (Xx u X2), x > fg[y]} and it belongs to Xt; (c,) y < fg\y\ and 
sup {x | x e (Xt u X2), x < /^[y]} e Xt. The straightforward verification is left to 
the reader. From this it follows at once that U t r \U 2 = 0. The proof is complete. 

A subspace of a generalized ordered space is a generalized ordered space and there-
fore, by the preceding theorem, each subspace of a generalized ordered space is 
normal. On the other hand the product of two generalized ordered spaces need not 
be normal. We shall need the following simple proposition which is often used to 
prove that a space is not normal. 

29 B.2. / / * is a normal space of a density character m ^ N0 and ifX is a closed 
discrete subspace of then 

exp card X g (exp K0)m . 

In particular, if 9 is a normal space with a countably infinite density character 
and X is a closed discrete subspace of 0>, then 

exp card X g (exp = exp . 
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Proof. Let us consider a dense subspace Y of SP of cardinal m. By 27 A.8, coroll-
ary, the cardinal of C(0, R) is at most (exp X0)m = (card R)m which is the cardinal 
of the set of all functions on Y. Now let X be a closed discrete subspace of If 
Z c X, then Z is closed in X and hence, X being closed in SP, Z is closed in SP. 
Since 0 is normal, every two disjoint closed subsets of 0 are functionally separated; 
therefore, for each Z c X, we can choose a continuous function fz on SP which is 
0 on Z and 1 on X — Z. Clearly {Z / z } is a one-to-one mapping of exp X into 
C.(SP, R). Consequently the cardinal of exp X is at most that of C(0, R) which is, as 
has been proved above, at most (exp X0)m. 

29B.3. Example. Let SP = <R, u> denote the set of reals endowed with the 
closure of the right-approximation; i.e., given an x, the collection E{ [ x, y [ [ x < y) 
is a local base at x in & B y 29 B.1 the space 0 is normal. We shall prove that the 
product space 0 x SP is not normal. Consider the set X consisting of all pairs 
<x, — x), x e R. It is easily seen that X is closed in SP x SP, e.g. it is enough to prove 
that X is closed in R x R; the diagonal D of R x R is closed in R x R and {<x, 
-» <x, — y>} : R x - R - * R x R i s a homeomorphism which carries X into D. Next, 
X is a discrete subspace of SP x SP. Indeed, the set U = [ x, -»• ] x [ — x, -»• ] is 
a neighborhood of <x, — x) in SP x SP, and U r\X = (<x, — x>) because x < y 
implies — y < —x. Thus 8? x SP contains a closed discrete subspace of cardinal 
exp X0. Now it follows from 29 B.2 that 0 x 0 is not normal provided that the den-
sity character of SP is countable. Clearly the set Q of rational numbers is dense in SP 
and hence Q x Q is dense in SP x SP. Since Q is countable, Q x Q is also coun-
table, and the space SP is not normal. 

To prove that the class of all normal spaces is not hereditary we must look for 
yet another kind of normal spaces, because each subspace of a generalized ordered 
space is a generalized ordered space and so certainly a normal space. 

29B.4. The following condition is sufficient for a regular topological space 0 
to be normal: each net in 8P has an accumulation point. 

Proof. Assuming that some disjoint closed subsets XY and X2 are not separated 
we shall derive a contradiction. Let 3C{ be the neighborhood system of Xi in SP and 
let SC = [ ^ i ] n [£f2] (= n t/2 | [7f e 3fJ). By our assumption 3C is a proper 
filter of sets on SP. Let x be an accumulation point of a net N = ({Nx | X e =>), 
where Nx e X. The net N is frequently in each neighborhood of Xh i = 1, 2, and there-
fore, SP being regular and being closed, x eX ; . Thus Xt n X2 + 0 which contra-
dicts our assumption n X2 = 0. 

29 B.5. Remark. A space 0 satisfying the condition of 29 B.4 is said to be com-
pact. Thus 29 B.4 can be stated as follows: every compact topological regular space 
is normal. It should be remarked that compact spaces will be investigated in Section 
41. By 15 B.16 every order-complete ordered space is compact. We shall need the fol-
lowing important result: The product SP of a family \SPa | a e A} of compact spaces 
is a compact space. Let N be a net in SP. By 15 ex. 5, there exists a generalized subnet 
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M of N such that M is an ultranet in 8P, i.e., M is eventually in X or in — X 
for each X <=• \SP\. For each a in A let Ma = pr„ o M. Evidently Ma is an ultranet in 
8Pa for each a. Choose an x in 0* such that prfl x is an accumulation point of M„ in 
3Pa for each a. Since M„ in an ultranet, pra x is a limit point of Ma and therefore x 
is a limit point of M. Thus x is an accumulation point of N. 

29B.6. Every separated uniformizable space is a subspace of a normal space, 
namely of a homeomorph of a cube [ 0, 1 this latter is normal by 29 B.4 because it 
is uniformizable and, by 29 B.5, each net has an accumulation point. On the other 
hand, a separated uniformizable space need not be normal because the product of two 
separated normal spaces is uniformizable but need not be normal (by 29 B.3). Thus 
the class of all normal spaces is not hereditary. 

Further examples seem to be in place. 
29 B.7. For each ordinal a let Ta denote the set of all ordinals less than a, en-

dowed with the order closure. By 29 B.1 every Ta is a normal space. It is easily seen 
that Tais a subspace of each a < /}. We shall prove that 

(a) the product space 9 = Tai x Tai + 1 is not normal, and 
(b) the product space 2 = TWI + 1 x Tai + 1 is normal. 
Thus we obtain further example of two normal spaces whose product is not 

normal, and an example of a normal space (namely 2) containing a non-normal 
space, namely 8?. 

The ordered set Ta)i + 1 is order-complete and therefore, by 29 B.5, the space 
Tmi + 1 and hence, again by 29 B.5, the space 2, fulfils the condition of 29 B.4. Since 2 
is uniformizable, 2 is normal by 29 B.4. 

To prove that the space 8P is not normal it is sufficient to show that the sets 
X = E{<a, cox) | a < q)x} = TWl x (a^) and Y = E{<a, a) | a < a^} are not separ-
ated in Indeed, the sets X and Fare obviously disjoint, X is closed as the product 
of two closed sets, namely Tmi and (a^), and 7 is closed by 27 A.7 because Tmi + 1 is 
separated. To show that X and Y are not separated it is sufficient to prove that 
U n y 4= 0 for each neighborhood U of X. Let U be a neighborhood of X. By in-
duction one can easily prove that there exists a sequence {<a„, /?„>} in U such that 
a„ g /?„ g an + 1 for each n e N. Let a be the least upper bound of the sequence {a„} 
in Tmi. The least upper bound exists because Tmi, as each well-ordered set, is boundedly 
order-complete, and each countable family in Tmi is bounded because co1 is not cofinal 
with co0. By definition of the order closure, the sequence {a„} converges to a in T0Jl. 
Clearly a = sup {/?„}, and hence the sequence {/?„} converges to a in Ta>r It follows 
that the sequence {<a„, /?„>} converges to <a, a) in 8?. But <a„, /?„> e U for each n 
and hence <a, a) 6 V. Thus Y n U 4= 0, which completes the proof. 

Remark. If a is any ordinal which contains no countable cofinal subset, then 
Tx x Ta+1 is not normal. The proof of 29 B.7 applies. 

Now we shall show that a non-normal space may be obtained from a normal space 
by removing one point. 
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29 B.8. Let 0 and 2 be closure spaces such that 2 is infinite, the cardinal of 0 
is greater than that of 2,0 has exactly one cluster point, say x, and the complements 
of neighborhoods of x are finite, and the space 2 also has exactly one accumulation 
point, say y, and complements of neighborhoods of y are finite. 

Evidently each net in 0 has a constant subnet or converges to x and therefore each 
net in 0 has an accumulation point. The same argument yields that each net in 2 
has an accumulation point. By 29 B.5 each net in the product space 0 x 2 has an 
accumulation point. Since both 0 and 2 are regular, the spaced x J is also regular. 
By 29 B.4 the product space 0 x 2 is normal. We shall prove that the subspace 
0 of 0 x 2, whose underlying set is (\0\ x |i>|) — (<x, >>>), is not normal. Consider 
the sets 

X = (\0\-(x))x(y), y=(*)x(|j| -(>•))• 

Clearly X n Y = 0 and it is easily seen that both sets are closed in 0, and we shall 
show that X and Y are not separated in 0t. It is sufficient to show that the closure 
of any neighborhood U of Y intersects X, and this will be proved by showing that 
(z) x (| — (_y)) is contained in U for some z in \0\ — (x) because then the point 
<z, _y> belongs to both X and the closure of U. For each t in \2\ — (y) there exists 
a finite subset Ft of \0\ such that (\0\ - F,) x (i) <= U. The cardinal of the set 
F = U{f, 11 6 i 4= J7} is at most that of \2\, and hence less than the cardinal 
of \0\. Thus the set \0\ - F is infinite and any point z e (¡0\ - F), z #= x, has the 
required properties. 

29 B.9. The proof of the fact that the space 0 of 29 B.8 is not normal can be 
applied in a more general situation: Let 0 and 2 be semi-separated spaces, x e ¡0j, y 
be a cluster point of 2 and suppose that the singleton (x) is not the intersection of 
a family of its neighborhoods such that the cardinal of the index set is at most the 
cardinal of 12\. Then the disjoint closed subsets X and Yof 0 are not separated in 0, 
where X, Yand 0 are defined as in 29 B.8. For example, the space (Tmi +1 x Tl0o+l) — 
— (((Ox, co0y) is not normal, and more generally, (Tx+1 x Tfi+i) — «a , /?>) is not 
normal whenever /? is a limit ordinal and ¡3 > a is not cofinal with a. 

Remark. The space 0 of 29 B.8 can be used for a construction of a regular topo-
logical space which is not uniformizable. This construction requires the concept of 
the quotient of a closure space under an equivalence; this will be introduced in 
Section 33, where the construction in question and also a construction of an infinite 
regular separated topological space without non-constant continuous functions will 
be given. 

29 B.10. Non-normali ty of products with one point removed. By 29 B.5 
each cube 0 = [ 0, 1 is a normal space. On the other hand we shall show that the 
subspace 0 — (x) of 0 is not normal for each x e \0\ whenever X 2: exp X0. First 
we shall show that removing some point from a Cantor space 2s, X ^ exp X0, we 
obtain a space which is not normal; more precisely 
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(a) Let 2 denote the set (0,1) endowed with the discrete closure y, and let 0 be the 
point of the product space 2 s (the so-called Cantor space) such that each of its coor-
dinates is zero. 7 / K ^ exp then the subspace 9 of 2*, whose underlying set is 
2K —(0), is not normal. 

It is evident that we may assume that X = exp K0. Let A be a set of cardinal exp K0 

and let * = 2A — (0). Let us consider the set X consisting of all points xb, b e A, 
where pra xb = 0 if a 4= b and pr t xb = 1. It is easily seen that X is a closed discrete 
subspace of * . Evidently the cardinal of X is exp K0. By 22 ex. 1, the density 
character of the space 2A and therefore of * is X0. By 29 B.2 the space * is not normal. 

(b) Let {*a | a e A} be a family of semi-separated spaces such that each 9„has 
at least two points. If SP is the product of {*„}, x is a point of 9 and the cardinal 
of A is at least exp K0, then the subspace 9 — (x) of 9 is not normal. 

Let us choose a point y such that pra x 4= pra y for each a. Let / be a mapping 
of the Cantor space 2A into SP which assigns to each z the point whose a-th coordinate 
is pra x if pra z = 0 and pra y if prfl z = 1. Evidently / is an embedding and /0 = x. 
Since clearly Ef is closed in 9, Ef — (x) is closed in \9\ — (x). Finally, Ef - (x) is 
not normal because 2A — (0) is not normal. As a consequence, \9\ — (x) is not normal. 

C. COVERS OF NORMAL SPACES 

By theorem 29 A.6, if {l/a} is a finite open cover of a normal space* then there exists 
an open cover {Va} o f * such that the closure of Va is contained in Ua for each a. 
This result permits the following essential generalization. 

29 C .1. Theorem. Let \Ua\aeA} be a point-finite open cover of a normal 
space 9. There exists an open cover {Va | a e A) of 9 such that Va <= Uafor each 
a in A. 

Remark. By 29 A.6 the property of normal spaces stated in 29 C.1 characterizes 
normal spaces in the class of all topological semi-uniformizable spaces. 

Proof. I. Let {Xa | a e A} be an open cover of * such that Xa <= Ua for each a 
and let be A. We shall prove that there exists an open cover {Ya} such that Ya = X„ 
for each a 4= b and Yb c Xb. Let X be the union of all Xa, a 4= b. Clearly, (X, Xb) 
is an open cover of * and therefore, * being normal, we can choose an open set Yb 
such that Yb a Xb and (X, Yb) is a cover o f * . Clearly { Ya} has the required property. 
The remaining part of the proof does not depend on normality and may be applied 
in a more general situation (see ex. 5). 

II. Let us consider the set F of all open covers {Xa | a e A} of * such that, for 
each a in A, either Xa <= Ua or Xa = Ua. For each {Xa} and {Ya} in F let {Xa} < 
-< {Ya} if and only if Xa => Ya for each a and Xa = Ya whenever Xa a Ua. Clearly 
the relation -< orders F . It follows from I that any maximal element {Xa} of <Jr, -<> 
is the required refinement of {Ua}. Indeed, assuming that Xb is not contained in Ub, 
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then Xb = Ub (because {Xa} e J5") and clearly the cover {Ya} of I follows {Xa} in 
(J5", <>; but, clearly, {Xa} does not follow {Ya} and hence {Xa} is not a maximal 
element, which contradicts our assumption. Thus the proof will be complete if we show 
that there exists at least one maximal element of (3F, -<>. To prove the existence 
of a maximal element it is sufficient to show that each non-void monotone set in 

-<> has an upper bound. 

III. Let <8 be a non-void monotone set in -<>. Thus, if 3C e <8, <W e <8 then 
2C < <y or <y < 9C. For brevity we shall write 3C = {3Ta | a e A} for each 3C in <8. 
For each a in A let Za = \ 3C e <8}. We shall prove that 2£ = {Za} is an upper 
bound of 0 in «<>. If a e A, then either i£a = Ua for each SC in <8 or Wa <= Ua 

for some 3C in <8 and then a = 3Ca for each >3C and hence Za = Wa. It follows 
that the set Za is open, Za = Ua or Za <= Ua, and finally, if 3C e <8 then Za c 3Ca, 
and 3Ca <= Ua implies that Za = 9Ca. As a consequence it remains to prove that {Za} 
is cover of 0 and this follows from our assumption that {Ua} is point-finite. Assume 
that a point x of 0 belongs to no Za. There exists a finite subset B of A such that no 
Ua, a e A — B, contains x. It is self-evident that, for each b in B, there exists an S£b 

in 'S such that 2Cb
b does not contain x. Since {¿£b | b e B} is a finite family in ^ 

and ^ is monotone, we can choose an 3C in ^ following each 3Cb, be B. Since SCb <=. 3C\, 
the set 3Cb does not contain x for any b in B. If a e A — B, then Ua does not contain 
x, and hence 3£a ( c Ua) does not contain x. Thus no 9Ca, a e A, contains x; this 
contradicts our assumption that 3C is a cover of The proof is complete. 

29 C.2. Theorem. Every locally finite open cover of a normal space is uniform-
izable. 

The proof follows from 29 C.1 and the following lemma. 

29 C.3. Let {Xa \ a e A} be a locally finite cover of a closure space 0 and let 
{Ya \ ae A) be a cover of 0 such that Ya and \SP\ — Xa are functionally separated 
for each a in A. Then {Xa} is a uniformizable cover of SP. 

Indeed, if {[/a} is a locally finite open cover of normal space 3P, then by virtue 
of 29 C.1 there exists a cover {Ya} of 0 such that Fa c Ua for each a. Since 8? is 
normal, the sets Ya and \8P\ — Ua are functionally separated for each a. By 29 C.3 the 
cover {[/a} is uniformizable. 

Proof of 29 C.3. For each a in A let us choose a non-negative continuous func-
tion fa such that fax = 1 if x e Ya and/ax = 0 if x e \8P\ — Xa; consider the relations 
dg = {<x, -* | f„x — fay\ | <x, y} e 0 x 0). Each da is a continuous pseudometric 
for Let d = £{da | a e A}. It will be shown that d is a continuous pseudometric 
for 8P which is subordinated to the cover {X,}; by 24 E.11 it will follow that the cover 
{Xa} is uniformizable. 

Clearly d is a pseudometric for 8P. To prove that d is a continuous pseudometric 
it is enough to show that d is a continuous function on 0 x Let <x, y> be any 
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point of 9 x 3P. Since {Xa} is locally finite and each fa vanishes on\&\ — X„, we can 
choose a finite subset A0 of A and neighborhoods U of x and F of y such that all 
fa, a e A — A0, vanish on both sets U and F, and hence daz = 0 if z eU x F and 
a e A — A0. It follows that if <x', y')eU x F, then 

d(x', / > = l{rfa<x', / > | a e A0} . 

Thus the restriction of d to U x Fis the sum of a finite family of continuous func-
tions, namely of restrictions of da to U x F with a in A0. Therefore the restriction 
of d to U x F is a continuous function. We have proved that each point of 9 x 9 
possesses a neighborhood Wsuch that the restriction of d to IF is continuous; thus 
d is continuous on 9 x 

It remains to prove that d is subordinated to {XJ, that is, each open 1-sphere 
(relative to d) is contained in some Xa, a e A. Let x be any point of 0>. Choose an a 
in A so that x e Ya. By the choice of /„, da(x, y) < 1 implies y e Xa. Indeed, 
da<x, = |fax - fay\, fax = 1 and >> e ( |* | - X„) implies fay = 0. It follows that 
d(x, y} < 1 implies yeXa. Indeed, d(x, y> < 1 implies da(x, y} < 1 because 
da g d. 

If a cover °U of a space is refined by a uniformizable cover, then H is uniformizable. 
If follows from 29 C.2 that a cover of a normal space is uniformizable provided 
that it is refined by an open locally finite cover. It seems appropriate to prove here 
that any uniformizable cover of any space is refined by a locally finite open cover. 
The proof of this fact is rather complicated. We begin with a definition. 

29 C.4. Definition. A family {Xa | a e A) of subsets of a closure space * is said 
to be a-point-finite or a-discrete if there exists {A„ \ n e N} such that A = U{^„} 
and each family \Xa | a 6 A„), n e N, is respectively point-finite or discrete. 

Let us recall that a family {X„ | a e A} of sets is called a-locally finite if A = 
= s u c h that each family {Xa | y s An} is locally finite. 

The definitions of locally countable and point-countable families are evident. Any 
(j-locally finite family is tr-point-finite, and therefore point-countable, but need not 
be locally countable. In the converse direction, a locally countable family need not 
be (T-point-finite, and therefore a point-countable family need not be a-point-finite. 

For example, let 9 be the space Tmi of countable ordinals and let us consider 
the family [x] | x e*} . This family is locally countable (E{a | a g ¡1} is a re-
quired neighborhood of j8) but not u-point-finite. 

29 C.5. Theorem. If 11 is a uniformizable cover of a closure space then there 
exists a locally finite o-discrete open refinement {Xa \ a e A} of 11 and a cover 
{Ya| aeA} of SP such that the sets Ya and — Xa are functionally separated 
for each a in A. 

Combining 29 C.5 with 29 C.3 we immediately obtain the following fundamental 
characterization of uniformizable covers. 
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29 C.6. Theorem. In order that a cover of a closure space 8? be uniform-
izable it is necessary and sufficient that there exist covers {X01 a e A} and 
{Ya \aeA} of 9 such that {ATa} is a locally finite refinement of and the sets Y„ 
and |*| — Xa are functionally separated for each a in A (moreover, the sets Xa 

may be required open). 
Combining 29 C.5 with 29 C.2 the following fundamental characterization of 

uniformizable covers of normal spaces is immediately evident. 

29 C.7. Theorem. A cover of normal space is uniformizable if and only if it is 
refined by a locally finite open cover. 

The proof of Theorem 29 C.5 is an immediate consequence of the following 
theorem stating one of the most profound properties of pseudometrizable spaces. 

29 C.8. Theorem. Each interior cover of a pseudometrizable space is refined 
by a o-discrete locally finite open cover. 

Indeed, let H be a uniformizable cover of a closure space <P, u). By 24 E.11 there 
exists a continuous pseudometric d for <P, u> which is subordinated to that is, 
the identity mapping of <P, u) onto <P, d} is continuous and each open 1-sphere 
is contained in a member or an element of 11. Clearly 1i can be regarded as an interior 
cover of the pseudometric space <P, d}. Indeed, if x e P, then the open 1-sphere 
about x is contained in some member or element U of 1l, and hence x belongs to the 
interior of U in <P, d). Now let {Xa} be a c-discrete locally finite open refinement 
of the cover 1l of <P, d} (such a cover exists by virtue of 29 C.8). Since the space 
<P, d) is normal, there exists a cover {Ya} of <P, d> such that the sets Ya and P — Xa 
are functionally separated (in <P, d}) for each a e A. Since the identity mapping of 
<P, u> onto <P, d} is continuous, the covers {Xa} and {Ya} of <P, u> possess the 
required properties. 

Proof of 29 C.8. Let {U„ | a e A} be an open cover of a pseudometric space <P, d}. 
Let g be a well-order for the set A. For each fc = 1, 2, . . . and each as A let 

Xak = E{x | dist (x, P - 17.) ^ fc"1, b < a => x t Ub} , 

xk = U{Xfl* \aeA). 
We shall prove that {Xak \ ae A, /ce(N— (0))} is a cover of P. Given x e P, choose 
the least a such that x e Ua; the distance from x to P — Ua is positive (remember 
that Ua is open) and therefore greater than k~1 for some k = 1,2,.... Since the point x 
belongs to no Ub with b < a, x belongs to Xak. Next, notice that no open l/2fc-sphere 
about a point intersects two different Xak. Indeed if a < b then the distance from Xak 
to Xbk is greater than or equal to the distance from Xak to P — Uak ( 3 Xbk), which 
is at at least fc"1. Finally, let Vak be the open l/3fc-sphere about Xak, Yk the closed 
l/4fc:sphere about Xk and Wak = Vak - (J{50 = 1,..., fc - l}. We shall prove 
that {Wafc} is the required refinement of {Ua}. Each set Wak is open as the difference of 
an open set Vak and a closed set | j = 1, ..., fc — 1}. Evidently, Wak c Ua for 

34—Topological Spaces 
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each a and k and hence {Wak} refines {l/a}. Next, each family {Wak\aeA} is 
discrete. It is enough to show that the family {Vak | a e A} is discrete and this follows 
from the fact that no open l/6fc-sphere intersects two distinct Vak (remember that 
no open 1/2/c-sphere intersects two distinct Xak, and Vak\s the open 1/3/c-sphere about 
Xak). Now we shall prove that {Wak} is locally finite. Given x in P let us choose a k 
such that xeXk, and let us consider the open 1/4-sphere U about x. Since U <= Yk, 
U intersects no WttJ with j > k. Since the families {Waj | a e A} are discrete we can 
choose neighborhoods Gj of x,j = 1,..., k, such that G} intersects at most one Waj. 
Then clearly U n C\{G} | _/ g k} is a neighborhood of x which intersects at most k 
distinct WaJ. It remains to show that {Wak} is a cover of P, and to prove this it is suf-
ficient to demonstrate that Yk c \j{Waj | a e A, j g k} because and hence 
{Yt} covers P. The inclusion is evident for k = 1 and therefore it is sufficient to show 
that Yk — Yk_l <= \j{Waj | a e A, j g k} for each k > 1. However, this is also 
evident. 
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30. H E R E D I T A R Y A N D P E R F E C T N O R M A L I T Y . 
PARACOMPACTNESS 

It has already been shown that a subspace of a normal space need not be normal. 
In the first subsection hereditarily normal spaces, i.e., spaces such that every sub-
space is normal, will be studied. An important class of hereditarily normal spaces is 
formed by the so-called perfectly normal spaces which are defined as normal spaces 
each open subset of which is an Fff. In the second subsection we shall derive the 
Bing-Nagata-Smirnov metrization theorem. Subsection C is concerned with the 
development of properties of paracompact spaces (semi-uniformizable and topo-
logical spaces such that every open cover is uniformizable). Every paracompact space 
is normal but a normal space need not be paracompact, and moreover, a perfectly 
normal space need not be paracompact. Neither a subspace of a paracompact space 
nor the product of two paracompact spaces need be paracompact. 

In subsection D we show that the product of a metrizable space with a hereditarily 
paracompact space need not be normal; however, the product of a perfectly normal 
space with a hereditarily normal space is hereditarily normal. 

In the final subsection E we shall study locally determined and relatively locally 
determined collections of sets in a paracompact or hereditarily paracompact space. 

A. HEREDITARILY NORMAL AND PERFECTLY 

NORMAL SPACES 

30 A.l. Definition. A closure space SP is said to be hereditarily normal if each 
subspace of SP is normal. 

30 A.2. Every hereditarily normal space is normal and every pseudometrizable 
or generalized ordered space is hereditarily normal. 

Proof. The subspace SP of a space SP is homeomorphic with the space SP, and con-
sequently each hereditarily normal space is normal. Since the classes of all pseudo-
metrizable spaces and of all generalized ordered spaces are hereditary and they are 
contained in the class of all normal spaces (corollary of 29 A.5 and 29 B.1) the rest 
of the statement follows. 

34» 
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30 A.3. Theorem. The class of all hereditarily normal spaces is hereditary and 
closed under sums. The product of two hereditarily normal spaces may fail to be 
a normal space. 

Proof. Obviously each subspace of a hereditarily normal space is hereditarily 
normal. If * is the sum of a family {*a} of spaces, then each subspace o f * is the sum 
of a family {£„}, where each SLa is a subspace of * a (of course, J a may be empty). 
Since the sum of normal spaces is a normal space, invariance under sums follows. 
Let * be the ordered set R endowed with the closure of right-approximation. By 
29 B.3 the product space * x * is not normal, and by 30 A.2 the space * is hereditari-
ly normal. 

30A.4. Theorem. Each of the following two conditions is necessary and suf-
ficient for a topological spaced to be hereditarily normal: 

(a) Every open subspace of * is normal. 
(b) The space SP is semi-uniformizable and every two semi-separated subsets 

of * are separated. 
Proof. Obviously condition (a) is necessary. If condition (b) is fulfilled, then 

* is normal, because every two disjoint closed sets are semi-separated. Since con-
dition (b) is hereditary, it is possessed by each subspace when possessed by the space, 
thus the space satisfying (b) is hereditarily normal. It remains to prove that (a) implies 
(b). Suppose (a) is true and .X^ and X2 are two semi-separated subsets of that is, 
(X^ n X2) u (Xx n X2) = 0. We must show that the sets Xx and X2 are separated. 
Now consider the subspace SL = |*| — (Xl n X2) of The space * being topo-
logical, SL is open in By our assumption J is normal. The sets Y; = |i2| n X t are 
relatively closed (i.e. closed in St). It is easy to show that Yt n Y2 = 0. The space SL 
being normal, there exist open sets U1 and U2 in 2L such that Y; <= t/f and U1 nU2 = 
= 0. But J is open in * and consequently the sets Uh being open in H, are open in 

this means that the sets Yt and Y2, and hence also the sets Xl c Y, and X2 a Y2, 
are separated in 

Now we proceed to an investigation of perfectly normal spaces. 

30 A.5. Definition. A closure space * is said to be perfectly normal if * is normal 
and each open subset of * is an F„, or equivalently, if * is normal and each closed 
subset of * is a 

30 A.6. Theorem. Every perfectly normal space is hereditarily normal. The 
class of all perfectly normal spaces is herediiary and closed under sums. The 
product of two perfectly normal spaces need not be normal. 

Proof. I. Every perfectly normal space is hereditarily normal by theorem 29 A.8 
asserting that an Fff-subspace of a normal space is normal and theorem 30 A.4 asserting 
that a space is hereditarily normal provided that each open subspace is normal. — 
II. If * is perfectly normal and SL is subspace of then 2L is normal since * is here-
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ditarily normal by I, and if U is an open subset of 2, then there exists an open subset 
F of SP such that F n \2\ = U (because SP is topological); since SP is perfectly normal, 
Fis an Fff in SP and hence U = F n \2\ is an Fff in 2. — III. The proof of invariance 
under sums is left to the reader. — IV. The set R of reals endowed with the closure 
of right-approximation is perfectly normal (it is normal by 29 B.1 and each open 
set is an Fff by 22 ex. 2). The product R x R is not normal by 29 B.3. 

By Definition 28 B.1, a subset X of a closure space 0 is called exact closed (exact 
open) if X = / - 1 [ 0 ] (X = / _ 1 [ R - (0)]) for some continuous function / on 
For properties of exact closed and exact open sets consult subsection 28 B. By 28 B.2 
every exact closed set is a closed and every exact open set is an open Fff. If the 
space is normal then also the converse is true, as states the proposition which follows. 

• 'H rMifttSL.* 
30 A.7. If SP is a normal space then a subset X of 0 is exact closed if and only if 

X is a closed G¡-subset of and a subset X of SP is exact open if and only ifX is 
an open Fa-subset of SP. 

Proof. The "only if" parts have already been proved. I. Let X be a closed G^ in a nor-
mal space SP and X = P){^„ | n e N} where U„ are open. The space SP being normal, 
for each n the sets X and \SP\ — U„ are functionally separated. By 28 B.4 we can 
choose exact closed sets Z„, n e N, such that X <= Z„ c U„ for each n. Now clearly 
X = f\{Zn], The set X is exact closed by 28 B.2 as the countable intersection of exact 
closed sets. 

II. If X is an open Fa, then \0>\ - X is a closed Ga, and by I, \SP\ - X is exact 
closed which implies that X is exact open. 

It follows from 30 A.7 that each closed subset (each open subset) of a perfectly 
normal space is exact closed (exact open, respectively). We shall prove somewhat 
more. 

30A.8. Theorem. Each of the following conditions is necessary and sufficient 
for a semi-uniformizable topological spaced to be perfectly normal: 

(a) Each closed subset of SP is exact closed. 
(b) Each open subset of SP is exact open. 

Proof. Clearly conditions (a) and (b) are equivalent, as it has been noted above, 
and proposition 30 A.7 implies that (a) is necessary. It is now sufficient to show that, 
for instance, (a) is sufficient. Suppose (a). We must prove that the space is normal, 
and since 0 is a semi-uniformizable topological space, by virtue of 29 A.5 it is enough 
to show that every two disjoint closed subsets of 0 are functionally separated. But 
this follows from the proposition 28 B.4 which asserts that every two disjoint exact 
closed sets are functionally separated. 

30 A.9. Every pseudometrizable space is perfectly normal. 
Proof. By 28 B.3 every closed subset of a pseudometrizable space is exact closed. 
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B. M E T R I Z A T I O N 

By definition a closure space <P, u> is pseudometrizable if the closure u is induced 
by a pseudometric. Thus the pseudometrizable spaces are defined by requiring the 
existence of certain real-valued relations. On the other hand, by 24 A.4, a space 
<P, u> is pseudometrizable if and only if the closure u is induced by a uniformity 
with a countable base; this characterization does not depends on the space of reals, 
but it uses the concept of a uniformity. Here we shall give a purely topological char-
acterization of pseudometrizable spaces which is due to R. Bing, J. Nagata and 
J. Smirnov. 

30 B.l. Metrization Theorem. Each of the following two conditions is necessary 
and sufficient for a regular topological space to be pseudometrizable: 

(a) 9 possesses a o-discrete open base. 
(b) 9 possesses a o-locally finite open base. 

30 B.2. Corollary.In order that a regular topological spaced be a pseudometriz-
able space with a countable density character it is necessary and sufficient that 2P 
have a countable open base. 

Proof. Let * be a regular topological space. If * has a countable open base, 
then 8? is pseudometrizable by 30 B.1 because evidently every countable family is 
<7-discrete, and * has a countable density character because the density character is 
always less than or equal to the total character. Conversely, if 8? is a pseudometrizable 
space with a countable density character, then the total character of * is countable by 
22 A.8. It is to be noted that this part of the proof can also be derived directly from 
30 B.1; it is sufficient to notice that if a closure space has the density character 
m ^ K0 and {Ua | a e A} is a locally finite family of non-void open sets, then the 
cardinal of A is at most m (see 22 ex. 2). 

Proof of 30 B.1. Every ^-discrete family is <r-locally finite and hence (a) implies (b). 
It will be shown that (a) is necessary and (b) is sufficient. The necessity of (a) is an 
immediate consequence of Theorem 29 C.8. Indeed, suppose that * is pseudo-
metrizable and choose a pseudometric d inducing the closure structure of 8?. For 
each n = 1, 2 , . . . let <%„ be the cover of <|*|, d) consisting of all open 1/n-spheres 
and let f , be a er-discrete open refinement of °Un. Clearly the union "V of all f"„ 
is a <7-discrete collection of open sets. It is easy to show that "V is an open base for* . 
Indeed, if IT is a neighborhood of a point x, then some r-sphere U about x is con-
tained in W. Choose an n so that 2[n < r and a V in "Vn such that xeV. Clearly 
x e V <= U <= W. The proof of the sufficiency of condition (b) is based on the fol-
lowing lemma which will be needed later and which implies that a regular topological 
space satisfying condition (b) is normal. 

30 B.3. Lemma. Let Xx and X2 be two subsets of a closure space 8P such that, 
for each collection % of subsets of 8P which interiorly covers Xl <uX2 (i.e. the 
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interiors cover Xx u X2), there exists a a-locally finite family which also interiorly 
covers u X2 and refines H. If the sets (x) and X{ are separated provided that 
x eXj,j =|= i, then the sets and X2 are separated. In particular, if 8P is a regular 
topological space such that each open cover ofSP has a o-locally finite open refine-
ment, then every two disjoint closed sets are separated and hence is normal. 

Proof. I. Let us suppose that 3?, X1 and X2 fulfil the assumptions of the lemma. 
For each x in Xu i = 1, 2, let us choose a neighborhood Ux of x such that Ux n Xj = 
= 0 where j 4= i. The collection 1l of all Ux, x e Xi u X2, interiorly covers X1 u X2. 
By our assumption there exists a <r-locally finite family "V of subsets of 3P which in-
teriorly covers X1 u X2 and which also refines 1l, i.e., each Ve "V is contained in 
some U e H. Let ~f = \ j { f „ \ n e N} where each i/~„ is locally finite. For n e N 
and i = 1,2 let be the collection of all Veir

n intersecting Xit and let V* be the 
union of the collection f It is easy to see that 

A) The sequence {Vj, | n e N} interiorly covers Xh i = 1,2. 
B) For each i,j = 1, 2, i * Kj n X3 = 0. 

Property A) is proved as follows: if x e X h then x e int Ffor some V'm'V (because 
"V interiorly covers Z,); thus F e f „ for some l i eN. Since Vn X t + 0, VeYj, and 
hence V <= Vl„ showing that x £ int V c int Vl

n. The proof of B) follows from the fact 
that each "f"̂  is locally finite. Since Yj, is locally finite we have V\ = (J{F| Ve f „'} 
by 14 B.17, and consequently to prove n Xj = 0 it is enough to show that 
V n Xj = 0 for each F i n Let F e ^ . By our assumption V <= Ux for some 
x e ^ u ^ . If xeXj, then VxnXi = 0 and hence F n X ; = 0; this 
contradicts the fact that F n X ; + 0 which follows from Ve Yl

n. It follows that 
xeXi and hence F c TJX tz 101 - Xj by the choice of Ux. 

Finally, for each i,j = 1,2, / 4= j, put 

Wl = K-[J{Vi\k£n}, ^ = 

It follows from conditions A) and B) at once that the sequence {Wj, | n e N}, i = 1, 2, 
interiorly covers Xt and hence Wl is a neighborhood of Xt. Indeed, we see from B) 
that — \j{VJ

k | k, g n} is a neighborhood of each point of Xh and consequently 
is a neighborhood of a point x of X{ if and only if Vj, is a neighborhood of x; 

. from A) we find that { Wl„ | n e N} interiorly covers Xt. 
The proof is completed by showing that Wl n W2 = 0. If x e W1 n W2, then 

x g n Wf for some k, I e N; but this is impossible. Indeed, if for instance 
k ^ I, then x e implies x$V2 for i g k; in particular x $ Vf and hence x $ W2 

because W2 a Vf. Similarly, k g I leads to a contradiction. 
II. The second statement follows at once from the first one. Suppose that each 

open cover of a regular topological space 0> has a a-locally finite open refinement, 
and let Xx and X2 be disjoint closed sets. Since 0 is regular, each point of Xt is separ-
ated from the second set. If H is a collection which interiorly covers u X2, then 
the collection 111 consisting of the interiors of sets from H is a collection of open 
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sets was assumed to be topological) which covers u X2; if 112 consists of all 
members of 11 ̂  and of the set — (X t u X2), then 112 is an open cover of 3P. 
If HP is a (T-locally finite open refinement of 1l2 and is the set of all We W, 
Wn (X\ u X2) 4= 0, then V possesses all the required properties. 

30 B.4. Proof of 30 B.1, conclusion. It remains to verify the sufficiency 
of condition (b). Suppose (b) is true, "V is a c-Iocally finite open base for * and 
{Y„ | n e N} is a sequence of locally finite families such that the union of {"Tn} 
is - r . 

I. First we shall prove that the space * is normal. By virtue of Lemma 30 B.3 
it is sufficient to show that each open cover of * has a c7-locally finite open refinement. 
If H is an open cover of * and if V is the collection of all K e f which are contained 
in some element of 1l, then "V is a <7-locally finite family of open sets, and as is easily 
seen, V is a cover of Indeed, if x e U e 1l, then x e V cz U for some F in "V 
because ~f~ is an open base for and hence x e K e f . 

II. The space 3P is perfectly normal. Since * is normal (by I) it remains to show 
that each open subset U of * is an F L e t be the set of all Vef such that V <=. U 
and let V'n = n Y". Put X„ = U{F| Ve Y'n), n e N. Clearly U{X„} = U. Since 
each collection Y'„ is locally finite, each set X„ is closed as the union of a locally finite 
family of closed sets. 

III. Construction of a pseudometric inducing the closure structure of 0>. Since 
* is perfectly normal (by II), each open subset of * is exact open, and consequently 
we can choose a family { f v \ VeY) of non-negative continuous functions on SP such 
that / - 1 [ R - (0)] = V for each F in V. Since each family { f v \ Vefn) is locally 
finite, for each n e N the real-valued relation 

dn = {<*, J>> ^ I {| f v x - fvy\ | Ve r„}\ <x, y) e & x P} 
is a continuous pseudometric for Consider the continuous pseudometric 

d = E{inf (d„, 2~") | n e N} 

for Sf. It is easy to see that d induces the closure of Since d is continuous, clearly 
x e X implies that the d-distance from x to X is zero. Now let x £ X. Since f is an 
open base, there exists a F in "V such that x e F c: — X. The set F belongs to 
some y„, say to "f\. By the choice of the function fv, fvx > 0 and fvy = 0 fory 
in X. It follows that the ¿^-distance from x to X is at least | fvx — 0| = fvx > 0, and 
finally, the ¿/-distance of x to X is at least min (2 ~k,fvx) > 0. 

30B.5. Example. For each ordinal a let Tx be the ordered space of ordinals P, 
P < a. It follows from 30 B.2 that every Ta with a < a^ is metrizable; indeed it is 
clear that Tx with a < co1 has a countable base. The spaces Ta with a. S: col -I- 1 are not 
metrizable because they are of an uncountable local character (because the local 
character at. co1 is Xj). There remains the case a = co1. We shall prove that TWl is 
not metrizable. Assuming that T0)1 is metrizable we find from 30 B.1 that there exists 
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a cr-locally finite open base 11 \ let ,JU = \j{Hn \ n e N} where each 1ln is locally finite. 
By 17—18, ex. 5, each 1ln is necessarily finite and hence 1l is countable. Thus Tai 

has a countable total character, but this is impossible because the density character 
of Tmi is uncountable (because every countable set has an upper bound in Tmi). 
If follows that Ta i is a locally metrizable hereditarily normal space which is not 
metrizable. 

C. PARACOMPACT SPACES 

By 29 A.6 a semi-uniformizable topological space is normal if and only if every 
finite open cover is uniformizable. By 29. C 7, 8 every open cover of a pseudometriz-
able space is uniformizable. On the other hand an open cover of a (hereditarily) nor-
mal space need not be uniformizable (e.g. we shall show in 30 C.5 that the open 
cover { [ <-, a ] | a < a^} of Tu>1 is not uniformizable). 

30 C.l. Definition. A paracompact space (also called a fully normal space) is 
defined to be a topological semi-uniformizable space such that every open cover is 
uniformizable. 

30 C.2. Theorem. Every paracompact space is normal and any pseudometrizable 
space is paracompact. — See 29 A.6, 29 C.7, 8. 

30 C.3. Theorem. In order that a closure space be paracompact it is neces-
sary and sufficient that 3P be a regular topological space such that every open 
cover of 0* has a locally finite open refinement. 

Proof. Since every paracompact space is normal, the condition is necessary by 
29 C.5. Conversely, if the condition is fulfilled, then the space 9 is normal by Lemma 
30 B.3, whereupon paracompactness of 9 follows from Theorem 29 C.2 which asserts 
that every locally finite open cover of a normal space is uniformizable. 

R e m a r k . If F is a separated topological space such that every open cover is 
refined by a locally finite open cover, then is paracompact. According to the 
foregoing theorem it is enough to show that 9 is regular. Assuming that X is closed 
in * and y e — X let us choose a family {Ux | x e X} such that each Ux is an 
open neighborhood of x and the closure of Ux does not contain y, and also take an 
open locally finite refinement V of the open cover of consisting of the set — X 
and all the sets Ux, x e X. If U is the union of all Ve -V, V n X 4= 0, then evidently 
U is an open neighborhood of X, the closure of U does not contain y because "f is 
locally finite and thus closure-preserving, and if F s f , F n l 4 0, then neces-
sarily V e Ux for some x, and hence y e — Ux <= \&\ — V. Thus y and X 
are separated and the space * is regular. 

We know that the uniformizability of a cover of a space can be described by means 
of covers, neighborhoods of the diagonal, pseudometrics, mappings into metrizable 
spaces, and partitions of the unity. Applying these to paracompactness we obtain 
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the following various characterizations of paracompact spaces. It is to be noted that 
several modifications of the characterization 30 C.3 will be given in the closing part 
of the subsection. 

30 C.4. Theorem. Each of the following conditions is necessary and sufficient 
for a topological semi-uniformizable space 0 to be paracompact: 

(a) Every open cover of 0 has an open star-refinement. 
(b) For each open cover 1l of 0 there exists a continuous pseudometric sub-

ordinated to 
(c) For each open cover 1l of 0 there exists a locally finite partition of unity 

subordinated to 1l. 
(d) Every open cover of 0 is refined by a cover consisting of all open spheres for 

some continuous pseudometric d for 0. 
(e) Every open cover of 0 is refined by a cover {/" 1 [K] | Ve "f} where f is a con-

tinuous mapping into a pseudometrizable space 0 and "f is an open cover of 0. 
Remark. To prove that (a) is sufficient it is enough to notice that, given an open 

cover 11 of 0, it follows from (a) that there exists a sequence {1i„} of open covers 
of& such that Hn+1 is a star-refinement of 11 „ and H0 = 11. 

30 C.5. Examples, (a) The space Tai + 1 is paracompact (by 30 C.3) because it is 
normal, as an ordered space, and every open cover has a finite subcover (17 ex. 5). 
On the other hand Tmi + l is not metrizable because it is not of a countable local 
character at co1. — (b) The subspace T(1>1 of Tmt + t is not paracompact because the open 
cover ^ = { [ < - , a ] | a < a^} has no locally finite refinement. Indeed, by 17 
ex. 5 every locally finite family of non-void subsets of Tali is finite and no finite sub-
family of H is a cover. Thus a subspace of a paracompact space need not be para-
compact. Remember that Tmi is hereditarily normal and locally metrizable (30 B.4). 
On the other hand: 

(b) Every paracompact locally pseudometrizable space is pseudometrizable. 

Proof. Let 11 be an interior cover of a paracompact space 0 such that each sub-
space U e 11 of 0 is pseudometrizable. Let f " be a locally finite open refinement 
of H. Clearly each element of "f is pseudometrizable. By 30 B.1 there exists a family 
\ifY | Ve"f] such that each if Y is a o--locally finite open base for the subspace V 
of 0. Let i f v = U {Wyn | n e N} such that each HrVn is locally finite. Put iT = 
= \ j { i f v | Ve-T), tT„ = \j{ifVn | Ver). Clearly i f is an open base for 
if = U{^n | « e N} and each collection if „ is locally finite. Thus if is a. o-locally 
finite open base for Since 0 is paracompact and so certainly regular and topologi-
cal, 0 is pseudometrizable by 30 B.1. 

Now we proceed to an examination of properties of paracompact spaces. 

30 C.6. Theorem. If 0 is a paracompact space, then the fine uniformity of 0 con-
sists of all neighborhoods of the diagonal of the product space 0 x 0 . 
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Proof. It suffices to show that if U is a neighborhood of the diagonal then there 
exists a uniformizable neighborhood V of the diagonal such that F <= U. Since U is 
a neighborhood of the diagonal and 0* is topological we can choose an open cover 
•W of 9 such that W x W <= U for each W in iV. Since 9 is paracompact, W is a 
uniformizable cover of 9 and therefore there exists a uniformizable neighborhood 
of the diagonal Fsuch that the cover {F[x] | x e 9} refines W. Clearly V <= U. 

30 C.7. Theorem. If 9 is a paracompact space and 2 is a closed subspace of 8P, 
then the fine uniformity of 2 is the relativization of the fine uniformity of 3P. 

Proof. It is sufficient to show that every uniformizable cover y of 2 is refined 
by a cover \fU~\ n \2\ where is some uniformizable cover of We may assume 
that y is an open cover of 2. For each F in "V let V be an open subset of 9 such 
that V n \2\ = F, and let °U be the collection of sets consisting of the set \&\ - \2\ 
and all sets V, Ve~f. Clearly 11 is an open cover such that \1l\ n |i>| refines ~f. 
Since * is paracompact, °ll is uniformizable. 

30 C.8. Corollary. If d is a bounded continuous pseudometric for a closed sub-
space 2L of a paracompact space then d is the relativization of a continuous 
pseudometric for 3?. 

Proof. Use Theorem 25 F.1 asserting that every bounded uniformly continuous 
pseudometric on a subspace of a uniform space * is the relativization of a uniformly 
continuous pseudometric for 3k. 

It is not true that if the fine uniformity of a subspace J of a closure space 8? is 
the relativization of the fine uniformity of then 2L is closed in * (ex. 8). However 

30 C.9. Theorem. If a subspace 2L of a separated closure space 8P is paracom-
pact and the fine uniformity of £L is the relativization of the fine uniformity of 8?, 
then is closed in 3?. 

Proof. Suppose that there exists a point x e — |i>| and let 11 be the neighbor-
hood system at x in 8?. Since * is separated we have f){U \ U e K} = (x), and hence 
"V = — U \ U e1i] is an open cover of 2. It is easily seen that there exists no 
uniformizable cover W of * such that 12\ n ] refines "V. By virtue of 29 C.5 it is 
sufficient to show that |.2| n ] refines V for no locally finite open cover 'W of 8P\ 
however, this is evident. 

In a normal space every two disjoint closed sets are separated. Now we shall prove 
that paracompact spaces possess an essentially stronger property. 

30 C.10. Theorem. If {Xa | a e A) is a locally finite (discrete) family of subsets 
of a paracompact space then there exists a locally finite (discrete) open family 
{Ua | a e A} such that Xa a Uafor each a in A; furthermore, one may take Ua = 
= U[X J , where U is an appropriate open neighborhood of the diagonal of 8P x 3P. 

Proof. Assuming that {Xa} is locally finite (discrete) we can choose an open cover 
y of 3P such that each Fin Y intersects only a finite number of Xa's (at most one mem-
ber of {Xa}). Let IF be a uniformizable neighborhood of the diagonal such that the 



540 V. S E P A R A T I O N 

cover {W[x] |x e 0} refines "K and let U be a symmetric open neighborhood of the 
diagonal such that U o U <=. W. Put Ua = U[Xt,] for each a in A. It is easily seen 
that the family {Ua \ a e A} has the required properties. Indeed, if x e 0 then 
VF[x] intersects only a finite number of Xa's (at most one member of {Xa}), because 
{W[x]} refines "V, and clearly l/[x] n V\X] 4= 0 implies W[x] n X + 0, and conse-
quently l/[x] intersects only a finite number of t/a's (at most one member of {[/„}). 

Remark. The property of paracompact spaces stated in the preceding theorem 
does not characterize paracompact spaces among all normal spaces; uniformizable 
spaces with this property are called systematically normal. 

By example 30 C.5 a subspace of a paracompact space need not be paracompact. 

30 C . l l . Every closed subspace of a paracompact space is paracompact. If 2 
is a subspace of a paracompact space 0 and i f , for each neighborhood V of \2\ 
in 0, there exists a paracompact subspace 0 of 0 such that \2\ cz j0j c: V, then 
2 is paracompact. 

Proof. I. Let J be a closed subspace of a paracompact space 0>. If is an open 
cover of 2, then we can choose a family {[/' | U e <%} such that each U' is open in 3? 
and U' n \2\ = U. The collection "V consisting of the set \3P\ - \2\ and all the sets 
U', U e is an open cover of 3P, and clearly \f~] n 2 = H. Since "V is a uniformiz-
able cover of is a uniformizable cover of 2 and hence 2 is paracompact. 

II. Using the assumptions of the second statement, let 11 be any open cover of 2 
and let us choose a family {[/' | U e 1l\ such that each U' is open and U' n \2\ = U 
for each U in Consider the neighborhood V = \J{U' \ U eW} of \2\ and take 
a paracompact subspace 0 of 0> such that \2\ c <= V. The open cover [U' n 
n | U b has a locally finite open refinement ~V. Clearly \f~] n \2\ is a locally 
finite refinement of °U. 

30 C.12. Theorem. Each of the following conditions is necessary and sufficient 
for a semi-uniformizable topological space 0 to be paracompact: 

(a) 0 is regular and every open cover of 0 has an open o-locally finite refine-
ment. 

(b) 8? is regular and every open cover of 0 has a locally finite refinement (not 
necessarily open or closed). 

(c) Every open cover of 0 has a closed locally finite refinement. 
(d) 0* is regular and every open cover of 0 has a locally finite open refinement. 
(e) If {Ua | as A] is an open cover of 0, then there exists a locally finite open 

cover {Ga | a e i } of 0 such that Ga c: XJafor each a. 

Proof. Condition (d) is necessary and sufficient by 30 C.3. Notice that each of the 
conditions (c) and (e) implies regularity; given xe0 and an open neighborhood 
of x, consider the cover (U, \0\ — (3c)). Evidently (e) implies (a). It remains to show 
that (a) => (b) => (c) => (d) => (e). 

I. Suppose (a) and let "U be an open cover of 0. Choose a <7-locally finite open 
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refinement {Vb \ b e B) of 1l\ let B = | n e N} such that each {Vb | b e B„} 
is locally finite. Put Wn = (j{Vb \ b e B„}; evidently {VF„} is an open cover of * . For 
each b in B let n(b) be an integer n such that b e Bn; and put Xb = Vb — U{Wi [ 1 < 
< n(b)}. We shall prove that {Xb | b e B} is a locally finite refinement of the cover 
{Vb} and hence of 1l. Given an x in * , if k is the smallest integer such that xeWk 
and if x e Vb, be Bk, then evidently xeXb and consequently {Xa} is a cover. Since 
Xb c Vb, {X,,} is a refinement of {Ffc}. It remains to show that {X6} is locally finite. 
Let x e |* | and k be an integer such that x e Wk, choose a family {G( | i g Ic} such 
that Gi is a neighborhood of x intersecting only a finite number of Vb's, b e BNow if 
G = Wk r\ n{G; | i g k] then clearly G intersects no Xb, b e Bt, I > k, and only 
a finite number of Xb's, b e Bt, for each i g k; thus G intersects only a finite 
number of Xa's. 

II. The implication (b) => (c) is almost evident. Given an open cover 11 of * , we 
can choose an open cover "V so that (F | F e f " } refines 11 (because* is regular) and 
then, by (b), a locally finite refinement 3C of "V. Clearly {X | X e S£} is a locally finite 
closed refinement of 11 (each X e 9C is contained in some F e f " and each Fis con-
tained with its closure in some U e 1l). 

III. Suppose (c). Let {Ua | a e A} be an open cover o f * . By (c) there exists a locally 
finite closed refinement {Xb | beB} of {Ua}. Choose a family {a(b) | b e B} such 
that Xb <= Uaib) for each b and then a family {Vx | x e * } such that Vx is an open 
neighborhood of x intersecting only a finite number of Xbs, and such that Vxr\Xb^ty 
implies Vx c= Ua(by Again by (c) we can choose a closed locally finite refinement 
{yc | c e C} of {Vx | x e *}. Evidently each Yc intersects only a finite number of Xb's. 
For each b in B let Cb be the set of all c such that Xb n Yc 4= 0. Clearly the family 
{Cb | b e B} is point-finite. Put Zb = \J{YC \ c e Cb} and consider the cover {Zb | beB) 
of * which is locally finite because { Yc} is locally finite and {Cb | b e B} is point-finite 
(also see 14 ex. 4). Finally, put W„ = |*| - | c e (C - C„)}. Since {7C} is 
locally finite and hence closure-preserving, the sets Wb are open and evidently 
Xb t= Wb <=. Zb, which implies that {Wb | b e B} is a locally finite cover o f* . It remains 
to show that {Wb} refines {Ua}; it is enough to prove that Zb c Ua(b) for each b. 
lice Cb, then Yc n Xb 4= 0 and hence, {Yc} being a refinement of {Fx}, there exists 
an x in * such that Yc c Vx; thus Vx n Xb 4= 0 and hence Vx <= Ua(b) so that 
Yc c. Uaiby As a consequence Zb = \j{Yc\ce C6} c U„w, which completes the proof. 

IV. Finally, suppose (d) and let {Ua | a e A} be an open cover of * . First let us 
choose an open cover "V of * such that {V | F e f ) refines {[/„}, and then an open 
locally finite refinement W o f f . For each W in W let a = a(W) be an element of A 
such that W <= V V cz Ua for some Fin "T, and put G„ = U{W| We i f , a = 
= a(W)}. Obviously {Ga} is an open locally finite refinement of {U.a} and G„ ci \J„ 
for each a. 

It has already been shown that a closed subspace of a paracompact space is para-
compact. Using the foregoing theorem, condition (a), we shall prove essentially more. 
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30 C.13. If Q is a Fa-subset of a paracompact spaced then the subspace Q is para-
compact. 

Proof. Let Q = U{-X„ | n e N}, where each X„ is closed in 0, and let {Ua} be an 
open cover of Q. Choose a family {Va} of open sets in 0 such that Va n Q = Ua 
for each a. Since clearly, for each k e N, (\0\ - Xk) u U{K.} = & by 30 C.12, con-
dition (d), there exists an open locally finite cover {Wb | b e Bk} of 0 such that, for 
each b, either Wb <= Va for some a ot Wb <= (\0\ - Yk). Let B'k be the set of all beBk 
such that c Va for some a and let B = U{B; | k e N}. Clearly {Wk

bn Q\b e B} 
is a ff-locally finite open refinement of {£/„}. By 30 C.12, condition (a), Q is paracom-
pact. 

30 C.14. Example. If 3P is the ordered set of reals endowed with the closure of 
right-approximation, then every open cover of SP has a countable subcover (22 ex. 2) 
and hence is paracompact by theorem 30 C.12, condition (a). But the product 
is not paracompact because 0 x 0 is not normal by 29 B.6. Thus the product of two 
paracompact (hereditarily normal) spaces need not be paracompact. 

D. HEREDITARILY PARACOMPACT SPACES 

30 D.l. Definition. A closure space is said to be hereditarily paracompact if 
each of its subspaces is paracompact. 

30 D.2. Every pseudometrizable space is hereditarily paracompact. — Every 
subspace of a pseudometrizable space is pseudometrizable and every pseudometrizable 
space is paracompact (30 C.2). 

30 D.3. A closure space is hereditarily paracompact if and only if each of its 
open subspaces is paracompact. — 30 C.11. 

30 D.4. Every perfectly normal paracompact space is hereditarily paracompact. 

Proof. By 30 C.13 every Fff-subspace of a paracompact space is paracompact. 
Apply 30 D.3. 

Evidently every hereditarily paracompact space is hereditarily normal, but by 
30 C.5 (b) a hereditarily normal space need not be paracompact. Now we shall prove 
that the product of two hereditarily paracompact spaces need not be paracompact 
nor even normal. Moreover, one of the coordinate spaces may be pseudometrizable. 
It is to be noted that the product of two pseudometrizable spaces is pseudometrizable 
and hence hereditarily normal. 

30 D.5. Examples. We begin with a construction which, applied to a hereditarily 
paracompact space, again leads to a hereditarily paracompact space. 

(a) Let <P, m> be a closure space and X be a subset of P. Let us define a closure 
operation v for P such that vY = (uY) n (P - X) if Y <= P - X and vY= Ykj 
u ((P - X) n uY) if Y cz X, i.e., vY = Yu (uY - X) for each Y. It is easily seen 
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that X is a discrete open subspace of <P, v}, P - X is closed in <P, v} and the 
relativizations of u and w to P — X coincide. We shall say that <P, v) is obtained 
from <P, u> by making X discrete. Next we shall need the following properties. 

(a) If * is a subspace of <P, m> and 2 is obtained from * by making the set 
\0i\ n X discrete, then 2 is a sub-
space of <P, v>. 

(p) If u is topological then v 
is also topological. 

(y) If u is topological, then V 
is open in <P, v> if and only if 
V = U u X', where U is open 
in <P, u> and X' <= X, and 

(6) If P — X is a Ga in <P, v) 
then P - X is a in <P, «>, 
and hence if X is not an Fff in 
<P, n>, then X is not an Fff in 
<P, «,>. 

(e) If <P, u) is separated and 
hereditarily paracompact,' then 
(P, v> is also hereditarily para-
compact. 

The proof of (a), (p), (y) and (5) is simple and therefore left to the reader. To prove 
(e), according to (a) it is enough to show that <P, u> is paracompact whenever 
<P, u> is separated and hereditarily paracompact. Since u is separated and v is finer 
than u, v is separated and therefore, by 30 C.3, it is enough to show that every open 
cover {Va} of <P, v} has an locally finite open refinement. Choose a family {[/„} of 
open sets in <P, u) such that Va = Ua u (X n Va) for each a (this is possible by (y)). 
Put Q = Since the subspace J , where | = Q, of <P, u> is paracompact, 
we can choose a locally finite open rafinement H/~ of the open cover {Ua} of the sub-
space J of <P, u). Clearly iV is a locally finite collection in <P, v} (Q r> P — X 
and every point of X is isolated in <P, u>). Now if 'S consists of all the sets of iV 
and all singletons (x), x e P — Q, then clearly ^ is a locally finite open cover of 
<P, v) which refines {F„}. 

(b) Now let * be the space obtained from the unit interval [ 0, 1 ] by making the 
set of all irrationals discrete and let J be a subspace of R consisting of all irrationals 
of [ 0, 1 ]. Thus spaces * and 2 are both hereditarily paracompact. We shall prove 
that the product space * x H is not normal. Let X = \l\ and Y = \3P\ - X; thus 
X(Y) is the set of all irrational (rational) numbers of [ 0, 1 ]. Now consider (see fig. 2) 
the subsets Z t = Y x X, Z2 = E{<x, x> | x e l ) of * x J . Clearly Zx and Z2 

are disjoint. Next, Z t is closed as the product of two closed sets, and Z2 is closed be-
cause Z2 is closed in ] 0, 1 [ x 2, by 27 A.7 (2 is a subspace of ] 0, 1 [, ] 0, 1 [ is 
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separated) and the closure structure of 0> x 2 is finer than the closure structure of 
] 0, 1 [ x 2. Finally, we shall prove that Zx and Z2 are not separated in * x J . 
It is enough to show that the closure of any open neighborhood G of Z2 intersects Z t . 
The space 2 is metrizable as a subspace of a metrizable space; we shall now apply 
the relativization of the metric for R to 12\. For each positive integer n let Xn be the 
set of all xeX such that the set (x) x U, where U is the open n~ ^sphere about x 
in 2, is contained in G. Clearly U{X„} = X. Since the irrationals of [ 0, 1 ] are not 
F„ in [ 0, 1 ] (cf. 22 ex. 7), by (a) (8), X is not an Fa in 0>, and therefore Xk n Y #= 0 
for some k. Choose an y in Xk n Y and then choose an x eXk such that | x — y | < 
< (2k)~ l. We shall prove that every neighborhood of the point (y, x) e ZL inter-
sects G and hence (y, x) e G n Zx. If U x V is any canonical neighborhood of 
<y, x) in * x 2, then U is a neighborhood of y in * and hence we can choose an x' in 
U nXk so that |x' - y\ < (2fc)-1. Thus |x - x'| g \x - y\ + \y - x'| ^ k~l and 
hence, since x' e Xk, the point <x', x) belongs to G. However, <x', x) e U x V 
because x' e U and x e V. Thus (U x 7) n G * 0. 

30 D.6. Theorem. Each of the following two conditions is necessary and suf-
ficient for a subset X of a separated hereditarily paracompact space 8? to be closed: 

(a) The fine uniformity of the subspace X of 0> is a relativization of the fine 
uniformity of 8P. 

(b) Every bounded continuous pseudometric on the subspace X of 8? is a relativiz-
ation of a continuous pseudometric for 

Proof. Condition (a) is necesary by 30 C.7 and sufficient by 30 C.9. Both con-
ditions are equivalent by 25 F.2, 3. 

30 D.7. Suppose that 0* is hereditarily paracompact and {Xa \ a e A} is a family 
of subsets which is locally finite in the subspace X = U{Xa} of 8P. Then there 
exists a family {[/„} of open subsets of 9 which is locally finite in the subspace 
U = U{£/„} such that Ua => Xa for each a. Moreover, Ua can be chosen so that 
Ua => Xa n U. If Xa are open in X then Ua can be chosen so that Ua n X = X„. 

Proof. Let G be the union of all open subsets H of 0 such that H n Xa 4= 0 for 
only a finite number of a's. Clearly X c G and {Xa} is a locally finite family in G, and 
consequently the family {Xa n G} is also locally finite in G. The subspace G being 
paracompact, by 30 C.10 there exists a locally finite family {Va} of open subsets of 
the space G such that Va => Xa n G. In the general case we can put U„ = V„, while 
in the case that the Xa are open in X we choose open sets Wa in 0 such that 
Wa n X = Xa and then clearly we may put Ua = Va n Wa. 

30 D.8. In order that a regular topological space 8? be paracompact and per-
fectly normal it is necessary and sufficient that for each family {[/„} of open 
sets there exists a o-locally finite family {Vb} of open sets such that {Vb} refines 
{U.} and UM = U{Ua}. 

Proof. I. Suppose the condition holds. Clearly 8P is paracompact (30 C.12, 
condition (a)). If U is any open subset of 9 and {Ux | x e U} is a family such that 
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each Ux is an open neighborhood of x and the closure of Ux is contained in U, and 
if {P̂ ,} is a ff-locally finite family of open subsets of 0> such that {F;,} refines {Ux} and 
U{Vt} = = U, then clearly U{F>} is an Fff-set in 0 and = U. 

II. Conversely, suppose that 0 is paracompact and perfectly normal. Given 
a family {(/„} of open subsets of 0, put U = U{^a} and choose a sequence {G„} 
of open subsets of 0 such that Gn <= U and U{G„} = U (0 is perfectly normal 
and U is open). For each n the family {Ua n G„ | a e A} is an open cover of the 
paracompact space G„ (a closed subspace of a paracompact space) and therefore 
{[/„ n Gn} is refined by a locally finite open cover {W<n c> | c e C„}. Evidently 
{Pf<n>c) | c e C„} is locally finite i n^ . For each b in B = E{C„ | n e N}, b = <n, c>, 
put Vb = G„ n Wb. Clearly [Vb \ b e B} has the required properties. 

Remark. This constitutes a new proof of 30 D.4. 
By example 30 D.4 (b) the product of a metrizable space and a hereditarily para-

compact space need not be normal. Now we shall prove the following 

30 D.9. Theorem. The product of a metrizable space and a paracompact perfect-
ly normal space is paracompact and perfectly normal (and by 30 D.4 hereditarily 
paracompact). 

Proof. Let 0 be paracompact and perfectly normal and let 2 be metrizable. 
By 29 B.1 the space 2 has a cr-discrete open base {Una | a e A„, n e N} where each 
family {U„a | a e is discrete. — I. First we shall prove that each open subset G 
of 0 x 2. is an Fff. For each n e N and each a e A„ let Vna be the union of all open 
subsets V of P such that V x U„a <=. G. Evidently the family {V„a x Una | n e N, a e A„} 
is (7-discrete, and hence c-locally finite in 0 x 2. It is easily seen that \J{Vna x Una} = 
= G and hence, each V„a x U„a being in 0 x 2 as the product of two Fff-sets, 
G is clearly an F„. — II. We shall prove that 0 x 2 is paracompact. Let {Gb\ b eB} 
be an open cover of 0 x 2 . For each n e N, a e A„ and b e B let Vb n a stand for the 
union of all open sets Fin 0 such that F x Una c Gb. Put V* = [){Vb>„ia \ beB}. 
By 30 D.7, for each n e N and a e A„ we can choose a cr-locally finite family 
{W„,„,c | c 6 C„„} of open subsets of 0 whose union is Fn*, such that {W„,a,c \ c e Cn} 
refines {Vbna \ b e B}. Now it is easily seen that the family {W„>ac x U„a\ ne N, aeA„, 
c e C„) is a cr-locally finite cover of 0 x 2 which refines {Gb\be B}. By 30 C.12, 
condition (a), the space 0 x 2 is paracompact. 

In conclusion we shall show that, except for the trivial case where 2 is discrete, 
the conditions imposed on 0 in the foregoing theorem are necessary for the product 
space 0 x J to be paracompact and hereditarily normal. 

30 D.10. Theorem. Let 0 be a closure space and let 2 be a metrizable space. 
In order that the product space 0 x 2 be paracompact and hereditarily normal 
it is necessary and sufficient that either 

(a) 0 is paracompact and perfectly normal, or 
(b) 0 is paracompact hereditarily normal and 2 is discrete. 

35—Topological Spaces 
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Proof. Condition (a) is sufficient by 30 D.9, and (b) is sufficient because if 2 is 
discrete, then the product space 0 x 2 coincides with the sum | x e 2j. The 
proof will be complete if we show that the assumption that SP x 2 (and hence is 
paracompact and hereditarily normal, and that neither the condition (a) nor condi-
tion (b) is fulfilled, leads to a contradiction. Since * is normal but not perfectly normal, 
there exists an open subset G of * which is not an Fa in Since the metrizable space 
2 is not discrete we can choose a cluster point y of .2 and a one-to-one sequence {>>„} 
converging to y in 2 such that y„ 4= y for each n. Put F = \SP\ — G and consider the 
subspace l = ^ x i - ( F x (y)) of * x J ; thus * is normal by our assumption. 
We shall prove that the closed disjoint subsets X = F x E{y„} and Y = G x (j>) 
of M are not separated in Si which will be a contradiction. Since X and Y are disjoint 
and closed in they are semi-separated in Sk and hence in SP x 2. Since the space 
SP x 2 is hereditarily normal, by 30 A.4, condition (b), the sets X and Yare separated 
in SP x 2, and hence there exist open subsets U and F of * x 2 such that X czU, 
Y <=. V, U n F = 0. For each n e N let W„ be the set of all x in * such that <x, >>„> e U. 
Clearly each W„ is an open set in * containing F. Since G = \SP\ — F is not an 
Fff-set, we obtain that - F = G - \J{\&\ - W„} 4= 0. Choosing a point x 
in this intersection we obtain <x, y} e U; on the other hand <x, y} e Y, and con-
sequently the neighborhood F of <x, y) must intersect [/; this contradicts our 
assumption U n F = 0. 

E. FEEBLE LOCALIZATION 

Let 3C be a collection of subsets of a space By 21 A.12 we say that a subset Y 
of * feebly locally at x e SP belongs to 3C if there exists a neighborhood U of x such 
that U n Ye ¡H\ and we say that Y feebly locally (relatively feebly locally) belongs 
to a: if Y feebly locally at x belongs to 3C for each x e SP (x 6 Y). Evidently, each 
Xe3C feebly locally belongs to 9C, and if Y feebly locally belongs to 9C then Y relatively 
feebly locally belongs to 3C. By 21 A.12 we say that 9C is feebly locally determined 
(relatively feebly locally determined) if a subset Y of * belongs to ¡X whenever it 
feebly locally (relatively feebly locally) belongs to SC. E.g. in any space the collection 
of all open sets as well as the collection of all closed sets is feebly locally determined. 

It turns out that paracompactness and hereditary paracompactness are sufficient 
conditions for some important collections of sets to be feebly locally determined or 
relatively feebly locally determined. 

30 E.l. Theorem. In a paracompact space the collections of all Fa-sets, G¡-sets, 
exact open sets, exact closed sets, exact Fa-sets and exact Gs-sets are feebly locally 
determined. In a hereditarily paracompact space the collection of all G¡-sets as 
well as the collection of sets of the form U n X, when U is open and X is an are 
relatively feebly locally determined. 
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Remark. In a normal space the collection of all Fff-sets as well as the collection 
of all G rsets need not be feebly locally determined (ex. 8). 

The proof will be given in a sequence of propositions, interesting in themselves, 
which can be applied in more general situations. It is convenient to introduce the 
following concept. 

30 E.2. Definition. We shall say that a collection HE of subsets of a closure space 
0 is rich if each point x of 0 has a neighborhood U such that 

(*) if F c V <= U, F is closed, V is open, then there exists a Y c \0\ such that 
F c Y c F a n d l e i implies X n 7 e l 

It is to be noted that in any closure space the following collections are rich: every 
hereditary collection (i.e. Y <= X e => Ye 9E), the collection of all closed sets, the 
collection of all open sets, the collection of all Ga-sets, Fff-sets, Borel sets, Baire sets, 
etc. Next, if a neighborhood U of x has the property (*), then every subset of U has 
the property (*). 

30 E.3. Suppose that 3C is a feebly locally determined, additive and rich collec-
tion of subsets of a regular topological space 0. Then 9C is closed under locally 
finite unions, i.e. if a family {Xa} in SE is locally finite in 0, then (J{Xa} e 3C. 

Proof . There exists a family {Ux j x e0j such that each Ux is an open neighbor-
hood of x with property 30 E.2 (*) such that the set Ax of all indices a with Ux n Xa 4= 
=t= 0 is finite. Since 0 is regular we can choose a family {Vx | x e 0} such that each Vx 

is a neighborhood of x and Vx c Ux. Since Vx is closed we can choose a family {Y .̂} 
such that Vx<= Yx<= Ux and X e 9E implies X n Yx e 3E. Clearly Yx n U{X„} = 
= U{y* <~> Xa | a e Ax] and hence Yx n U X J 6 % for each x in^>. But Yx is a neigh-
borhood of x and 3C is feebly locally determined and thus UXa} e 

30 E.4. Suppose that SC is a rich collection of subsets of a paracompact space SP 
such that the union of any locally finite family in 3C belongs to 9C. Then the 
collection 3C is feebly locally determined (and, of course, additive). 

Proof. Assuming that a set X feebly locally belongs to 9£, we can choose a family 
{Ux | x e 0} such that Ux is a neighborhood of x and X n Ux e 3£ for each x. Next, 
choose a family {Vx | x e 3P\ such that each Vx is a neighborhood of x with property 
30 E.2 (*). Since SP is paracompact we can choose locally finite open covers 
{Wx \x 60} and {Gx \ xeSP) such that Wx c Gx <= Ux n Vx for each x. Finally, 
choose a family {Yx\xe0} such that Wx c Yx c: Gx and Ye 9C implies Y n Yxe9£ 
for each x. Now Yx n X = Yxn(UxnX)e & for each x and hence, { Yx n X | x e 0} 
being locally finite, X = n X | x e 0} e SC. 

30 E.5. Suppose that 3C is a collection of subsets of a closure space 0 and let 
3C„ be the collection of all countable unions of sets of 9C, and 3Cb be the collection 
of all countable intersections of sets of 3C. We know that 3Ea is additive, and if SE 
is multiplicative, then 3C„ is multiplicative; 3C 6 is multiplicative and if SC is additive 
then 3Cb is also additive. Supposing that 0 is paracompact, if HE is feebly locally 

35* 
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determined, rich and additive, then 3C„ has the same properties, and i f , in addition 
3C is multiplicative, then 3£¡ also has these properties. 

Proof. The statement concerning 3C„ follows from 30 E.3, 30 E.4 and the fact thai 
if 30 is closed under locally finite unions then 9C„ is also closed under locally finite 
unions (see 22 ex. 11). To prove the statement concerning 3Cb, by 30 E.4 it is enough 
to show that 3C¡ is closed under locally finite unions. Suppose that {Xa | a e A} is 
a locally finite family in 9C¡. Since * is paracompact we can choose a locally finite 
cover {Y„ \ b e B} of * such that the set Ab of all a e A with Xa n Yb 4= 0 is finite 
for each b in B, and YeSC implies Yn Ybe6C (see the proof of 30 E.4). For each 
b in B let Zb = U{Xa n Yb | a e Ab). We have Zb e 3Cb (because 3C, and hence 3Ch 

is additive), \j{Zb \beB] = U{Xfl | aeA), Zb<= Ybe 9£, {Zb\ be B} is locallj 
finite. By 22 ex. 11, \j{Zb], and hence U{Xfl}, belongs to 3ES. 

30E.6. Proof of 30 E.1. Since, in any space, the collection of all open (closed) 
sets is rich, additive, multiplicative and feebly locally determined, the statements 
concerning F„-sets and G¿-sets follow from 30 E.5. Now to prove the statements con-
cerning exact closed and exact open sets it is enough to recall that in a normal 
space, and thus in any paracompact space, a set X is exact closed (exact open) if 
and only if X is a closed Ga-set (open Fff-set). Finally, the statements concerning 
exact G^-sets and exact Fff-sets again follow from 30 E.5. The statements concerning 
hereditarily paracompact spaces are proved in 30 E.8, 9. 

By 30 C.5 the hereditarily normal locally metrizable space of countable ordinals 
is not metrizable. For the sake of completness we restate 30 C.5 (b): 

30 E.7. Theorem. Every paracompact feebly locally pseudometrizable space is 
pseudometrizable. 

Proof. Since a subspace of a pseudometrizable space is pseudometrizable, we can 
find an open locally finite cover °U such that each subspace U e 11 is pseudometrizable. 
If SSV is a (7-locally finite open base for U, then the union of {38v | U e 1l\ is a <r-
locally finite open base for the whole space. Now the statement follows from Metriza-
tion Theorem 30 B.1. 

It turns out that the collections of 30 E.1 are not relatively feebly locally determined 
in a paracompact space. We restrict ourselves to F^-sets and Ga-sets. 

30 E.8. In a hereditarily paracompact space the collection of all G¡-sets is 
relatively feebly locally determined. 

Proof. Suppose that a subset X of a hereditarily paracompact space * is relatively 
feebly locally a G^-set in SP. Choose a family {Ux | x e X} such that Ux is a neighbor-
hood of x and X n Ux is a Ga. Without a loss of generality we may assume that all 
the Ux are open. If U is the union of [Ux | x e then clearly X is feebly locally 
a G rset in the paracompact subspace U of * and hence, by 30 E.1, X is a G¡ in U. 
Since U is open in X is a G¿ in 
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30 E.9. In a hereditarily paracompact space * the collection 3C of all sets of the 
form G n Y, where G is open and Yis an F„-set, is relatively feebly locally determ-
ined. 

Proof. Suppose that X relatively feebly locally belongs to 3C, and take a family 
{Ux | x e X} such that Ux is a neighborhood of x and Ux n X e SE for each x; choose 
open sets Gx and F„-sets Yx such that Ux n X = Gx n Yx for each jc in X. Since * 
is uniformizable, we can choose a family {Vx\x eX} such that Vx is an exact open 
neighborhood of x (thus Vx is an Fff) contained in Ux n Gx. Since Vx r,X = Vx n Yx, 
the set Vx n X is an F„ in * and hence in the subspace V = \xeX}of&>. Since 
clearly X is feebly locally an F„ in U and U is paracompact, by 30 E.1 X is an Fff in U. 
Thus X = X n U belongs to 
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