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Special problems of central dispersions 

This chapter is devoted to a study of special problems arising in the theory of linear 
oscillatory differential equations of the second order. We shall be concerned with 
problems which are related to the concept of central dispersions and which can be 
solved by application of the theory developed in Chapter A. 

14 Extension of solutions of a differential equation 
(q) and their derivatives 

In this paragraph we shall continue to make the previous assumptions, namely that 
(q) is oscillatory, j = (a, b) and q < 0 for all t ej. The last assumption will however 
not be needed in § 14.1 (on extension of solutions) but is first required in § 14.2 (on 
extension of derivatives of solutions). 

14.1 Extension of solutions of the differential equation (q) 

The elementary theory of linear differential equations of the second order shows 

that for every integral v of (q) the function defined by v(t) dajv2(a) is a solution 

of (q) independent of v, in a neighbourhood of every point x e j which is not a zero 
of the integral v. (§ 1.2). We now wish to extend this solution over the entire interval 

j, in terms of values of the integral v. 
Let, therefore, v be an arbitrary integral of the differential equation (q), and let t0 

denote a zero of v. We denote by 

• • • < t^2 < t„! < to < ti < t2 < • ' ' (14.1) 

the set of zeros of v. Then in the above notation we have v(tv) = 0, tv = <t>v(t0); 
v = 09±l,±2,.... 

Letjv = (tv, tv + i). Moreover let x0 ej0 be an arbitrary number and xv = <f*v(x0); 
we have therefore xv ejv. 

Now we define, in the interval j , a function u, which we shall conveniently denote by 

Jd) v2(a) 
vít) ----- (14.2) 

as follows: 

Г
 ÍЛГ da 

Jxv v2(a) 
foг t єjv, 

u(t) = { ľ v (14.3) 
— - • for t = tv. 
v(tv) 
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We note first that the function u represents a solution of the differential equation 
(q) in every interval j v , and in fact the solution with the initial values 

u(xv) = 0, u'(xv) = - — • (14.4) 
v(xv) 

Further, u clearly satisfies the limiting conditions 

lim u(t) = — — — = lim u(t). 
t-+tv-

 v (tv) t-+tv + 

Hence the function u is everywhere continuous and in every interval j v clearly 
represents the solution of the differential equation (q) determined by the initial 
values (4). 

Now let U(t)9 t ej, be the integral of the differential equation (q) determined by 
the initial values 

U(x0) = 0, U'(x0)
 l 

v(x0) 

Then, at every point xv, 

U(xv) = 0, 

and further, from (13.5), 

U'(x0) 
U'(xv)=UШxo)] = (-lľ 

Vфv(x0) 

(-l)vv(x0) Vфv(x0) v[фv(x0)) v(xv) 

Consequently the integral U and its derivative U' take the same values at the point 
xv as the functions u, u'9 hence the functions u9 U coincide in every interval j v . We 
have, therefore, u(t) = U(t) in the entire interval j , with the possible exceptions of the 
points tv. But by the continuity of the functions u, U in the interval j it follows that 
u(t) = 17(0 at each point tv; hence the function u is an integral of the differential 
equation (q) in the interval/ 

To sum up: 

The function 

u{t) = v(ł) — — 
Jd) v2(a) 

represents in the interval] the integral of the differential equation (q) determined by the 

initial values u(x0) = 0, u'(x0) = -7—r. The integrals u9 v are independent; the 
v(x0) 

Wronskian of the basis (u, v) has the value — 1. 
A consequence of this result is worth noting. Every (first) phase a of the basis 

(u, v) satisfies the relationship 
da 

tan a(t) = 
J(x) V %a) 
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in the intervalj, with the exception of the points tv. Consider, in particular, the phase 
a0 with the zero x0. This is obviously given by 

, , . V da 
a0(t) = Arctan ——, oc0(/v) = (2v - 1) 

J(x) v2(a) 

where the symbol Arctan denotes that branch of the function, in the interval j v , 
which takes the value vn at the point xv. The initial values of the phase <x0 at the point 
x0 are 

a0(x0) = 0, «&.„) = ^ a W = - 2 ^ 

The formula (5,18) gives 

?<o H I , »!>•')' 
14.2 Extension of derivatives of solutions of the differential equation (q) 

Again, let v be an arbitrary integral of the differential equation (q) and let t'0 be a zero 
of its derivative v'. Analogously to the above study, we define v'(t'v) = 0, t'v = y)v(t'0); 
f = (t'v9 t'v + 1); v = 0, ± 1 , ± 2 , , , .. We choose an arbitrary number x'0 ej0 and set 
xv = tpv(x'0). Our supposition that q < 0 for all t e j implies that JCJ ej'v. 

In the interval j we define the function u\ which we conveniently denote by 

J < x ' ) l > 2 ( < 

) 

<0 
as follows: 

( Cl a(a\ 
da for / ejv, Jx v Чa) 

"'(!) = , . 

v(Q 
foг / = r 

Then we show similarly that: 
The function 

n'(0 = »'(of ~ # ^ f a 

J(r)l>2(cj) 

represents in the interval] the derivative of the integral u of(q) determined by the initial 

values u(x0) = — — , u'(x'v) = 0. The integrals u, v are independent, the Wronskian 
v \x0) 

of the basis (u, v) being equal to 1. 
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