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28 An abstract algebraic model for the
transformation theory of Jacobian oscillatory
differential equations

28.1 Structure of the group of second order regular matrices over the real number field

Let 9 be the group of regular second-order matrices (i.e. 2 X 2 square matrices)
over the field R of real numbers. We first observe that the group 9% contains the sub-
group M, consisting of all elements of 9 with positive determinant. This is invariant
in 9 and has index 2; the factor group Ni/IM, consists therefore of two classes, M,
and M. Moreover, the group 9t contains the subgroup U consisting of all unimodular
elements.

The centre € of 9 consists of all matrices p 2 = ( 2) here pre R (u + 0) and

0
E= ((]) (1)) is the unit element of 9; € is invariant in 9. Moreover, € contains
the subgroup €, consisting of all matrices AE with 2 > 0; this subgroup €, is in-
variant in 9t and has index 2 in €; the factor group €/€, consists of two classes,
€, C;.

Any class M e M/E comprises all matrices of the form uM where e R (1 - 0)
and M is an arbitrary element of A7. The determinants of all matrices of M have the
same sign, namely sgndet M, and M < 9, or M < M, according as Me M, or
M e M, respectively.

The class M separates into two disjoint sets M,, M, € M/Cy; ie. M = My U M,
My M, = Q. If M, contains the matrix M then A7, contains the matrix — M. The
set M, (e = 0, 1) consists of all matrices of the form A (—1)*M, with 2 > 0. Both sets
M, M, are simultaneously contained either in M, or in M,. In each of these sets M,
there is precisely one unimodular matrix U, (e U), namely

N Gl
“ 7 4/(abs det M)

and both matrices U,, U, obviously have the same determinant, sgn det M.

28.2 An abstract phase group

Let ® be an abstract group with the properties I, 2(a), (b), (c) set out below:

(1) © contains a subgroup ®,, invariant in it, of index 2.

The factor group ®/®, thus consists of two classes, ®, and G,. For ae & we
write sgna’ = 1 or sgnd’ = —1 according as ae ®, or ae G;. Thus we have,
fora, be ®,

sgn (ab)’ = sgna’ - sgn b’ (28.1)
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® contains a subgroup € with the following properties (a), (b), (c):

(a) the centre 3 of € N ®, is an infinite cyclic group with generator c, (i.e. 3
{oh ey =0¢v=0, %1, £2,..., ¢; = c) and for every two elements ec
¢, € 3 there holds the relation

€Cy, = Cy sgne’ - (28.2)

We note that every element ¢, € 3 commutes with every element ee € N G,

i.e. ec, = ¢,e, and “anticommutes” with every element e € € N G, that is
say ec, = c_,e.

It follows from (2) that 3 is invariant in €. The group 3 contains the sub-

group 3,, consisting of all the elements ¢y, i.e. 30 <= 3; Jo = {2} Jo

invariant in € and has index 2 in J; the factor group 3/3, consists of the

two classes 3o, Z;.

Every class é € €/3 consists of all those elements c¢,e, where » = 0, +1, +2,
... and e is an arbitrary element of é: é = {c,e}. Since sgn ¢, = 1, it follows

that sgn (c,e)’ = sgne’, and consequently é < G, or é¢< G, according

ec ®, or ee G;. The class é separates into two disjoint sets &y, é;€ €/3,,

(ie. é=¢,U &, €y Neé, = o). If &, contains the element e (€ €) then

contains the element c,e (¢ €). The set &, (x = 0, 1) coincides with the totality
of elements ¢y, ,4€: €, = {cyy 1€}, and both sets &y, €, are simultaneously con-

tained either in ®, or in G;.
In what follows we shall make use of the following notation:
For e e € we denote by é that class of €/3, which contains the element

that is, ecé = J3oe = {ca}e = {cyye} = €/J,. Naturally, we also have
M

Boe = €3y = e{cs,} = {ecy,} € €/3o. Similarly, for Me M we denote by

that class of 9/, which contains the matrix M: Me M = €M = {AE}
= {AM}eM/C, (4> 0), and at the same time C,M = ME, = M{AE}
{M2} e ME,.

(b) There exists an isomorphic mapping I of €/3, on M/C,, with the following

properties (i), (ii):
(i) Forecéc €3y, Me M =T ée M/C,, we have sgn ¢’ = sgn det M.
(i) T3, = €y, T Z, = Cy.

The isomorphism .7~ induces a homomorphic mapping 7 of € on U,
defined as follows: for ee é € €/3,, we have e = U N J ¢é; thus He is the
unimodular matrix contained in the class .7 ée M/E,. Obviously, # is a
mapping onto U; we see that it is homomorphic by the following argument:

from e, e, € € it follows that

HeHe,=UNTe)UNTé)=UNTé - Té, =
= UNT(é,6,) = A (e,e2),

and on taking account of (ii) we obtain

Hegyro =(—1)E  (v=0,+1,+2,...,a=0,1). (28.3)

€,
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We also have, for ec €,
T é = {AHe)}, (2> 0). (28.4)

Finally, we observe that the union of the .7-maps of every two classes
&y, €,€€/3,, whose union forms a class ée €/3, (i.e. é, U ¢, = ¢ €/3),
represents a class M e M/C:

Té, VT é = MeMC
(c) The normalizer N of € in & coincides with €: Ng = €.

We give the name abstract phase group to a group ® with the above properties
1, 2(a), (b), (c). A subgroup € of this with the properties 2(a), (b), (c) we designate a
fundamental subgroup of ®. The elements of & are called abstract phases, but for
brevity we generally omit the attribute “abstract” in this connection.

28.3 Linear Vector Spaces

We now introduce the notation 4 = 6/,E.

Let ae A. If ae a is given arbitrarily, then every element of a has the form ea,
for a unique e € €; conversely ea, with ¢ an arbitrary clement of €, represents an ele-
ment of 4.

Our object now is to associate simply with every element a € 4 a linear vector space
L; of dimension 2 over the field R; this gives us a system L of two-dimensional linear
vector spaces over R with, naturally, card L = card 4. Every basis of L; is an ordered

a

pair of elements, U, Ve L;; this will frequently be written in the matrix form (l]i)

If B is a given basis of L then every basis of L; has the form M B, for a uniquely
determined matrix M € M; conversely M B, for any matrix M € I, represents a basis
of L.

Now we assume that between phases, on the one hand, and the bases of the linear
vector spaces L; € L on the other hand, there are the following relations:

For every class ae A and L; € L we have the following properties:

With every phase ac a there is associated a system B, of bases of L such that

(@) the individual bases of B, are constant positive multiples of any one of them,

(b) for e € we have B,, = #e - B,.

From (a) it follows that, given any B € B,, we have B, = {4B}, 2 > 0, while (b) gives,
on taking account of (3),

Boo=(—1yB.. (=0, %1, £2,..).
Moreover, for Be B, and M e M,
MBeB,,, (28.5)

in which e = 7 M.
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It follows from the above assumptions that to every a € @ there corresponds a basis
system B, of L; with the properties (a), (b). Conversely, every basis system B of L,
whose elements differ from one another by a constant positive multiple, coincides
with a basis system B,. For, given arbitrary elements b€ d, Be B, B,e B, there
correspond elements M eI, e =.7 ~'M such that B = MB, e B,, (from (5)) and
consequently B = B, (a = eb).

If Be B,, then we call ¢ a phase of B; we also say that B admits of or possesses the
phase a, and express this by the notation B = B,. If b is also a phase of B, then there
exists an e € € with b = ea and we have B, = B,, = #'¢B,. Consequently #’¢ = E
and also e = ¢,, for some appropriate v (=0, £1, +2,...); as a consequence,
b = cy,a € 3oa; conversely, every element of 30a represents a phase of B. Clearly,
every basis of a system B, admits of the same phases and these are precisely the
clements of the class J,a. This class, which is obviously an element of &/,3,, is
called the phase system of the basis B.

28.4 Quasinorms

We now assume that with every basis B of L there is associated a non-zero real number
IIBll, known as the quasinorm of B, satisfying the conditions:

(a) sgn|B|| = —sgna,
(b) [[MB|| = det M - B,

where a is a phase of B and M an arbitrary matrix of M.
We now show that

1. A basis B is uniquely determined if we are given one of its phases and its quasinorm.
For, let one phase a and the quasinorm ||B|| of a basis B be specified. Let us choose
a basis B, € B,. Then we have B = 1B, for some 4 > 0, and condition (b) above
then shows that |B|| = A%|B,l, whence A4 = 4/(abs |[BJ|/abs |[B,]). Hence B is

uniquely determined as
abs |[BJ|
= — | B,. 28.6
s= () ™ (250

2. Corresponding to every k € R (k + 0) with sgn k = —sgn d’, every basis system B,
contains precisely one basis B with quasinorm k, namely

abs k
B= A/ (abs uBau) Be.

in which B, is an arbitrarily chosen basis in B,.

For, let Be B, and ||B|| = k; then B = 1B, (4 > 0), so k = A%|B,ll, whence
necessarily (since sgn k = sgn [|B,l)), 4 = 4/(abs k/abs |[B,/)). This establishes the
assertion.

In particular, every basis system B, contains precisely one basis with the quasi-
norm —sgn a'. This we call the unit basis in B, and use for it the notation %4,;
that is,

A, = (1/v/abs [B,]]) B.
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28.5 Kummer transformations of bases

Let us take a basis B of L; and an element x € G ; with these we are going to associate
another basis, of some suitable vector space Ly which we shall denote by B o .
We choose a phase a of B and specify, by definition,

B oxeB,, [Boxl|=IB|sgnx"

The basis B o x thus admits of the phase ax and has quasinorm B[/ sgn x’; these
specifications serve to determine it uniquely, by§ 28.4, 1. Since B,_,,, = B
H ¢3,Baz = By, the basis B o x is independent of the choice of a.

Let b be the class of 6/, containing the element ax, i.e. axe be ®/,€ so Box
is a basis of L;. Let us choose b€ b and B, € B,. Clearly, there is a unique element
e € € with the property that

cop(ax) =

ax = eb
and we have
B,, = B,, = #eB, = {A#eB,}, (4> 0).

Since sgn |[Bll sgn x’ = —sgn a’ sgn x’ = —sgn (ax)’, the system B,, contains pre-
cisely one basis with quasinorm ||B|| sgn x’, which coincides with B o x (see § 28.4, 1).

Using (6), we obtain
abs |B||
Box= A/(—————) HeBy,. 28.7
abs 1B, @D

The basis B o x may thus be represented explicitly by the formula (7).

The operation o thus starts from any basis B of L; and any element xe & and
associates with them the basis B o x of L;; we call this operation the Kummer trans-
Sformation of B with x, and B o x is itself called the Kummer transform of B with x.
Obviously,

B o x = \/(abs [B))#eB, B ox=Heh,

are special cases of (7).
The only properties of the Kummer transformation which we here need to em-
phasize are the following:

Let B be a basis of L3, x, y arbitrary elements of  and M € M. Then

I.Bo(xy) =(Box)oy.

For, let a be a phase of B; then B o (xy) admits of the phase a(xy) and has the
quasinorm [|B[| sgn (xy)’. But (B o x) o y admits of the phase (ax)y and has the
quasinorm (||B| sgn x") sgn ), so our statement follows by § 28.4, 1.

2. (MB) o x = M(B o x).

For, M B has the phase ea, with e = 7 =M (by (5)), hence (M B) o x has the
phase (ea)x and the quasinorm of (M B) o x is [|[MB|| sgn x" = det M||B| sgn x'.
But M(B o x) has the phase e(ax) and quasinorm [|M(B o x)|| = det M|B o x|| =
det M|B|| sgn x’, and the statement follows by § 28.4, 1.
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28.6 Kummer transformations of elements

Now we extend the concept of Kummer transformation to the transformation of
elements of L.

Let Ye L; and x € ® be arbitrary elements of the sets indicated. We select a basis
B of L;; we can then represent Y uniquely with respect to this basis B by means of
appropriate coordinates f8,, f,—that is to say, in the form

Y= (f1, ﬂz)B-

We now write, by deﬁniiion,
Y ox = (f1, f2)(B 0 x).

Thus the operation o serves to transform Y into an element ¥ o x of the vector space
L; containing the basis B o x. We call this operation o the Kummer transformation of
Y with x, and Y o x itself the Kummer transform of Y with x.

Next we show that Y o x is independent of the choice of B. For, let C be another
basis of L;; then we have

Y = (71, )’2)C

for uniquely determined y,, y, € R. Moreover, there is an M € M such that B = MC
and we have
(y1, 72)C = Y = (1, f2)B = (B1, f2)MC,

) (y1, 72) = (B, f2)M.
Then, on taking account of §28.5, 2,

Y ox = (y1, y2)(C 0 x) = [(By, f)M]C 0 x) =
= (1, 2)IM(C 0 X)] = (1, B2)[(MC) 0 x] =
= (f1, f2)(B © x),

which shows that Y o x is independent of the choice of B.

hence

28.7 Abstract dispersions

This paragraph introduces the concept of abstract dispersions; sub-paragraphs (A)
and (B) are preliminary to the definition in sub-paragraph (C) of such dispersions
and a study of some of their properties. For convenience, the main results are num-
bered as Lemmas 1 to 6.

Throughout, by the term “classes” we mean elements of ®/,&. The subgroup of ®
conjugate with € with respect to ae ® will be denoted by ®,, thus ®, = a™'Ca.

(A) Kummer complexes:
Let a, b, A, B be elements of ®.
Lemma 1. The relationship
A~Ca = B~1Gb (28.8.)

holds if and only if B = EA, b = ea, where E, e €.
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Proof. (i) from B = EA, b = ea and E, e€ € it follows that

B~'€b = A~ YE'Ce)a = A~ 'Ca.
(ii) From (8) we have
(BA™YHYE = C(ba™ )
and also
BA~! = ey(ba~'), where ey € €. (28.9)
This gives
(ba= 1)~ 1€(ba 1) = €.

Clearly, ba™ ! is contained in the normalizer fig. On taking account of § 28.2, (2) (c)
it follows that ba~! = e€ € and, from (9), BA™' = E€ € (E = eye). We thus have
B = EA, b = ea and the proof is complete.

It follows from Lemma 1 that to every ordered pair of classes A4, a there corresponds
a well-defined subset of ®, namely K(A, @) = A~ '€a, this subset being independent

of the choice of the elements A4, a in the classes A4, d@; we call this subset K(4, @) the
Kummer complex of 4, a.

Lemma 2. The Kummer complex K (A, @) is characterized by the property of being the
unique common element of the two partitions G/ U,, G/ ,.

Proof. Obviously we have

A7 Ca = (A" 'a)(@a ‘C€a) = (4™ a)U,,
A7 Ca = (A7 'CA)(A™ ta) = U (A4 ta),

hence
K(4, a)e /U, n G/,

Thus K(4, a) occurs as an element in both partitions G/,1,, 6/,,. But by a known
result in group theory ([2*]), the hypothesis of § 28.2, (2)(c) implies that these partitions
contain precisely one common element, which thus coincides with K(4, ). We thus
have the relation

K(A-a a-) = 6/IIIa N 6/rlIA

and the proof is complete.

In particular, taking 4 = a, we see that the Kummer complex of g, a coincides with
the subgroup U,, i.e. K(a@, @) = U, (a € @). This permits us to write, conveniently,
in place of U,.

(B) The centre 3; of U; N B,

Now let us consider the centre 3 of the subgroup U; N G, (= G).

Lemma 3. For a€ d we have

Ji=a3a
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Proof. (i) Let f€ 3;; then f= a~'eqa for some appropriate element e, € €, sgn e} = 1.
Moreover, f commutes with every element x € ; N ®,, i.e. every x of the form x =
a 'ea, where ec €, sgn e’ = 1. Hence

xf = (a 'ea)a ‘eya) = a Y(eey)a,
Jx = (a epa)(aea) = a~(eye)a;

consequently ee, = eqe. Hence ey € 3 and, finally, f = a~'eqaca13a.

(ii) Let fe a™'3a, ie. f = a 'ea where eq € 3 is some appropriate element. Then
for every ec €, sgn ¢ =1 and we have ee, = ese, whence (a 'ea)(a 'eyq) =
(a”'epa)(a 'ea). Thus f commutes with every element xe ;N G, ie. xf = fx,
and the proof is complete.

From Lemma 3, the centre 3; of U; N ®, is an infinite cyclic group with generators
a‘'ca, a'c'a, ie. 3; ={ateal, c,=c", v=0, 1, +2,..., ¢; = ¢. The indi-
vidual elements f, = a™'c¢, ae 3; depend on the particular element a € @ as follows:
forb =ea,ec Cwehaveb'e,b = a e (c,e)a = a~ e (ecy g )T =710, g oA =

fV sgne’*

(C) Abstract general and special dispersions: abstract central dispersions.

(1) We shall apply the term abstract general dispersions of A, a to the elements of
K(A, a), but omit the attribute “abstract” when convenient. A general dispersion x of
A, a thus has the form x = A4~ 'ea where A, a are arbitrary elements of A4, @ and e is
an appropriate element of €.

Let A, a be arbitrary classes and L, L; the corresponding linear vector spaces.

Lemma 4. The Kummer transform B o x of a basis B of L; with an element x€ ® is a
basis of Ly if and only if x is a general dispersion of A, a.
Proof. Let B = B,, Aec A and aca.

(i) Assume that xe ® has the above property; then Ax = ea, ec € and conse-
quently x = A~ *eac K(4, a).

(i) Let xe K(4, a), that is x = A 'ea, ec €. Then Ax = A(A 'ed) = eac a,
whence B 0 x = B,, is a basis of L;. This proves the Lemma.

A corollary of Lemma 4 is that the Kummer transform of an element Y € L; with a
general dispersion x of A, a is an element of L., i.e. Y 0 xe L.

(2) We shall apply the term (abstract) special dispersions of a (or merely dispersions
of @) to the elements of K(a@, a). A special dispersion x of a has thus the form x =
a~'ea where a is an arbitrary element of @ and e an appropriate element of €.

Lemma 5. The Kummer transform B o x of a basis B of L; with an element x€ ® is
itself a basis of 1 if and only if x is a special dispersion of a.

Clearly, this is a special case of Lemma 4. In particular, the Kummer transform of
an element Y € L with a special dispersion x of a is itself an element of L, i.e. Y 0 x€
L.

(3) We shall apply the term (abstract) central dispersions of a, more briefly, central
dispersions, to the elements of 3.

Given a fixed element a in the class 4, and the generating element ¢ of 3, we can
associate with every central dispersion f'e 3; a unique integer », known as the index
of f, by means of the formula f = a~!c’a; we then write f = f,. For a different choice
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of a or ¢, the index » of feither remains unchanged or else changes sign to become —».
Hence, clearly, the parity of the index of every central dispersion is independent of
the choice of the elements a, c.

Lemma 6. The Kummer transform B o x of a basis B of L; with an element xe &
coincides with B or —B if and only if x is a central dispersion of a with even or odd index,
respectively, i.e.
Bof, =(—1)B.

Proof. (i) Let f = f, € 35. Then af, = a(a~'c,a) = c,a, and hence, using(28.3),B o f, =
H'c,B = (—1)'B.

(ii) Let xe ® and Bo x =(—1)"B, « =0, 1. Then ax = ea and #'e = (— 1)L
(B = B,). Hence e = ¢y, .4, p integral, and also x = a 1oy 4o = fou 10

It follows from Lemma 6 that the Kummer transform of an element Y o L; with a
central dispersion f, of a coincides with either Y or —Y in the sense that

Yof,=(—=1Y, (r=0,+1,+42,...) (28.10)

28.8 Realization of the abstract model in terms of analytical transformation theory

Our object now is to obtain a realization of the above abstract model in terms of the
transformation theory of oscillatory differential equations (q). To do this, we must
interpret the model elements, considered in 28.1-28.6 above, in this realization.

First, however, we introduce the symbol #(t) to stand for the particular basis of
the differential equation (—1)—that is, the equation )" = —y, tej = (— 0, ©)—
formed by the elements sin ¢, cos t. Then for any phase e(r) of (—1) we have, by
formula (21.10), the relationship

1
——— Be(t) = HeH(t),
Vel
where e is a uniquely determined unimodular matrix; det #’e = sgn e'(7).
In our realization of the abstract model, the various elements must be interpreted
as follows:

®: the phase group described in § 10.1.
®,: the subgroup comprising the increasing elements of the phase group.
: the fundamental subgroup defined in § 10.3.
the infinite cyclic group with generator ¢ + o, that is, {t + »7}, (v = 0, %1,
+2,...).
3o the infinite cyclic group {¢ + 2v7).

J . the operator such that for every phase e(f) of (—1) and & = {e(t) + 2vn},
we have 7 ¢é = {A#%e}, A > 0.

a:  the set of all first phases of the differential equation (q,) with g.(¢) =
—{a, t} — a'’?(t), a(t) € a.

L;: the integral space of (q,).

- A

B.: {\/|a'(t)| ,QZa(t)}, A>0.

IBll: the Wronskian of B.
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We leave it to the reader to verify that the properties assumed for the various
elements in the abstract model do in fact hold in the realization. With regard to the
properties of § 28.2, 2(c), see [2*].

Now we show that the operation o applied to a basis B(t) = (U(t), V(1)) of an
oscillatory differential equation (q) in the interval j = (— oo, o0), and an arbitrary phase
Junction x(t), may be realized by means of the Kummer transformation

Ux Vx )
VIR VIX]
For brevity, in the formula (11), and in what follows, we omit the variable 7.

Let a be a proper first phase of B, b be a phase of (q,,) and e be that phase of
(—1) determined uniquely by the relation ax = eb; finally, let B, be a basis of (qq.)
with proper first phase b.

Then we have, in the first place, the formula

_ Vabs|Bll
Vld|

(U, V)ox= ( (28.11)

Ha, (28.12)

and on taking account of (12) and (7), the further relationships

1 1
x=He ——— B, =
Vabs 181 2O =7 Javs iy
S B _

1
‘——*——(—e# ejb P
Vbl lbl View

1
———— Heb = Wf.@ax =
V(eb)] V(ax)|

1

‘7!-_,_ "—'—,_“ o@av
VX vla'x

1 1

= ———— —— Bx
1/abs |IBll v/[x|

This establishes the formula (11). In particular, the operation o applied to an integral
Y of (q) and a phase function x is realized by the Kummer transformation

Yox= X, (28.13)

Vx|
Finally, we make the remark that when the concept of abstract dispersions is realized
on the above lines, known results from the analytic theory of dispersions reappear;
for instance, formula (13.10).
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