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PEXIDER’S FUNCTIONAL EQUATION

Ivan Netuka

1. Atmospheric pressure

This section serves as motivation for our subsequent exposition. We will
derive an equation describing the dependence of atmospheric pressure on height
from the Earth’s surface.
The reference point is at height x0 = 0 where the pressure equals p0. Let

us denote by p(x) the value of the pressure at height x ≥ 0. The following
two assumptions are quite natural from the point of view of physics: p is a
strictly positive function on [0,∞) and, for fixed y, the pressure at height x+y
is proportional to the pressure at height x. As a consequence there exists a
function q : [0,∞)→ (0, 1] such that

p(x+ y) = q(y) · p(x), x, y ∈ [0,∞). (1)

Hence we arrive at one equation for two unknown functions p and q. In Sec-
tion 4, we shall prove that there exists γ ≥ 0 such that

p(x) = p0e
−γx, x ∈ [0,∞); (2)

cf. [KS], [S].
It is worth emphasizing that this result can be derived without any continuity

or differentiability assumption imposed on functions p and q.
For further discussion, it is convenient to define f := log p, h := log q. Then

Eq. (1) has the form

f(x+ y) = f(x) + h(y), x, y ∈ [0,∞).

This is a special case of the equation

f(x+ y) = g(x) + h(y), (3)

which is a functional equation for three functions. Eq. (3) is called Pexider’s
equation. It is remarkable that this one equation determines the functions f , g,
and h.
Eq. (3), and analogous equations

f(x+ y) = g(x) · h(y),
f(x · y) = g(x) + h(y),
f(x · y) = g(x) · h(y),
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were investigated in the paper [P12]. Nowadays, the terms Pexider’s equation,
and equation of Pexider’s type, are quite common in the mathematical litera-
ture; see, for instance, [K], [AD]. It is worth mentioning that Pexider’s name
appears also in recently published mathematical papers. A search of Math-
SciNet in 2006 reveals that the item Pexider appears 152 times, of which 94
occurrences are after 1990. Let us note that J. V. Pexider dealt with functional
equations in [P4], [P5], [P6], [P10] and [P12].

2. Solution of Pexider’s equation

We are interested in finding all real-valued functions f , g, and h such that

f(x+ y) = g(x) + h(y), x, y ∈ R.

We shall show that a general solution can be obtained from knowledge of all
solutions of this equation for the special case f = g = h.
Let us recall that a function F : R → R is said to be additive, if

F (x+ y) = F (x) + F (y), x, y ∈ R. (4)

Eq. (4) is called the Cauchy functional equation and will be studied in Section 3.
Here we note only that it appeared as early as 1791 (A. M. Legendre) and 1809
(C. F. Gauss). It was, however, A. L. Cauchy who described all continuous
solutions in 1821; for references, see, for instance, [K].
A close connection between Pexider’s equation and additive functions is

obvious: Given an additive function F and real numbers b and c, the functions

f := F + b+ c, g := F + b, and h := F + c

clearly satisfy Eq. (3). However, we are interested in all solutions of Eq. (3).
To this end, let us suppose that functions f , g, and h satisfy Eq. (3). Let us put
b := g(0), c := h(0) and define F : z 
→ f(z)− b− c, z ∈ R. For y = 0, Eq. (3)
yields f(x) = g(x) + c, x ∈ R. Similarly for x = 0 we obtain f(y) = b + h(y).
Inserting g(x) = f(x)− c, h(y) = f(y)− b, x, y ∈ R, into Eq. (3), we arrive at

f(x+ y) = f(x) + f(y)− b− c,

or
f(x+ y)− b− c = (f(x)− b− c) + (f(y)− b− c), x, y ∈ R.

Hence the function F is additive. So we have the following result:

Theorem 1. Let f , g, and h be real-valued functions such that

f(x+ y) = g(x) + h(y), x, y ∈ R.

Then there exists an additive function F and numbers b and c such that

f = F + b+ c, g = F + b, and h = F + c. (5)
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Conversely, if F is an arbitrary additive function and b and c are arbitrary real
numbers, then the functions f , g, and h defined by Eq. (5) satisfy Eq. (3).

In this sense, the solvability of Eq. (3) is reduced to a description of additive
functions.
Clearly, for every a ∈ R, the function Fa : x 
→ ax, x ∈ R, is additive. These

are the expected “natural” solutions of Eq. (4). However, there exist additive
functions which are not of the form Fa; see Section 3.
Let us notice that, in proving Theorem 1, only the simplest algebraic prop-

erties of real numbers were used. Therefore, it is not surprising that Theorem 1
can be expressed in a purely algebraic form; cf. [AD], [S].

Theorem 2. Let (D,+) be a groupoid (with addition) and (R,+) be an
additive group (not necessarily Abelian). Let f , g, and h be mappings from D
to R. Then f , g, and h satisfy the equation

f(x+ y) = g(x) + h(y), x, y ∈ D,

if and only if there exists a homomorphism A : D → R and elements b, c ∈ R
such that

f(x) = b+A(x) + c, g(x) = b+A(x), and h(x) = A(x) + c, x ∈ D.

To say that A : D → R is a homomorphism simply means that A(x + y) =
A(x) +A(y), whenever x, y ∈ D.

3. The Cauchy equation

In this section we study solutions of Eq. (4). It is easy to see that every
solution of Eq. (4) satisfies F (r) = F (1) · r, whenever r is a rational number.
This immediately implies that every continuous solution of Eq. (4) is necessarily
of the form Fa with a = F (1). The continuity assumption can be weakened.
Here are the classical results: F is of the form Fa, provided that F is continuous
at a point, or even if F is merely bounded from below or above on an interval,
see [J], chap. 5, §13. This also follows from Theorem 3 proved below.
In 1905, G. Hamel showed in [H] that there are discontinuous solutions of

Eq. (4).
A general result of linear algebra says that every vector space possesses a

basis. In particular, the vector space R over the field Q of rational numbers
has a basis (usually called a Hamel basis). Given a Hamel basis B, it is useful
to notice that an arbitrary function f : B → R can be uniquely extended to
a solution F of Eq. (4). Choosing two different elements b1, b2 ∈ B and two
numbers y1, y2 in such a way that y1b2 �= y2b1, no solution F of Eq. (4) with
F (bj) = yj, j = 1, 2, can be of the form Fa, so F is necessarily discontinuous.
G. Hamel proved that the graph of an arbitrary discontinuous solution of

Eq. (4) is dense in R2, so such an additive function behaves rather “wildly”.
Recall that the graph of a function F is the set

G(F ) = {(x, y) ∈ R2 : y = F (x)}.
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A set Z ⊂ R2 is said to be dense, if for every z ∈ R2 there exist zn ∈ Z
converging to z.

Theorem 3. Let F be a solution of Eq. (4) and suppose that F = Fa for no
a ∈ R. Then the graph G(F ) of F is dense in R2.
Standard proofs may be found, for instance, in [AD] and [B]. Here we offer

a proof based on an idea from [R]; cf. also [S].
For x ∈ R, we denote, as usual, by [x] the largest integer not exceeding x

and we put {x} := x− [x].
To prove Theorem 3, let F be a solution of Eq. (4) such that F = Fa for

no a ∈ R. Then there exists s ∈ R such that F (s) �= F (1) · s (of course, the
number s must be irrational). For a natural number n,

F ({ns}) = F (ns)− F ([ns]) = nF (s)− [ns]F (1) =
= nF (s)− nsF (1) + {ns}F (1) = n(F (s)− sF (1)) + {ns}F (1).

Fix z0 = (x0, y0) ∈ R2 and choose sequences (rn) and (sn) of rational numbers
in such a way that

rn → x0, sn → (y0 − x0F (1))/(F (s)− sF (1)), n→ ∞.

Defining xn := rn + sn · {ns}/n, we have xn → x0 and

F (xn) = rnF (1) + (sn/n)F ({ns}) =
= rnF (1) + sn(F (s)− sF (1)) + (sn/n){ns}F (1).

We see that

F (xn)→ x0F (1) + y0 − x0F (1) = y0, n→ ∞.

Consequently, for zn = (xn, F (xn)), we have zn → z0, n → ∞, which shows
that the graph G(F ) of F is dense in R2.
As already noted, one-sided boundedness of an additive function F on an

interval implies F = Fa for a suitable a ∈ R. This assertion can be substantially
strengthened as follows:

Theorem 4. Let F : R → R be an additive function, M ⊂ R, and let F be
lower or upper bounded onM . IfM has positive Lebesgue measure, then there
exists a ∈ R such that F = Fa.

Corollary 5. Every measurable additive function F is of the form Fa.

To see this, define Mk := F−1((−∞, k)) for each integer k. Then Mk is
measurable and

⋃
kMk = R. Hence at least one of the sets Mk has positive

Lebesgue measure and F is upper bounded there.
The idea of the proof of Theorem 4 goes back to A. Ostrowski [O] and is

based on the following remarkable result of H. Steinhaus; see [K], p. 69:
If M ⊂ R has positive Lebesgue measure, then the set

M +M := {x+ y : x, y ∈M}



Pexider’s functional equation 55

contains an open interval.
To prove Theorem 4 for, say, an additive function F which is upper bounded

on M , fix m ∈ R such that F ≤ m on M . If z ∈ M +M , then z = x + y for
some x, y ∈M , and hence

F (z) = F (x+ y) = F (x) + F (y) ≤ 2m.

We see that F is upper bounded on an open interval, so the graph G(F ) of F
is not dense in R2. Now we apply Theorem 3 (or [J]; chap. 3, §13).
The results summarized above lead to the following informal statement: a

solution of the Cauchy functional equation either is a linear function of the
form Fa, or behaves in a “pathological” way. Further justification for the term
“pathological” may be found in [K], chap. 12.

4. Back to atmospheric pressure

We shall start with the following simple result:

Theorem 6. Suppose that H : [0,∞)→ [0,∞) satisfies

H(x+ y) = H(x) +H(y), x, y ∈ [0,∞).

Then there exists a ≥ 0 such that H(x) = ax, x ∈ [0,∞).
The proof is easy: If x1, x′1, x2, x

′
2 ∈ [0,∞) are such that x1 − x′1 = x2 − x′2,

then

H(x1) +H(x′2) = H(x1 + x
′
2) = H(x2 + x

′
1) = H(x2) +H(x

′
1),

and hence
H(x1)−H(x′1) = H(x2)−H(x′2).

It follows that the function

F (x) = H(x1)−H(x′1)

is well defined on R for x of the form x = x1 − x′1, where x1, x
′
1 ∈ [0,∞). It is

easy to see that F is additive, F = H on [0,∞) and F ≥ 0 on [0,∞), which
gives the result.
In Section 1, we were interested in functions f : [0,∞)→ R and h : [0,∞)→

(−∞, 0] satisfying

f(x+ y) = f(x) + h(y), x, y ∈ [0,∞).

Now we shall apply Theorem 2 for D = [0,∞) and R = R. We know that there
exist a function A : [0,∞)→ R satisfying A(x+y) = A(x)+A(y), x, y ∈ [0,∞)
and numbers b, c ∈ R such that

f(x) = b+A(x) + c, f(x) = b+A(x), and h(x) = A(x) + c,
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whenever x ∈ [0,∞). This yields b = f(0) and c = 0, since obviously A(0) = 0.
Now we apply Theorem 6 for H := −A (= −h). We conclude that there
exists γ ≥ 0 such that A(x) = −γx, x ∈ [0,∞). Recalling from Section 1 that
f = log p, h = log q, we arrive at

q(x) = e−γx, p(x) = ef(x) = eb · e−γx, x ∈ [0,∞).

Now eb = p(0) = p0. So we have verified that the dependence of the atmo-
spheric pressure on height is given by Eq. (2).
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