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3. MB c A = B n - 4 , then for every element a € A there holds either a cz Box a n B = 0 ; 
and conversely. 

4. s(sA r- C) n -4 = sC n A. 

5. If BZDG, then there holds: a) (C c A) n B = C c (A n B). With regard to this equality, 
the set on either side of the latter may be denoted by C c A n B. In particular, for 
C = B, we have (B c -4) n B = A n -B; b) (B c A) n 0 = A n C. 

6. If one of the following three statements jis true, then the remaining two are true as well: 
a) Every element of the decomposition A is incident with at least one element of the de­
composition C; b) A = C c A ; c) sA = s(sG c A). 

7. Every lengthening of an arbitrary chain of decompositions is simultaneously its refinement. 

8. The number pn+1 of decompositions of every finite set of order n + 1 ( ^ 1) is finite. The 
numbers pn+1 are given by the formula: 

Pn+i = E\ )Pv (Po = 1). 

So we have, in particular: 

Pi = 1, P% = 2, j?3 = 5, j>4 = 15, p5 = 52, p& = 203, 

3. Decompositions on sets 

I n this chapter we shall deal with decompositions on sets. The results are often 
useful (see: 2.2) when we are to describe the properties of decompositions in sets; 
in fact: a decomposition A in the set G is, simultaneously, a decomposition on the 
set s JT. 

3.1. Bindings in decompositions 

Let A, B s tand for decompositions of G. 
Consider two arbitrary elements a, p 6 A. 

A binding from atop in A with regard to B is a finite sequence of elements of A : 

au . . . , a a (* ^ 2) 

such t h a t at = a, aa -== p and tha t every two neighbouring members dp, a$+1 

(/3 = 1, . . . , # - - 1 ) are incident with the same element bp£ B. Such a binding is 
said to be generated by the decomposition B; we speak, briefly, about the binding 
{J", B} from a to p. 
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Note that the individual members of the binding need not be different from one 
another. 

If there exists a binding {A,B} from a to p, then we say that the element p can 
be connected, in B, with the element a or, briefly, that p can be connected with a. 

Let us now consider the properties of bindings. 
First, it is easy to see (the proof may be left to the reader) that, for arbitrary 

elements a, b, c £ A, there holds: 

a) The element a can be connected with a. 
b) If b can be connected with a and c with b, then c can be connected with a. 
c) If b can be connected with a, then a can be connected with b. 

Taking account of the statement c), we generally speak about the binding bet­
ween two elements, or say that two elements can be connected, without stressing 
which can be connected with which. 

If the elements a,b £ A can be connected with an element c 6 A, then they can also 
be connected with each other. 

In fact, if the assumption is satisfied, then a can be connected with c, c with b 
and, therefore, even a with b. 

Let a,p£ A ; b, q € B be arbitrary elements and suppose that the elements a, b 
as well as p, q are incident. 

If a, p can be connected in B, then b, q can be connected in A. 

Indeed, if there exists a binding {A, B} from a to p of the form: 

ax, ...,aa (ax = a, aa =p), 

then every two neighbouring elements a$, a$+1 are incident with a certain element 
bp 6 B; consequently, b$, b$+1 are incident with a$+1. Moreover, b is incident with ax 

and q with a^. Consequently, 

b0, ...,ba (b0 = b,ba = q) 

is a binding {B, A} from b to f. 

3.2. Coverings and refinements of decompositions in sets 

Let us, first, introduce once more the notions of a covering and a refinement of a 
decomposition lying on the set (?. These notions have already been mentioned in 
2.4 and play an important part in the following deliberations. 
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Let A, B denote arbitrary decompositions on G. 
A and B are called a covering and a refinement of B and A, respectively, if every 

element of A is the sum of some elements of B. This relation between A and B is 
expressed by A ^ B or B gj A. In particular (A = B), every decomposition on 
G is both its own covering and refinement. If A ^ B, then the decomposition B 
is obtained, as we have seen, by replacing each element of A by its suitable decom­
position ; we have also noticed that the covering A is enforced by a certain decom­
position lying on B. 

Let us now proceed to a more detailed study of the above concepts. 
Let A, B, G be arbitrary decompositions on G. 

First, we shall show that A ^ B is true if and only if, for any two incident ele­
ments a 6 A, b 6 B, there holds dzDb. 

Suppose A ^ B. Let a £ A, b £ B> be arbitrary incident elements, hence a n b =)= 0. 
Then a is the sum of certain subsets of G that are elements of B. One of them is 
b because a n b =\= 0 and the elements of B are disjoint. So we have azDb. 

Let, conversely, for any two incident elements a £ A, b £ B, the relation a r ) 5 
be true. Then a is the sum of those subsets of G that are elements of B and are 
incident with a and, consequently, the relation A ^ B applies. 

Note, furthermore, that the statements set below are correct: 

a ) i " ^ J . _ _ _ _ _ 
b) From A ^ B, B ^ <7 there follows A ^ (7. 
c) From A 2> B, B 2> .4 2Aere follows A = B. 

3.3. Common covering and common refinement of two decompositions 

Let 4 , 5 denote arbitrary decompositions on G. 
A common covering of the decompositions A andB, briefly, a covering of A, B is a 

decomposition on G that is a covering of A as well as of B. 
Analogously, by a common refinement of the decompositions A and B, briefly, a 

refinement of A, B we mean a decomposition on G that is a refinement of A as well 
as of B. 

For example, the greatest decomposition (?max is a common covering and the 
least decomposition 6rmln is a common refinement of A, B. 

It is easy to understand that every covering of any common covering of A, B is 
again a covering of A, B; similarly, every refinement of any common refinement 
of A, B is again a refinement of A, B. 

A remarkable progress in the trend of the above considerations leading to a 
number of important results is due to the notions of the least common covering 
and the greatest common refinement of two decompositions. We shall deal with 
them in 3.4; 3.5; 3.6. 
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3.4* The least common covering of two decompositions 

In 3.3 we saw that every covering of any common covering of two decompo­
sitions A, B is again a covering of A, B. I t is important to note that among all the 
common coverings of two decompositions A, B there is one least covering, X; least 
in the sense that every common covering of A and B is a covering of X. This par­
ticular covering is called the least common covering of the decompositions A and B 
or, briefly, the least covering of A, B. 

Let A, B, G be decompositions on G. 
We shall now construct a decomposition on G, denoted by [A, B], and verify that it 

is the least common covering of A and B. 
Let A be the system of all subsets of A, characterized by the following property: 

Every subset U £A consists of all the elements of A that can be connected, in the 
decomposition B, with some element a £ A. 

First of all, we shall show that A is a decomposition on A. 
In fact, every element a € A lies in some subset I g l because a can be connected 

with itself and therefore lies in the subset U € -4 consisting of all the elements of A 
that can be connected with a. 

Moreover, every two elements of the system A are either disjoint or identical. 
To prove this, let us consider two arbitrary elements S, 5 6 A, I consisting of all the 
elements of A that can be connected with an element a £ A and 5 of all the ele­
ments of A that can be connected with an element b 6 A. Suppose the elements 1 
and 5 are incident so that they have a common element c € A. The latter lies in I 
and can therefore be connected with a; it also lies in 5 so that it can be connected 
with 6. Hence a and b can be connected with c and, consequently, they can be con­
nected with each other (3.1). We observe that any element x £ S can be connected 
with a and the latter again with b. Thus the element x can be connected with b, 
and we have S c J . In a similar way we verify that I c i and we have 1 = 5. 

Consequently, A is a decomposition on A. 

Note that any two elements of A that are in the same element of J can be connec­
ted with each other, whereas two elements that do not lie in the same element of A 
cannot be connected. __ 

The decomposition A enforces a certain covering of the decomposition A, deno­
ted by [A, B]. So we have 

[A, B] £ I. 

Let us remark that every element u £ [A, B] is the sum of all the elements of 
A that lie in some element of A. In other words, u is the sum of all the elements of 
A that can be connected, in B, with some element a ^ A lying in u: a a u. 

Now we shall consider the properties of the decomposition [A, B], 
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First, we shall show that the equality [A, B] = A and the relation A ^ B are 
simultaneously valid. 

Proof, a) Suppose [A, B] = A. Let a 6 A, b 6 B be arbitrary incident elements. 
If a ZD b does not apply, then there exists an element p 6 A incident with b and 
different from a. The elements a, p, arranged in this order, form a binding [A, B] 
from a to p, so that the seta u J>is a part of a certain element u 6 [A, B], Conse­
quently, u is the sum of at least two different elements of A, therefore it is not an 
element of A, which contradicts the assumption. Thus dZDb and we have A ^ B. 

b) Suppose A ^ B. In that case every element of B is a part of an element of A. 
Consequently, no two different elements of A can be connected in B. We observe 
that the above decomposition A is the least decomposition on A, hence [A, B] = A. 

Furthermore, we are going to prove that there holds: 

a) [I,B] = [B,A]; 
b)[A,A] = A; 
c) [A,[B,C]] = [[A,B],C]. 

Proof, a) Let u c£ [A,B], v 6 [B, A] be arbitrary incident elements. Since u 
and v are the sums of certain elements of A and B, respectively, there exist ele­
ments a £ A, b 6 B such that a cz u,b czv and a n b 4= 0. Because A covers G, 
every point p c£ u lies in an element p 6 A. We see that uzDp and, as the elements 
a, p 6 A lie in u 6 [A,B],p can be connected, in B, with a. Since B covers G, p lies 
in an element q £ B which is, of course, incident with p. Moreover, in accordance 
with 3.2, the element q can be connected, in A, with b. Hence v ZD q and thus even 
v ZD u. So we have [JS, A ] ^ [A, B], Simultaneously, for analogous reasons, there 
holds the relation <£ and we have [A, B] = [B, A]. 

b) Since there holds A ^ A, there also holds [A, A] = A. 
c) If any two elements au d2£A are incident with some element z € [B, C], then 

they lie in the same element of the decomposition [[A, B], C]. In fact, in that case 
there exist elements b,q(iB such that b, q czz,b n % =(= 0 =4= f n a2>

 a n d a binding 
[B,C] from b to q: 

bt,...,by (bt = b, by = q). 

Every element bd of the latter is a part of a certain element ud 6 [B, A ] = [A, B], 
d = 1, ...,y. Since ax (a2) is incident with bt (by) and bt (by) is a part of ux (uy), the 
element ax (a2) is incident with €x (uy) and therefore at cz %, a2 cz uy. As every two 
neighbouring elements bs, bM are incident with some element cd 6 C, the same holds 
for every two elements ud,uM so that ut, ..., uy is a binding {[A, B],C] from ux 

to uy. Consequently, the elements %, uy, and therefore even ax, a2, lie in the same 
element of the decomposition [[A, B], C], 

Now, let ii 6 [A, [B,C]],V €.[[A, B], C] be arbitrary incident elements. Then 
there exists an element a € A, a cz u nv; the element u is the sum of all the ele-
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ments p £ A such that there exists a binding [A, [B, C]} from atop: 

au ...,aa (at =a,aa=p). 

Every two neighbouring elements dp, d$+1 are incident with some element of the 
decomposition [B, G ] so that they lie, as we have just verified, in the same element 
of the decomposition [[J., B], C]. From this and from v ZD dt there follows v ZD da 

so that vzDp and we have VZDU. Hence, [[A, B],C] ^ [A, [B, C]]. With regard 
to a), there follows: 

[A, [B, C]] = [[B, C_], A] ^ [B_[C_, A]} = [[C, A], S] 
^ [C, [A, B]] = [[A,B],C}^ [A, [B, C]}, 

and then, by 3.2 c), 

[A,[B,C]\ = [[A,B],C], 

which completes the proof. 

Now we can show that the decomposition [A, B] is the least common covering of 
the decompositions A, B. 

Indeed, the decomposition [A, B] is, by its construction, a covering of A and, by 
a), also a covering of B. Therefore it is a common covering of A and B. Let, more­
over, X be an arbitrary common covering of A and B. Then there holds 

[X,A] = X, [X,B] = X, 

and, by c), 

[X, [A, B]} = [[-?, A], B] = [X, B] = X, 

which proves that X is a covering of [A, B], 
Every common covering of A and B is, therefore, a covering of [A, B] so that 

A, B] is the least common covering of A and B. 

3.5. The greatest common refinement of two decompositions 

In 3.3 we saw that every refinement of any common refinement of two decom­
positions A, B on G is again their refinement. I t is important to note that among 
all the common refinements of two decompositions A, B there is one greatest 
refinement Y; greatest in the sense that every common refinement of A and B is 
a refinement of Y. This particular refinement is called the greatest common re­
finement of the decompositions A andB or, briefly, the greatest refinement of A,B. 

Suppose A, B,G are decompositions on G. 
We shall now construct a decomposition on G, denoted by (A,B), and show that it 

is the greatest common refinement of A and B. 
The construction: If every element <f 6 A is replaced by its decomposition an B, 

we obtain a certain decomposition on G, (A, B). 
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The decomposition (A,B) is therefore the system of all nonempty intersections 
of the elements a £ A and the elements b £ B. 

(A, B) is evidently a refinement of A, i.e., 

(A, B) < A. 

Let us now consider the properties of the decomposition (A, B). 

First, the following relations are simultaneously valid: 

(A,B) = A, J r g £ . 

Proof, a) Suppose (A9 B) = A. Let a £ A, b£ B stand for arbitrary incident 
elements. Then there holds: 

a nb ean B cz (A, B) = A 

and, consequently, a nb = a. Hence a cz b and, moreover, A <I B, by 3.2. 
b) Suppose A Si B. Then every element a£ A is a part of an element of B so 

that an B consists of a single element a. Hence (A,B) ^ A. Since there simul­
taneously holds the relation <I (as we have seen above), the equality (A, B) = A 
is correct (3.2 c). 

Furthermore, there holds: 

a) (A, B) = (B,A); 
b) (A, A) = A; 
c) (A,(B,C)) = ((A,B),C). 

Proof, a) Every element v £ (A, B) is an element of the decomposition a n B 
where a stands for a convenient element of A. So we have v = a n b where b £ B is 
a convenient element. Hence: v £ 6 n A cz (B, A). There follows (A, B) cz (B, A) 
and, for analogous reasons, there holds the relation ZD and the proof of the equality 
a) is complete. 

Note that the equality in question also follows from the relations (A, B) 
= A n B and A n B = B n A (valid by 2.3). 

b) Since A <I A, there holds (A, A) = A. 
c) Let v E (A, (B, C)), so that v = a n (b n c) where a£ A,b£B,c€C are con­

venient elements. Since a n (b n c) = (a n b) n c and, moreover, (a n b) n c £ 
£ ((A, B), C), we have (I, (B, C)) cz ((A, B), C). From this and a) it follows 
that there also holds the relation ZD, which completes the proof of c). 

By means of these results we can show that the decomposition (A, B) is the 
greatest common refinement of the decompositions A and B. 

Indeed, by its construction, (A, B) is a refinement of A and, by the relation a), 
it is also a refinement of B. Let, furthermore, Y stand for an arbitrary common 
refinement of A and B. Then we have: 

(T,I) = T, (T,B) = T. 

3 Boruvka, Foundations 
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Hence, by the relation c), there holds: 

(F, ( J , B)) = ((Y, J ) , B) = (Y,B) = Y. 

We see tha t Y is a refinement of the decomposition (A9 B). 
Every common refinement of the decompositions A and B is, therefore, a refine­

ment of their common refinement (A, B). Thus (A, B) is the greatest common re­
finement of A and JB. 

3.6. Relations between the least common covering and the greatest common refinement 
of two decompositions 

Let A and B s tand for arbitrary decompositions on the set G, 
I t is easy to show tha t between the least common covering [A, B] and the greatest 

common refinement (A, B) of A, B there hold the following equalities; 

[ J , (A, B)] = I , ( J , [ J , B]) = A. 

In fact, these equalities express the relations A ^ (A, B) and [A 9 B] ^ AT 
(3,4; 3.5). 

&7. Exercises 

1. Deduce, for arbitrary decompositions A, B of the set 6r, on the ground of a € A, 5 € B, 
s(a c B) = s(5 c i ) = w, the relationM € [A, 2?]. 

2. For jury decompositions A, B, X on $, where X J*> A, there holds a) [K, B] ^ [A , B], 
(X, B)^(A9B)i b) (X, [A , BJ) ^ [ 2 , (X, JB)]. 

3. Find an example to show that, under the assumptions of the previous exercise, the equality 
in formula b) need not be valid. 

4. Two decompositions in 0 always have the least common covering but need not have 
the greatest common refinement. For the least common coverings of the decompositions 
A, B9 0 in O there hold the formulae 3.4 a) b) c). 

4. Special decompositions 

I n this chapter we shall deal with particular kinds of relations between decomposi­
tions in or on the set G. 
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