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21 Dispersions of the *-th kind; H = 1, 2, 3, 4 

We have already encountered, in § 18.1, the concept of a dispersion of the /oth 
kind, K = 1,2, 3, 4. 

The theory of general dispersions given in § 20 above contains, as a special case, a 
theory of dispersions of the K-th kind with which we are now concerned and so gives 
additional information about the latter. We shall see, however, that besides this new 
information, there will also emerge some entirely fresh aspects as a consequence of 
the special character of these dispersions. 

In the following we shall consider an oscillatory differential equation (q) in the 
interval j = (a, b), assuming that q < 0 and q e C2 for t ej. 

21.1 Introduction 

By dispersions of the first, second, third, or fourth kind of the differential equation (q) 
we mean respectively a general dispersion of the differential equations (q), (q); (qx), 
(qi);(qiX(q);(q),(qi). 

Every dispersion £ of the K-th kind can be constructed as a general dispersion using 
appropriate initial values t0? T0 and generator^ (§ 20.2). Depending on the value of 
K, p is a linear mapping of the integral space r of (q) or of the integral space rx of 
(q±) onto r or r±. According as K = 1,2,3,4, these mappings are r->r, r!->ri, 
r -> ri, ri -> r respectively. We shall begin our further studies with some remarks 
about linear mappings in the above cases. 

Let p be a linear mapping of the integral space r or rx onto the integral space r or rx 

and let P be the projection (§ 1.9) of the integral space r on rx. Moreover, in each of 
the following cases 

r~->r; ri->/•-.; r->ri; rx->r (p) (21.1) 

let y e r or yx e rx be arbitrary integrals of the differential equation (q) or (qx) respec­
tively and Y e r or Y1er1 its image under p, thus 

y-»Y; j i - > F i ; y^Yx; y±-+Y (pi 

Then in each of these cases we can define a linear mapping p0 of the integral space 
r onto itself by means of the appropriate one of the following formulae 

y->F; P-iy^p-'Y,; y^P^Y,; P^yx~~>Y (Po). 

This mapping p0 we call the kernel of p and we write p0 = Kp. 
Every linear mapping p of the integral space r or rx onto r or r± has therefore-pre-

cisely one kernel p0; this is a linear mapping of the integral space r onto itself. Con­
versely, every linear mapping p0 of the integral space r onto itself in each of the above 
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cases (1) represents the kernel of precisely one linear mapping/?, and indeed the linear 
mapping y -> Y(p0) is the kernel of the following linear mappings: 

y' T Yf vf 

y-+Y; ^===^—=; y-+-==; -f=-+Y (p). 
V—g V—g V—g V— a 

21.2 Determination of dispersions of the /c-th kind, K = 1, 2, 3, 4 

We have the following theorems: 
1. All dispersions Xl5 X2, X3, X4 of the first, second, third, and fourth kinds of the 

differential equation (q) are determined by the following formulae: 

a(Xt) = a(t)l P(X2) = fl(t); p(X3) = d(t); a(X4) = £(f); (21.2) 

in which a, a denote arbitrary or appropriate first phases and similarly /?, ft second 
phases of the differential equation (q). 

Proof, We shall confine ourselves to the proof of the first two statements. 
The relation (2) formed with two arbitrary first phases a, a of (q) determines 

(using § 20.4) a general dispersion Xx of the (coincident) differential equations (q), 
(q). This consequently represents a dispersion of the first kind of the differential 
equation (q). Conversely, every dispersion X± of the first kind of the differential 
equation (q), is a general dispersion of the differential equations (q), (q) (§ 21.1) and 
consequently satisfies the first relation (2) with some appropriate first phases a, a of 
(q). 

The second relation (2) formed with arbitrary first phases /?, /? of the differential 
equation (q±) determines (by § 20.4) a general dispersion X2 of the differential equa­
tions (qx), (qx) (§ 5.11). Consequently this represents a dispersion of the second kind 
of the differential equation (q). Similarly it can be seen that every dispersion X2 of 
the second kind of the differential equation (q), satisfies the second relation (2) with 
appropriate second phases (3, /? of (q). 

2. Let XK be a dispersion of the K»th kind of the differential equation (q) and pK its 
generator (K = 1, 2, 3, 4). By means of suitable variation of the linear mapping pK 

we can establish the following relations in the interval j between the integrals y and 
Y = KpKy of (q) and their derivatives y\ Y'\— 

YX,(t) 1 Y'X2(t) y'(t) 

V\X'1(t)\ ' V\X'2(t)\ V-qXl(t) V-q(t) 
1 Y'X3(t) YX,(t) y'(t) 

-y(t); -

(21.3) 

V\X3(t)\ V-qX3(t) " V\X[(t)\ V-q(t) 
This follows from the theorem of § 20.3, 9. 

21.3 Determination of the central dispersion of the /c-th kind; K = 1, 2, 39 4 

The dispersions of the tc-th kind of the differential equation (q) naturally include the 
central dispersions of the corresponding kind. The latter are, therefore, determined by 
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formulae such as (2), in which the phases which occur satisfy appropriate conditions. 
On this topic we have the following theorems: 

1. The dispersion Xx of the first kind of the differential equation (q) determined by 
the first formula (2) is a central dispersion of the first kind of (q) if and only if the 
phases oc, a belong to the first phase system of the same basis of the differential equa­
tion (q), and in that case X1 = <f>v (v = 0, ± 1 , ±2 , . . .) if and only if oc = a + 
VTT sgn oc''. 

The dispersion of the second kind X2 of the differential equation (q) determined by 
the second formula (2) is a central dispersion of the second kind of (q) if and only if 
the phases /3, /? belong to the second phase system of the same basis of the differential 
equation (q), and in this case X2 = ipv (v = 0, ± 1 , ±2 , . . .) if and only if /? = (} + 
VTT sgn /3\ 

The dispersion of the third kind X3 of the differential equation (q) determined by 
the third formula (2) is a central dispersion of the third kind of (q) if and only if the 
phases a, /? belong to the first and second phase systems of the same basis of the 
differential equation (q), and in that case X3 = %p (p = ± 1 , ±2 , . . .) if and only if 

- j ll - (2P - s S n P)8^ < « - /? < j -1 + (2P ~" s S n P)^ 

(s = sgn a' = sgn /?'). 

The dispersion of the fourth kind, X4 of the differential equation (q) determined 
by the fourth formula (2) is a central dispersion of the fourth kind of (q) if and only 
if the phases oc, /? belong to the first and second phase systems of the same basis of 
the differential equation (q) and in this case Xp = cop (p = ± 1, ±2 , . . .) if and only if 

- 2 t1 "" (2P - s g n P)^77 < /? - oc < »[1 + (2p - sgn P)S]TT 

(e = sgn oc' = sgn /?'). 

These theorems follow from the Abel functional equations (§ 13.7). 
2, Let £ be a dispersion of the K-th kind of the differential equation (q) with initial 

numbers t09 T0 and generator p; K = 1, 2, 3, 4. Then, and only then, the following 
relations hold in the interval j : 

(a) 1 = фV9 
if T0 = ^v(^o) and p = ce; 

(b) l = V9 
if т0 = v(t0) and p = ce; 

(c) i = Xø> if т0 = %p(t0) and p^cP; 

(d ) l = o)ß9 if T0 = OУp(t0) and p = cP; 

where e denotes the identity mapping of the integral space r or rx onto itself, P the 
projection from r on rT and c(i=- 0) a constant; v = 0, ± 1 , ± 2 , . . . ; / > = ± 1 , ± 2 , — 

Proof. We shall prove, as an illustration, the result in case (c). 
1. Let £ = %p for tej. First, we obviously have T0 = f(t0) = #<,(*<))• Now we 

consider an integral M e r of the differential equation (q) and let x be a zero of w; we 
have therefore u(x) = 0, u'£(x) = 0. Moreover, let ux = puerl9 consequently 
u± = ufl\/(—q)9 in which it G r. From the definition of £ we have ux^(x) = 0, hence 
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u'Ux) = 0; the functions u\ u' have therefore the common zero £(x) so the integrals 
u, uer of (q) are linearly dependent, i.e. u = cu, where c (-?-- 0) denotes a constant. 
We have therefore pu = cPu. 

We next show that the value of the constant c does not depend on the choice of the 
integral uer. For, let v e r be another integral of (q). We first assume that v depends 
upon u, so that v = kw, 0 =£ k = constant; then we have kpu = p(ku) = pv = 
cPv = cPkw = C7cPu = (ckjc)pu (0 # c = constant) and consequently C = c. Second­
ly, let us assume that v is independent of u; then by the above reasoning, pv = cPv 
(0 ^ c = constant). Now consider the integral u + v e r of (q); on the one hand, we 
have p(u + v) = />w + pv = cPu + cPv, but we also have /?(u + v) = CF(u + v) = 
C(Pu + Pv) (0 7--: C = constant). From these relations it follows that (c — C)Pu + 
(c — C)Pv = 0 and hence c = C' = c; this shows that j? = CP. 

2. Let F0 = %p(t0) and j> = cP. 
The fundamental numbers rV of the differential equation (q) with respect to t0 are 

tv = (f>v(t0) while the Tv are those of the differential equation (§-_) with respect to T0: 
Tv = XP^V^O); v = 0, ± 1 , ± 2 , . . . . Now let t e j be arbitrary and uer an integral of 
(q) which vanishes at the point t, i.e. u(t) = 0. Then pu = CPu = cu'l\/(—q). From 
the definition of £, we have/w£(t) = 0 and hence w'£(t) = 0 so we have t,(t) = Xm(0 
with some appropriate index m. We now show that m = p independently of the choice 
of t. For, t lies in a certain right fundamental interval [tv, tv + i). From the relation 
sgn xp = sgn j(CP) = + 1 we conclude that £ is direct; consequently £(t) lies in the 
right fundamental interval [TV9 Tv + 1 ) . A t the same time, from t e [<f>v(t0)9 <f>v + i(t0)) it 
follows that £(/) e [Xm v̂(̂ o), Xm̂ v + iOo)). Thus XmhOo) = Z/»^v(to), and this relation­
ship gives immediately m = p. We have therefore £(t) = ^p(t) for all t Gj, and this 
completes the proof. 

21.4 The group of dispersions of the irst kind of the differential equation (q) 

In § 20.7 we have embedded the set D of general dispersions of two differential equa­
tions (q), (Q) over the intervals/* = / = (— oo, oo) in the phase group (5. It was there 
proved that for arbitary choice of first phases a, A of (q) and (Q) respectively the set 
D can be represented as 

D = Aml(£a; (21.4) 

where (£ denotes the fundamental subgroup of (5. 
We now consider the case of coincident differential equations (q), (Q): q = Q for 

all t ej = (—oo, oo); we here assume only that q e C0, not necessarily that q e C2. 
Then the set D represents the dispersions of the first kind of the differential equation 
(q). If we choose A = oc, then formula (4) gives 

D = o r ^ a . (21.5) 

The right side of this formula does not depend on the choice of the phase a, as can 
easily be seen: all phases of the differential equation (q) form precisely the right 
coset £GC of (£ (§ 10.2, 10.3). Consequently every phase a of the differential equation 
(q) has the form a = fa, where f is an appropriate element of (£. We have therefore 
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or 1 = a""1!"1 and moreover a"1®^ = a " " 1 ^ " 1 ® ^ == â CSca = D since obviously 

rn£f = e. 
The fundamental subgroup (£ of (5, transformed by an arbitrary phase a of the 

differential equation (q) in accordance with the right side of (5), obviously represents 
precisely the set of dispersions of the first kind of the differential equation (q). 

It is however known from group theory that under a transformation of this kind a 
subgroup of 8% goes over into another subgroup which is described as conjugate to the 
first. 

The set of dispersions of the first kind of the differential equation (q) forms a subgroup 
in the phase group © conjugate with the fundamental subgroup. 

See also p. 237 for some recent results. 

21.5 Group property of dispersions of the first kind 

We now bring out the group property of the set of dispersions of the first kind from 
their definition, and then study the structure of this group. 

To simplify our formulation, a dispersion will here always mean a dispersion of the 
first kind. Correspondingly, those linear mappings which come under consideration 
will always be linear mappings of the integral space r of the differential equation (q) 
onto itself, and by fundamental intervals we always mean the fundamental intervals 
of the differential equation (q);j naturally denotes the interval (~-oo, oo). 

1. Let £ be the dispersion determined by arbitrary equal initial numbers t0, t0 and 
the identically linear mapping e. Then we have £(t) = t for t ej. 

For, let t ej be arbitrary. If t = t0, then £(l) = t0 = t, so let us assume that t # t0. 
Let j G r be an integral of the differential equation (q) vanishing at the point t; t lies 
in a certain v-th right fundamental interval j v with respect to t0. Since sgn %e = 1 we 
conclude that £ is direct; consequently £(t) is that zero of the integral ey = y which 
lies in the same fundamental interval j v . We have therefore £(/) = t. 

2. Let £ be the dispersion determined by arbitrary initial numbers t0, T0 and an 
arbitrary generator/?. Then the inverse function £~~x represents the dispersion deter­
mined by the initial numbers F0, t0 and the inverse linear m a p p i n g s 1 ; this is direct 
or indirect according as £ is direct or indirect. 

Proof We have %p > 0 or < 0 according as £ is direct or indirect. The mapping p1 

inverse top is normalized with respect to the numbers T0910 (§ 19.7) and has character­
istic 1/Xp (§ 19.2). 

Let Z be the dispersion determined by the initial numbers T0, t0 and the generator 
p'1; Z is therefore direct or indirect according as £ is direct or indirect. 

Let t ej be an arbitrary number. If t = T0, then £"~1(t) -= £~1(r0) = t0 = Z(T0) = 
Z(t), and consequently £ml(t) = Z(t). 

We now assume t # T0. Let y e r be an integral of the differential equation (q) 
vanishing at the point t. Now t lies in a certain right fundamental interval with respect 
to T0; let it be the »>-th such interval. It also lies in, say, the fi~th left fundamental 
interval. Consequently, £~^(0 is the zero of the integral p~xy e r lying in the v-th or 
«-/^th right fundamental interval with respect to t0, according as the dispersion £ is 
direct or indirect. Hence, using the definition of Z, £™1(0 = Z(t). 
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3. Let £-., I2 be the dispersions determined by arbitrary initial numbers t0, i0; f0, F0 

and arbitrary generators pl9p2. Then the composite function ^ represents the dis­
persion determined by the initial numbers t09 T0 and the composite linear mapping 
P2P1. The latter is direct if both dispersions £l9 £2 are direct or both are indirect; it is 
however indirect if one of these dispersions is direct and the other indirect. 

Proof. We have xP% > 0 or < 0 according as £f is direct or indirect (1 = 1, 2). The 
linear mapping/? = p2p± is normalized with respect to the numbers t0, T0 (§ 19.7) and 
has the characteristic xP = (XP2) (XPi) (§ 19.2). 

Let I be the dispersion determined by the initial numbers t0, T0 and generator/?; 
I is therefore direct or indirect according as (xP2)(xPi) > 0 or < 0. 

Let t ej be arbitrary. If / = t0 then we have £-.(*) = l0, L[Ci(01 = Wo) = T0 = 
£(to) = C(0 and consequently we have £2£i(0 = £(0-

We assume now that t ^ t0. Let y e r be an integral of the differential equation (q) 
vanishing at the point t; t lies in a certain right fundamental interval—say, the v-th 
such interval—with respect to t0. The number lx(t) is therefore the zero of the integral 
Piyer lying in the *!-the right fundamental interval or the ~ ^ t h left fundamental 
interval with respect to i0 according as XPi > 0 or < 0. 

If XPi > °> then £2L£I(0]
 i s that zero of the i n t e g r a l i t y ) = py e r which is con­

tained in the T-th right or the — ̂ -th left fundamental interval with respect to T09 

according as XPi > 0 or < 0. 
If XPi < 0, then £2[4i(0] 1s that zero of p2(p±y) = py which lies in the — ̂ -th left 

or v-th right fundamental interval with respect to T09 according as %p2 > 0 or < 0. 
Thus the number £2£i(0 i s that z e r o o f the integral py e r which lies in the vAh 

right or — ̂ »th left fundamental interval with respect to F0 according as (xP2)(xPi) > ° 
or < 0. It follows, using the definition of the function £, that 

Ui(t) = £(0-

4. Let l0; £0, £0 (¥= 0), ££ be arbitrary numbers. There exists precisely one dispersion 
I satisfying the Cauchy initial conditions 

£('o)=£o, ?(to)=?0> T ( t 0 )=C (21.6) 

and this is direct or indirect according as £0 > 0 or £0 < 0. 
This theorem is obviously a special case of that in § 20.4, 2. The dispersion £ in 

question is determined uniquely by the first phases a, A of the differential equation 
(q), which are themselves determined by the initial values 

a(t0) = 09 oc'(f0) = l? a'(/0) = 0; A(£0) = 0, A'(£0) = 1/& 

by use of the formula A£(t) = oc(0; t e(—oo9 00). 
We see that the dispersions form a system which is continuously dependent upon 

the parameters Co, C0 (¥- 0), ££. 
5. The dispersions form a 3-parameter group D in which the operation of multipli­

cation is defined as the composition of functions, with unit element (I = ) t. The 
direct, and consequently increasing, dispersions form in the group X) an invariant sub­
group ^ with index 2; the indirect, and consequently decreasing, dispersions form in 
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the group D the coset of ^5, and consequently the second element of the factor group 

Proof The first part of this theorem follows immediately from the above results 1-4. 
Obviously, lety and for arbitrary elements £l9 £2 e ^3, we have £_ 1 e ^ , £2£i e ty is a 
subgroup of D. 

Now let A cz D be the set comprising the indirect dispersions, and consider an arbi­
trary dispersion £ e D. From the definition of the left (right) coset £̂ S 0P£) of the 
elements £ e D with respect to the subgroup ^3, the former constitutes the set com­
prising the dispersions £X(X£) in which X ranges over the elements of s$. But, from 3, 
£Xe s$ or IX e A (X£ e 3̂ or X£ e yf), according as £ e *p or £ e _4. We have therefore 
f $ = 3̂ = <pf in the case f e ^ and f <p = A = ^3 | in the case f e A, so that in both 
cases £<p = ?$£. This shows that the subgroup 3̂ in D is invariant. The factor group 
D/̂ P is obviously formed from the two elements ^3, A. This completes the proof. 

We call 15 the dispersion group of the first kind of the differential equation (q), or 
more briefly the dispersion group. 

21.6 Representation of the dispersion group 

1. In the following we shall continue to denote the dispersion group of the first kind 
of the differential equation (q) by D. We shall introduce also the following notation: 

^3: The invariant subgroup of 2) comprising the direct dispersions. 
(£: The infinite cyclic group formed from the central dispersions of the first kind 

of the differential equation (q) (§ 12.5). 
S : The infinite cyclic group formed from the central dispersions of the first kind 

with even indices of the differential equation (q). 
We have therefore the following inclusion relationships 

X ) ^ ^ 3 ^ 6 ; I D ( 5 = ) { !} . (21.7) 

We now choose a basis (u, v) of the differential equation (q) and denote its 
Wronskian by w. Let £ e D be an arbitrary dispersion, and U9 V be the functions 

u(0 v(0 
U=Z^L F = ^ 4 . (21.8) 

V\t'\ V|C| 
From § 20.6, 3, U9 V are independent integrals of (q) and the Wronskian of the 

basis of (q) formed from these is IV = w sgn £'. 
Obviously, the following formulae hold in the interval j : 

u(0 
via 
42= 
vin 

= c±1u + c12v9 

= c21u + c22v\ 

(21.9) 

in which cll9 c12, c2l9 c22 are appropriate constants. The 2 x 2 matrix C = \\cik\\ of 
these constants is determined uniquely by the dispersion f. 
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Now it follows from (9) that W = \C\w9 and hence 

|C| = sgn£'; 

where |C| naturally denotes the determinant of C. C is thus a unimodular matrix with 
determinant sgn £'. From § 20.3, 2 it follows that |C| has the value 1 or — 1 according 
as the dispersion £ is direct or indirect. 

To simplify our notation we shall write the formula (9) in the vector form 

u(0 
-~^4==Cu , (21.10) 

where u denotes the vector formed from the components u9 v. 
2. We now associate with every dispersion ^ e j the matrix C defined by means of 

the formula (10). In this way we obtain a mapping d of the group D onto the group 
2 formed from all unimodular 2 x 2 matrices. We are in fact concerned with a 
mapping onto the group 2 as can be seen as follows: 

Let C = \\cik\\ be an arbitrary element of 2; we have to show the existence of an 
original t e 3) of C under the mapping d. To accomplish this, we choose an arbitrary 
zero 10 of the integral c21u + c22v e r and a zero T0 of v e r, doing this in such a way 
that 

sgn u(T0) = sgn (cnM(r0) + c12v(t0)) (21.11) 

(it is easy to show that such a choice is always possible). Let t, be the dispersion deter­
mined by the initial numbers t0, T0 and the generator p = [clxu + c12v -> u9 

c21u + c22v-+v]. Since |C| = sgn |C | , we have %p = sgn |C | . Now the formula 
(20.17) applied to the integrals ( F = ) u9 v and the dispersion £ gives, when we take 
account of (11), relationships such as (9). Consequently C is the original of the dis­
persion I in the mapping d. 

We now wish to show that d is a homomorphic mapping (deformation) of the 
group D onto the matrix group 2. 

We therefore consider arbitrary dispersions £l9 £2 e J) and their rf-images Cl9 

C2 e 2. From the formulae 

u(L) r u(i2) 
.— = Cxu, = C2u 

VlCil V|G| 
there follows the relationships 

«(£a£i) 1 _ ^ « & ) _ r ^ 
— c 2 — c2c1w, 

VIUWI v^ii Vic; 
and moreover 

VKSaWí 
= Сadм, 

so that we have, indeed </(£2f i) = QCx. 
3. The unit element of the group 2 is naturally the unit matrix E = ||(5ffc|| (<5n = 

<322 = 1; (512 = <521 = 0). We now prove the theorem: 
The deformation d of the group 3) onto the group 2 maps onto the unit element 

EG 2 precisely the central dispersions of the first kind of the differential equation (q) 
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with even indices while onto the element — Ee £ it maps precisely the central dis­
persions of the first kind of the differential equation (q) with odd indices. 

Proof Let I be a central dispersion of the first kind of the differential equation (q), 
so that from (13.10) we have 

u(0 u(0 
= u, or = —u, (21.12) via ' via 

according as the index of £ is even or odd. It follows that dt, = E or dt, = —E. 
Conversely, let any dispersion £ be such that dt, = E or </£ = —K; then the formulae 
(12) hold and from that and § 3.12 we conclude that £ is a central dispersion of the 
first kind of (q) with an even or an odd index. 

If we now apply the first isomorphism theorem for groups (see [81], p. 178), then 
we obtain the following result: 

The group S formed from the central dispersions of the first kind of the differential 
equation (q) with even indices is invariant in the group T), and the factor group D/S 
is isomorphic to the matrix group £. All the dispersions included in the same element 
of D/S are mapped by the deformation d onto the same element of £. 

4. From the formula (20.13) we conclude that every central dispersion of the first 
kind of the differential equation (q) commutes with each direct dispersion of (q). 
This implies that the group d is a subgroup of the centre of s$. We now show that 
(£ coincides with the centre, in other words we have the following theorem: 

Theorem. The central dispersions of the first kind of the differential equation (q)form 
the centre of the group ^ of the direct dispersions of(q). 

Proof It is clearly sufficient to show that every direct dispersion which commutes 
with all direct dispersions is a central dispersion of the first kind of (q). 

Let £0 be a direct dispersion which commutes with all direct dispersions, and conse­
quently with all elements of ^p. Moreover let £ be an arbitrary element of ty. Further, 
let C0 = | \c°k\ |, C = | |cifc| | be the d-images of Co a n d £ respectively. We have therefore 
C0 = df0, C = d?; | C01 = 1, |C| = 1. From £0£ = ££o there follows the relationship 

C0C-= CC0. (21.13) 

Since every element of £ possesses a d-original, we conclude from (13) that the 
matrix C0 commutes with every matrix C e £ , (|c| = 1). Let us now first choose 
ci2 = c2i = 0, c n 7̂  c22, cxlc22 = 1 and then c±1 = c22 = 0, c12c21 = — 1; then we 
obtain c°12 = c°21 = 0, c°lx = c22; c^c^ = 1. We have therefore C0 = F"or C0 = —E 
and we see that Co is a central dispersion of the first kind of the differential equation 
(q). This completes the proof. 

The above theorem was the motive for our choice of the adjective "central" in 
the term central dispersion (§ 12.2). We sum up as follows: 

The dispersions of the first kind of the differential equation (q) form a 3-parameter 
continuous group X). The direct (increasing) dispersions form in T) an invariant subgroup 
ty with index 2; the indirect (decreasing) dispersions form the coset ofty. The infinite 
cyclic group £ formed from the central dispersions of the first kind of the differential 
equation (q) is the centre ofty. The central dispersions of the first kind of the differential 
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equation (q) with even indices form an invariant subgroup S in D, and the factor group 
D/S is isomorphic to the group formed from all 2 x 2 unimodular matrices. 

21.7 The group of dispersions of the second kind of the differential equation (q) 

We now assume that the differential equation (q) admits of the first associated differ­
ential equation (qx) (§ 1.9). Then the differential equation (q) possesses dispersions 
of the second kind, and these coincide with those of the first kind of (q-_). Consequently, 
the dispersions of the second kind of the differential equation (q) form a continuous 
3-parameter group D l 9 whose structure is naturally analogous to that of the group 2), 
with, of course, central dispersions of the second kind replacing those of the first kind. 

21.8 The semigroupoid of general dispersions of the differential equations (q), (Q) 

Let (q), (Q) be arbitrary oscillatory differential equations in the intervalj = (— oo, co). 
We consider the non-linear third order differential equations 

(qq), (qQ), (Qq), (QQ) 
and denote by 

O i l , ^"12? C/'21J ^ 2 2 

respectively the sets consisting of all regular integrals of these differential equations 
in the interval (— oo, GO). Thus, for instance, GX1 is the set of all dispersions of the 
first kind of the differential equation (q), G12 those of the general dispersions of the 
differential equations (Q), (q), etc. 

We know that the function X(t) = t lies in the sets G1X and G22- We also know that 
the function x^1 inverse to any general dispersion xik e Gik is a member of the set 
Gki: x^eGjd (i9k = 1 , 2 ) . 

Let xikeGik, ykmeGkm (i,k,m = 1,2) be arbitrary general dispersions of the 
corresponding differential equations (q) and (Q). It is easily seen that the function 
xikykm formed by composition of these general dispersions (the order is significant) 
gives a general dispersion contained in the set Gim; xikykme Gim; conversely every 
element zimeGim is the composition of appropriate general dispersions xikeGikJ 

ykm E Gkm: i.e. xikykm = zim. These facts can conveniently be expressed by means of 
the formula 

GikGkm = Gim (i, k, m = 1, 2) 

or by the following multiplication table 

Gц G12 G21 G22 

G ц G ц G12 — — 

G12 
„ — Giг G12 

G21 G2i G22 
— — 

G22 — — G21 G22 
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We now consider the semigroupoid F constructed from the union set G n u G12 u 
G2i u G22 with the operation of multiplication defined as composition of functions. 

From the above we see that: 
The sets Gll9 G12 are groups with the common unit element (1 = ) X{t) = t. The 

sets Gi2, G21 are formed from pairwise inverse elements. Since GnGi2 = G12, 
G12G22 = G12, the group Gtl is a left operator region and the group G22 is a right 
operator region of the set G12. Since G22G2i = G21, G21G1X -= G21 the group G22 is a 
left and the group G±1 is a right operator region of the set G21. 

In this way we arrive at the following structure of the semigroupoid F of the general 
dispersions of the differential equations (q), (Q): 

The semigroupoid T consists of two groups G11? G22 with the common unit element 
land of two further, equivalent, sets G12, G21. These sets have the two products G12G21 

and G21G12, which coincide with the groups G1± and G22, and consist of pairwise 
inverse elements whose product is always the unit element of the groups G11? G22, 
The group G±1 is a left and the group G22 is a right operator region of the set G12; 
similarly the group G1± is a right and the group G22 is a left operator region of the 
set G2i-

We conclude this discussion with one remark: the groups Gll9 G22 always have in 
common the group {1} consisting only of the unit element; in special cases, however 
their intersection can be larger. This occurs, for instance, when the differential 
equations (q), (Q) have the same fundamental dispersion <f> of the first kind, for in 
this case their intersection Glt n G22 contains the cyclic group consisting of all the 
central dispersions (f>v of the first kind of the differential equations (q), (Q). 
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