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II.1 

II. Integral equations in the space BVn[0, 1] 

1. Some integral operators in the space BVn[0, 1] 

In this paragraph we assume that on the twodimensional interval I = [0, 1] x [0, 1] 
cz R2 an n x n-matrix valued function K(s,t) = ktj{s,t)), ij = 1,2, ..., ri is given, 
i.e. K: I -• L(Rn). Moreover let the twodimensional variation of K: I -» L(Rn) be 
finite, i.e. (cf. 1.6.1) 

(1,1) v,(K) < oo . 

The operator d,[K(S,ř)]x(t) 

Let us assume that x e J3V„[0,1] = BVn is given, i.e. x(t) = (xj(t), x2(t), ..., x„(£))*; 
t e [0,1]. If it is assumed that 

(1.2) varjK(0, . )< oo, 

then by 1.6.6 we obtain var0 K(s, .) < v7(K) 4- var0 K(0, .) < -f oo for every s e [0,1]. 
This yields by 1.4.19 the existence of the Perron-Stieltjes integral 

(1.3) £d([K(S,0]x(t) = y(S) 

for any se [0,1]. The integral (1,3) evidently defines a function y: [0 ,1]- • #„. 
By 1.6.18 we have 

(1.4) var£ y < sup |x(t)| v7(K) 
- e [ 0 , l ] 

and consequently yeBVn. Hence the integral (1,3) defines an operator acting in 
the Banach space BVn. Let us denote this operator by 

(1.5) Kx = idt[K(s, t)] x(t), x e BVn. 
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II.l 

1.1. Theorem. If K: I -> L(Rn) satisfies (1,1) and (1,2) then the operator K defined 
by (1,5) is a bounded linear operator on BVn (KeB(BVn)) and 

(1,6) |K||B(Bv„,<var»K(0, .) + V/(K). 

Proof. The linearity of the operator K is evident. Further for any x e BVn it is 

£d,[K(0, t)] x(t) + var' (£d,[K(. , t)] x(t) F*IIBV„ 

< sup |x(t)| (var' K(0, .) + v7(K)) < (var* K(0, .) + V/(K)) \\x\\BVn 
fe lO. l ] 

where (1.6,13) and (1.6,14) from 1.6.18 was used. This implies the boundedness of K 
and the inequality (1,6). 

1.2. Lemma. If K: I-+ L(R„) and K: / - JL(i?„) satisjy (1,1) and (1,2), then 

(1.7) Pd,[K(S, t)]x(t) = PdlKMlxtt) 
Jo Jo 

for every xe BVn and s e [0,1] if and on/y if the difference 

W(s, t) = K(s, t) - K(s, t) 
satisfies 

(1.8) W(s,* + ) = W ( s , t - ) = W ( s , l - ) = W(s,0 + ) = W(s, l )= W(s,0) 

for every s e [0,1] and t e (0,1). 

Proof. The assumptions on K,K guarantee that for W: I-+L(Rn) we have 
V|(W) < oo and var0 W(0, .) < oo. Hence by 1.6.6 also var0 W(s, .) < oo for every 
se [0,1]. The equality (1,7) can be written in the form J£ df[W(s, t)] x(t) = 0. 
The assertion of our lemma follows now immediately from 1.6.5 since (1,8) is 
equivalent to the fact that for every se[0,1] the elements of the matrix W(s, .) 
belong to S[0,1]. 

1.3. Corollary. If K,K: I -> L(Rn) satisfies (1,1) and (1,2) where for the difference 
W(s, t) = K(s, t) — K(s, t) the chain of equalities (1,8) holds for any se [0,1] and 
t e (0,1), then the operator K e B(BVn) defined by the relation 

= p([ќ(s,t)] x(t), xeBVn 

is identical with the operator K e B(BV„) defined by (1,5). 
If we define for any se [0,1] 

(1,9) K(s,t) = K(s,t + )-K(s,0) for te(0,l ) , 

K(s, 0) = 0, K(s, 1) = K(s, 1) - K(s, 0), 
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II. 1 

then v7(/C) < oo, var0 £(0, .) < oo and the difference VV(s, t) = K(s, t) - £(s, t) 
satisfies (1,8) for any se[0,1] and f e(0, 1). Hence the operator 

K x = I d,[tf(s,t)]x(r), XG_?V„ 
Jo 

is the same as the operator KeB(BVn) defined by (1,5), i.e. K = £. 

Proof. The first part of this corollary simply follows from 1.2. For the second part 
it is necessary to show that K: / -• L(Rn) from (1,9) satisfies (1,1) and (1,2). 

Assume that 0 = a0 < ax < ... < afc = 1 is an arbitrary subdivision of [0,1] 
and Jtj — [oii-uaLi~] x [a,-1,0,], ij — 1,..., fc is the corresponding net-type sub­
division of / (see 1.6.3). We have for any given 3 > 0 

k 

I 
І=I 

£ |K(a„ a. + S) - K(a„ a0) - K(a,_,, a. + S) + K(a,- „ a0)| 

+ £ I lK(«p «;+<5) - *(«•> «;-1 + «*) - *(«.-.,«,• + <*) + *(«.-., a,._. + 5)\ < v,(K) 
j = 2 i = l 

where we assume that K(s,t) = K(s, 1) if t > 1. Since for K: / -> L(K„) (1,1) and 
(1,2) hold, the limit lim K(s, t + 8) = K(s, f+ ) exists for every se [0,1], re [0,1]. 

Passing to the limit S -> 0+ in the above inequality we obtain for K the inequality 

I I key 
j = i i = i 

He fc 

Z Z 1 % , «j) - K(a., aj_ J - K(at._ 1? a,) + % , _ 1? a,._ 1;| < v,(K) 
J = l i = l 

which holds for every net-type subdivision Ji} of /. Hence (see 1.6.3) we obtain 
v,(£) < v,(K) < 00. Since var0 K(0, .) < 00 and /C(0, t) = K(0, t + ) - K(0,0) differs 
from K(0, t) - K(0,0) only on an at most countable set of points in [0,1], the 
variation var0 £(0, .) is finite. For VV(s, t) = K(s, t) - /C(s, t) we have evidently 

VV(s,t~) = K(s,t-) - R(s,t-) = K(s,t-) - limK(s,t + ) + K(s,0) = K(s,0) 
x-*t-

if s e [0,1], te (0,1). Similarly also VV(s, t +) = VV(s, 1 - ) = W(s, 1) = VV(s, 0 +) 
= VV(s, 0) = K(s, 0) holds and the assertion of the second part of the corollary is 
valid. 

1.4. Remark. The corollary 1.3 states that we can assume without any loss of gener­
ality that the kernel K: / -> L(Rn\ which defines by (1,5) the operator KeB(BVn), 
satisfies 

(1.10) K(s,t + ) = K(s,t) for any s e [ 0 , l ] , te(0,l) 

and 

(1.11) K(s,0) = 0 for any 5 6 [0,1]. 
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H.l 

It is clear that if in (1,9) the right-hand limit K(s, f+ ) is replaced by the left-hand 
limit K(s, r - ) , then 1.3 holds too. This justifies the possibility of replacing the con­
dition (1,10) by 

(1,10') K(s,t-) = K(s,t) forany s e [ 0 , l ] , re(0 , l ) . 

Hence without any restriction it can be assumed that the kernel K: I -> L(Rn) 
defining the operator KeB(BVn) by (1,5) satisfies (1,10') and (1,11), K remaining 
unchanged also in this case. 

Moreover, any operator KeB(BVn) given by (1,5) with K: I -* L(Rn) satisfying 
(1,1) and (1,2) can be represented by a kernel K: / -• L(Rn) satisfying the additional 
assumptions (1,10), (1,11) (or (1,10'), (1,11)). Using the notations from 1.5 the ad­
ditional assumptions (1,10), (1,11) ((1,10), (1,11)) state that the elements k^sj) of 
K: I -> L(Rn) as functions of the second variable t belong to the class NBV 
(NBV). 

1.5. Theorem. / / K : / - > L(Rn) satisfies (1,1) and (1,2), then the operator KeB(BVn) 
defined by (1,5) is compact, i.e. KeK(BVn). 

Proof. For proving KGK(J5V„) we use 1.3.16. Let {x j , xkeBVm k = 1,2,... be 
an arbitrary sequence with 

lkl|BVM = |xk(0)| + var0 xk < C = const., k = 1,2,.... 

By Helly's Choice Theorem (cf. 1.1.4) there exists a function xeBVn and a sub­
sequence xtl, / = 1,2,... of {x j such that lim xkl(t) = x(t) for any t e [0,1]. 

Let us put 
zl(t) = xkl(t)-x(t), re [0,1], J = 1 , 2 , . . . . 

Then ||z,||BFri < C + ||x||BKn < oo, zteBV„ / = 1,2,... and 

(1,12) lim zz(f) = 0 forany te[0,l]. 
l!-*oo 

Using 1.6.18 (see (1.6,14)) we have 

(1.-3) var» (£d, [K( . , t)] (xjt) - *(»)) = var' ( £ d , W - . 0] *«(')) 

dco2(t) 
Jo 

where <x>2: [0,1] -> R is nondecreasing, a>2(0) = 0, cO2(l) = vf(K), (see 1.6.7). For 
every te[0 ,1] and / = 1,2,... we have evidently 0 < |z,(f)| < ||Z/||BF„ < C + ||x||BFn 

and the real valued function |z,(f)|: [ 0 , 1 ] - * ^ belongs to BV[0,1] for every 
/ = 1,2,...,. Hence by 1.4.19 the integral J0 |*.(t)| dco2(t) exists for every / = 1,2,.... 
1.4.24 implies by (1,12) 

lim |z,(t)| dco2(t) = 0 
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11.1 

and this together with (1,13) leads to the relation 

(1,14) lim var0 (£d . [K( . , tj] xkl(t) - £d,[K(„ t)] x(t)) = 0. 

By (1.6.13) we have further 

[d,[K(0,t)]z,(t) < |z((í)|d[varoK(0, .)] 

and the same argument as above gives by (1,12) 

(1,15) lim 
/ - 0 0 

ЧWCíДxJt)- [1d,[K(0,f)]x(t) 
o Jo 

= 0. 

Let us now denote y(s) = J0 dr[K(s, t)] x(t). By 1,1 evidently ?sBVn and by 
(1,14) and (1,15) we obtain 

lim ||Kxkl - y\\BVn = lim {|Kxkl(0) - y(0)| + var0(Kx,, - y)} = 0, 
/->QO /-•OO 

i.e. the sequence {KxJ contains a subsequence which converges in BVn. Hence 
KeK(BVn). 

The operator 
Jo 

, í) dę(s) 

Let us assume that <peBVn is given, <p(t) = (cp^t), <p2(t)9 ..., (P„(t))*, ts [0,1]. If 

(1,16) var o K(.,0)< oo, 

then by 1.6.6 we obtain var0 K(., t) < v,(K) + var0 K(., 0) < oo for every t e [0,1] 
provided (1,1) is fulfilled. In this case by 1.4.19 the Perron-Stieltjes integral 

(-47) K(s, t) dф) = Щ 

exists for every t e [0,1]. 

Let us show that the function ^ : [0,1] -* Rn defined by (1,17) is of bounded 
variation on [0,1] if (1,16), (1,1), (1,2) are assumed. 

Let 0 = y0 < yx < ... < yt = 1 be an arbitrary subdivision of [0,1]. By 1.4.27 
we have 

Ш-Hvi-ä jW^-KM-i))^) 
< sup.jK(s,yf)-K(s,yf_1)|varJí» < (v[o>i,x,y(.1,,l](K) + |K(0,y,) - K(0,y(-i)|) var0<p 
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I l l 

because for every se [0,1] 

|K(_I,yi)-K(s,y,._1)| 

< |K(s,7i) - K(_,y(_.) - K(0,y() + K(0,7l-_.)| + |K(0,y() - fC(0,-.i_1)| 

< v i o ^ x t o - , . , ^ + |K(0,y() - K(0,y(_.)| 

(cf. 1.6). Hence by 1.6.5 

(M8) II*W-*(y.-.)l 
i = 1 

-5 Z(V[O,I,M^..V,](K) + |K(0,y() - K(0,y(-.)|) varj? 
i = l 

< [V/(K) + var0 K(0,.)] var0 9 < [V/(K) + var0 K(0, .)] || v||BKn 

for all subdivisions 0 = y o < y 1 < . . .<}> ,= 1 and so var£ ijf < 00. In this way 
the integral (1,17) defines an operator acting on BVn\ we set 

(1.19) K<p K(s,t)d<p(s), <peBV„. 

1.6. Theorem. / / K: / -> L(R„) satisfies (1,1), (1,2) and (1,16), then the operator K 
defined by (1,19) is a bounded linear operator on BVn; i.e. KeB(BVn) and 

(1,20) \\RUBvn) < |K(0,0)| + varoK(.,0) + var0 K(0, .) + v,(K). 

Proof. The linearity of R is obvious. For any <peBVn by 1.4.27 we have 

< sup |K(s, 0)| var0 <p < (|K(0,0)| + var0 K(., 0)) ||«pj|B^„. 
se[0,l] 

K(s,0)d<p(s 

Using (1,18) we obtain 

I|K^||BK- = + var( 0£к(s,.)d<p(s) K(s,0)d<p(s) 

< [|K(0,0)| + var0 K(0, .) + var0 K(., 0) + V/(K)] \\<p\\BVn. 

Hence KeB(BVn) and (1,20) holds. 

1.7. Lemma. Let M: [0,1] -> L(Rn) be an nx n-matrix valued function such that 

(1,21) var0 M < oo . 

Assume that a fixed ere [a, b] is given. Define for xeBVn the operators 

Mx = M(t) x((r), M+x = M(t) A+x(a), Mx = M(t) A"x((j) 

where A+x(<r) = x(<7 + ) — X(CT), A~X(<T) = x(a) — x(cx —). 77ie operators M,M+,M~ 
are compact linear operators on BVn, i.e. M,M + ,M~ eK(BVn). 
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U.i 

Proof. Since evidently 

||Л1x||вv„ = |Лl(0)x(<r)| + vari(Л1(.)x(<7)) < [|Л1(0)| + varJЛl] |x(cт)| 

<[|Л1(0)| + variЛ1]||x||ßVr, 

we have Л1 £ B(BV„) and 

ИI|ß(Bк„,<[|Л1(0)| + var'Лl]. 

The same argument gives also /И + ,/И~ єB(BVn) and the inequalities 

И + Uвvn) < [|ЛІ(0)| + var0 /И] , \\M-\\BiBVn) < [|/И(0)| + var0 M] . 

Let us denote by ß = {xєБVп; ||x||B ri < 1} the unit ball in BVn. M + (B) 
= {үєBVn; ү = /И+x, XЄJB} ІS the image of B under the map M+. Let үkєM+(B), 
к = 1,2,... be an arbitrary sequence in M+(B), i.e. there is a sequence xkєB such 
that үk = M+xk. Since xkєB, к = 1,2,... we have 

|Д + x f c (a) |<var 0 x f c < ||xfc||ßKn< 1 

and there is a subsequence {xfc/}, / = 1,2,... such thatlim Д+xfc/((г) = zєRn and 
M(t) zєBVn. Since evidently '~*°° 

||/И+xfc/ - M(t)z\\BVn < (|/И(0)| + var0/И) |Д+xfc/ - z\ 

we obtain that 

lim үkl = lim M+xkl = /И(ř) z in BҚ 
/-*oo /-+oo 

and /И + єK(ßҚ). 
For an analogous reason the results MєK(BVn\ M~ єK(BVn) are derivable. 

1.8. Lemma. Let {o^^L^ be an arbitrary sequence ofreal numbers in [0,1]. Suppose 
that Mt: [0,1] -* L(Rn), l = 1,2,... is a sequence of n x n-matrix valued functions 
satisfying 

oo 

(1.22) YД ľедi + v a r å Л l ^ o o . 
1=1 

Defìnefor xєBVn the series 

(1.23) Rx = f/И,(í)A+x(a,), 
/ = 1 

(1.24) Lx^fлi^A-x^) 
1=1 

where Д+x((г) = x((г + ) - x(o\for oє [0,1) A"x((г) = x(cт) - x((г-),for (гє(0, l] 
Д+x(l) = 0, Д"x(0) = 0. 
Æořft expressions (1,23) and (1,24) de/ïne compact operators on BVn, i.e. R, L є K(BVn\ 
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III 

Proof. We prove this lemma only for R; the proof for L is similar. First let us prove 
that R e B(B Vn). The linearity of the operator R is evident. Let 0 = a0 < ax < ... < ak = 1 
be an arbitrary subdivision of [0,1]. We have 

k 

I 
1=1 

k oo 

< £ ^Mfaj) - Mfaj.^wаilx 
j = i 1 = 1 

X(/VI,(a,)-/vl,(aJ._1))A+x((Tí 

ř = 1 

oo / k 

= Z ( Z |^i( ai) - A 1/( a1- i)l ) v a r o x < Z v a r o M, v a r o x • 1 = 1 \ j = l 

Hence 

Further 

vari Rx < ( X var£ M, j varj x < I Y, var£ /V.,) ||x||BV>i. 

Y,/И,(0)Д+x(<т;) 
/ = 1 

<Y,|/И,(0)|var*x< Z|/И,(0)| ||x l|BVn 

and consequently 

|Rx||BKn < £ (|/v.,(0)| + varjM,) I x Ц ^ , i.e. ReB(BVn). 

Let us now define for every N = 1,2,... the operator 

R„x = X/V./(t)A+x(a,), xeBK,. 
."=1 

1.7 implies that RN is compact for every N = 1,2,... because RN is a finite sum 
of compact operators. Further for every xeBVn we have 

Rx - RNx = X м /( ř ) Д + X Ы 

and as above also 
/ = N + 1 

|Rx - R ^ H ^ < [ t (|M,(0)| + varJ/vl,) 
\вvn 

Hence by the assumption (1,22) we obtain that lim RN = R in B(BVn) and therefore 
by 1.3.17 we get R e K(BVn). JV"fl0 

1.9. Theorem. If K: I -• L(K„) satisfies (1,1), (1,2) and (1,16), then the operator 
K e B(BVn) defined by (1,19) is compact, i.e. K e K(BVn). 

P r o o t In 1.6 we have proved that KEB(BVU). The assumptions guarantee by 1.6.5 
that var0 K(., t) < oo for every t e [0,1]. Hence by the integration-by-parts formula 
1.4.33 we get 

(1,25) P K ( S , t) d<p{s) = - fd jycfc r)] <p(s) + K(l, t) <p(l) - K(0, t) <Mp) 
Jo Jo 

- £ A+K(<M)A+<p(<r)+ £ A - K M A - ^ f f ) 
0 < ( T < 1 0<<T<1 
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II. 1 

for any te[0,1], where As
+K(<r, t) = K(a + 9 t)- K(a, f), A;K(o,t) = K(o,t)-K(o-j\ 

A>(cr) = <p(a + ) - <p(a\ A'<p(a) = <p(a) - <p(a-\ 
By 1.5 the integral j 0 ds[K(s, t)\ <p(s) defines a compact operator on BVn. Further 

by (1,1) and (1,2) we have var0 K(s, .) < oo for any s e [0,1] (cf. 1.6.6). Hence by 1.7 
the expressions K(l, t)<p(l\ K(0, t)<p(0) determine compact operators on BVn. If we 
prove that the last two terms on the right-hand side in (1,25) define compact operators 
on BVn\ then K e B(BVn) is expressed by (1,25) in the form of the finite sum of compact 
operators and is therefore also compact. 

Let us consider the term 

(1.26) ~ As
+K(<T,f)A>(<7) = fty 

0 < < r < 1 

from the expression (1,25). Since (1,1) and (1,16) are assumed, the set of discontinuity 
points of K(s, t) in the first variable lies on an at most denumerable system of lines 
parallel to the t-axis (see 1.6.8) i.e. there is a sequence ah I = 1,2,..., <Xje[0, 1] 
such that A+K(cr, t) = 0 whenever a + ah I = 1,2,..., ae [0,1), and t e [0,1] is 
arbitrary. Hence the sum R<p from (1,26) can be written in the form 

R<p = f AtK(aht)A
+<p(al). 

i=i 

By 1.6.15 we have 

var0 As
+K(<jj, .) < 0 ^ + ) - (Dx(o^ 

where OJX: [0,1] -• R is defined by (1.6,5) for K: I -• L(Rn). Hence (see 1.6.7) 
00 00 

X var0 A+K(oh .) < £ ( 0 ^ + ) - co^)) < var0 co, = v7(K). 
/ = i z = i 

Further evidently 
00 

Y.|As
+K((T(,0)|<var£K(.,0)<oo 

1=1 

by (1,16). Hence 

£ (|As
+K(a„0)| + var» As

+K(a„ .)) < oo . 
1=1 

All assumptions of 1.8 being satisfied we obtain that R<p is a compact operator acting 
on BVn. In a similar way we can show that the expression £ As~K(o", t)A~<p(a) 

0 < < T < 1 

from (1,25) also defines a compact operator on BVn and this yields our theorem. 
From 1.9 the following can easily be deduced. 

1.10- Theorem., If K: I -> L(Rn) satisfies (1,1), (1,2) and (1,16) and moreover 

(1.27) K(s,t + ) = K(s,t) forany s e [ 0 , l ] , re(0 , l ) , 

K(s,0) = 0 forany se[0,l] 
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n.l 

then the expression 

(1,28) KV = K*(s,íj(ty(s), <peNBVn 

defines a compact linear operator acting on NBVn, i.e. K'eK(NBVn). (By K*(s,t) 
the transposition of the matrix K(s, t) is denoted.) 

Proof. Using the properties of the norm of a matrix (see 1.1.1) we easily obtain 
that for K*: I -> L(Rn) we have var0 K*(0, .) < oo, var0 K*(., 0) < oo, v,(K*) < oo, 
K*(s,t + ) = K*(s,t) for any S G [ 0 , 1 ] , te(0,l) and K*(s,0) = 0 for any s e [ 0 , l ] 
whenever the assumptions of the theorem are satisfied. By 1.9 the operator Kij/ 
= J0 K*(s, t) dtfr(s), il*eBVn belongs to K(BVn). The operator K' given by (1,28) is 
evidently a restriction of K to the closed subspace NBVn c BVn (cf. 1.5.2). For an 
arbitrary ^eBVn we have by (1,27) 

I K*(s, 0) d^(s) = 0 and for any t є (0,1) 

lim 
Ó-+0 + 

K*(s, t + ô) dф(s) = K*(s, t) dф(s) 
» Jo 

since by 1.4.27 we have 
I 

(K*(s, t + d)- K*(s, t)) di/r(s) 

and by 1.6.16 

Г < sup|K*(s,t + <5)-K*(S,í)| W|Bv„ 
se[0,l] 

lim sup |K*(s, t + ô)~ K*(s, í)| = 0. 
í " * 0 + se[0,lj 

Hence the above mentioned operator ReK(BVn) maps BVn into NBVn when (1,27) 
is satisfied and its restriction K' to the closed subspace NBVn c: BVn consequently 
belongs to K(NBVn). 

Let us now consider the pair of Banach spaces BVn, NBVn which form a dual 
pair (BVn, NBVn) with respect to the bilinear form 

i 

(1,29) <x, <p} = x*(t) d<p(t), xeBVn, <peNBVn 
Jo 

(see 1.5.9). By the results from 1.3 we have 

Kx = f 'd.Ws, t)] x(t) = f 'd . t^s , 0] x(t), s e [0,1] 
Jo Jo 

for every x G £Vn, where R(s, t) is defined by (1,9) and R(s, t) evidently satisfies (1,1), 
(1,2), (1,16) and (1,27) (i.e. the assumptions of 1.10). Hence 

<кx,v> = <jЧ[tf(-,0M0>? 
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for every x e BV„, <pe NBVn. Using 1.6.22 we obtain 

<Kx, <p> = (x , £*(s, .) d<p(s)) for every x e BVn, <p e NBVn, 

i.e. 
<Kx,9> = < x , K » 

where 

(1,30) K> = J K*(s, t) d<p(s), t e [0,1] , <p e N£V„ 

and K' is a compact operator acting on the space NBVn. Resuming these results 
we have 

1.11. Theorem. If K: I -• L(Rn) satisfies (1,1), (1,2), then for the operator K e K(BVn) 
given by (1,3) we have 

<Kx,^> = <x,KV> 

for every xeBV„ <peNBVn where K! eK(NBVn) is given by (1,30) and the bilinear 
form <x,p> on BVn x NBVn is given by (1,29). 

2. Fredholm-Stieltjes integral equations 

In this section we consider the Fredholm-Stieltjes integral equation 

x(t)-^ds[K(t,s)]x(s) = f(t) 

in the Banach space BVn[0,1] = BVn. 
The fundamental results concerning equations of this kind are contained in the 

following 

2.1. Theorem. If K: I -> L(Rn) (I = [0,1] x [0,1] cz R2) satisfies 

(2.1) v7(K) < oo , 

(2.2) varjK(0, . ) < oo, 

then either 

I. the Fredholm-Stieltjes integral equation 

(2.3) x{t) - rds[K(t, s)] x(s) = f(t), t € [0,1] 

admits a unique solution in BV„ for any feBVn or 
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II. the homogeneous Fredholm-Stieltjes integral equation 

(2.4) x(t)-£ds[K(f,s)]x(s) = 0 

admits r linearly independent solutions xl,...,xreBVn where r is a positive integer. 

If moreover it is assumed that 

(2.5) va r 0 K(. ,0 )<co , 

(2.6) K(r,s + ) = K(r,s) for any re [0,1], se(0,1) 

and 

(2.7) K(r,0) = 0 for any re [0,1], 

then in the case I. the equation 

(2.8) <p(s)- {1K%s)d<p(t) = ilf(s) 

admits a unique solution in NBVn for any # e NBVn and in the case II. the corresponding 
homogeneous equation 

(2.9) <p(s)- i1K*(t,s)<l<p(t) = 0 

admits also r linearly independent solutions <pl,<p2, -,(pr^ NBVn. 

Proof. Let us denote by 

Ax = (/ - K) x = x(r) - I ds[/C(r, s)] x(s), x e BVn 

Jo 
the linear operator corresponding to the Fredholm-Stieltjes integral equation (2,3). 
By / we denote the identity operator on BVn and K is the operator defined by (1,5). 
Since 1.5 implies KsK(BVn), we have by 1.3.20 ind-A = ind(/ - K) = 0 and this 
implies the first part of our theorem immediately. 

Under the assumptions of the second part we have by 1.11 <Kx, <p} = <x, K'<p} 
for every xeBVn, <peNBVn where K'<p = j 0 K*(t, s) d<p(t) is a compact operator 
acting on NBVn (see 1,10). Hence ind(/ - K) = 0 and by 1.3.20 we have oc(l - K) 
= a(/ - K') = p(l - K) = P(l - K'). This completes the proof. 

2.2. Theorem. If K: J -• L(Rn) satisfies (2,1), (2,2), (2,5), (2,6) and (2,7), then the 
equation (2,3) has a solution in BVn if and only if 

(2,10) Г(ť)<Mt) = o 
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for any solution <peNBVn of the homogeneous equation (2,9) and symmetrically the 
equation (2,8) has a solution in NBVn if and only if 

(2,11) x*(ř) dф(t) = 0 

for any solution x e BVn of the homogeneous equation (2,4). 

Proof. In the proof of 2A it was shown that all assumptions of Theorem 1.3.2 are 
satisfied. Hence this statement is only a reformulation of the results from 1.3.2. 

2.3. Remark. 2A and 2.3 represent Fredholm theorems for the Stieltjes integral 
equations (2,3) and (2,8). It is of interest that the corresponding integral operators 
occuring in these equations are not connected with one another by the usual concept 
of adjointness. In this concrete situation the difficulties with the analytic description 
of the dual BV* obstruct the analytic description of the adjoint K*. Fortunately 
the concept of the conjugate operator K' with respect to suitably described total 
subspace NBVn works in our case and the results are given in an acceptable form. 

2.4. Remark. Let us mention that in accordance with 1.4 in the same way the con­
jugate equation (2,8) in NBVn can be replaced by the same equation working in 
NBV~ when instead of (2,6) we assume that K{t,s~) = K{t,s) for any te[0,1], 
se(0,l). 

2.5. Theorem. Let K: I = [0,1] x [0,1] -> L{Rn) satisfy (2,1), (2,2) and (2,5). If the 
homogeneous Fredholm-Stieltjes integral equation 

(2,4) x{t) - J ds[K(t, s)] x(s) = 0, t e [0,1] 
Jo 

has only the trivial solution x = 0 in BVn9 then there exists a unique n x n-matrix 
valued function T(r, s): I -> L{Rn) such that 

(2.12) V /(r) < oo , 

(2.13) var o F( . ,0)<oo, 

(2.14) varoF(0, . ) < o o , 

and for all {t,s)el the equation 

(2.15) r{t,s) = K{t,s)+ dr[K(r,r)]F(r,s) 
Jo 

is satisfied. 
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Moreover for any f e BVn the unique solution xeBVn 0f the Fredholm-Stieltjes 
integral equation (2,3) is given by the formula 

(2,16) x(t) = f(t) + ' ds[Г(t,s)]f(s), t є [ 0 , l ] . 

Proof. Let us set A = / - KeB(BVn) where Kx = J0 ds[K(t, s)] x(s), xeBVn 

and / is the identity operator on BVn. By assumption we have N(A) = {0}. Since 
KeB(BVn) is compact by 1.5, we have 0 = a(A) = p(A) = dim (BVj R(A)) by 1.3.20. 
Since R(A) is closed, we obtain R(A) = BVn. Hence the Bounded Inverse Theorem 
1.3.4 implies that the inverse operator A~leB(BVn) exists and for any feBVn 

the unique solution of (2,3) is given by A~1f and for this solution the estimate 

(247) ||X||BK„ < C\\f\ вvn 

holds where C = \\A \\B(BV„) 1s a constant. 
Let us consider the matrix equation (2,15). Evidently the /-th column _T,(r, s) of 

r(t, s): / -* L(Rn), I = 1,2,..., n satisfies the equation 

(2,18) Г/(t,s) = K,(í,s) + dr[K(t,r)]Г((r,s), 

i.e. rt(t, s) satisfies in the first variable the equation (2,3) with f (t) = Kt(t, s) for any 
se [0,1]. We have feBVn since by 1.6.6 var0 K(.,s)< v7(K) + var0 K(., 0) and 
(2,1), (2,5) are assumed. By 2.1 the equation (2,18) has exactly one solution for any 
fixed s e [0,1] and consequently the same holds also for the matrix equation (2,15). 

Let us now consider the properties of the matrix F(t, s) defined by (2,15). By (2,17) 
the inequality 

W.tS^Bv.ZClK^s)^ 

holds for every se [0,1], / = 1,2,..., n. Hence (from the definition of the norm in 
BVn) we obtain for any s e [0,1] the inequality 

|r(0, s)\ + var0 r(.,s)< C(|K(0, s)\ + varj K(., s)) 

which yields (2,13). 
Let 0 = a0 < a! < ... < ak = 1 be an arbitrary decomposition of [0,1]. If T(t, s) 

satisfies (2,15), then for any j = 1,..., k and t e [0,1] we have 

r(t, a,) - r(t, a,_,) = K(t, a,) - K(t, a,_ t) + f'd-flCfc r)] (r(r, a,) - T(r,«,_,)), 
Jo 

i.e. the difference F(t, a7) — r(f, a^ j) satisfies a matrix equation of the type (2,15) 
and consequently by the Bounded Inverse Theorem 1.3.4 we have as above 

(2,19) |r(0,a,) - ^ 0 , ^ ) 1 + varj(r(.,a,) - I\-^j-i)) 

< C(|K(0,a,) - K^a^,) ! + vari(K(.,a,) - K^a,,,)). 



Hence 

t |F(0,a,) - ZXO-â OI < C(varoK(0, .) + £ var0 (K(., a,) - Kf.-a^)) 
1=1 j=i 

<C(varoK(0, .) + v7(K)), 

and since the subdivision 0 = a0 < otx < ... < ak = 1 was arbitrary we get (2,14) 
by passing to the supremum over all finite subdivisions of [0,1]. 

Let now Jtj = [ a . ^ a , ] x [a^-i-a,-], ij = 1,2,..., k be the net-type subdivision 
of I corresponding to the arbitrary subdivision 0 = a0 < OL1 < ... < <xk = 1 of [0,1]. 
For F: I -» L(KW) satisfying (2,15) we obtain by (2,19) the following inequality 

k 

.IJtMIo)! = .£/(«,•,«,) - ->..«j-i) - ->.-„<-,) + r(a,-_„a,_,)| 

-5 I var2.i(rt.,a,)-rt.,a,_I))--Iv_S(r(.,aJ)-r(.,a,_1)) 
M = l J'= 1 

< C £ (|K(0,a,) - K^a,.,)! + varj(K(.,a,) - K(.,a,_,))) 
7 = 1 

<C(varjK(0, .) + v,(K)). 

This inequality yields evidently (2,12) and the first part of the theorem is proved. 
Now we prove that by (2,16) really the unique solution of (2,3) is given Since 

r. I -> L(Rn) satisfies (2,12) and (2,14), by 1.6.18 the integral J0 ds[F(t, 5)] f(s) exists 
for any f _ BVn and t e [0,1]. Putting (2,16) into the left-hand side of (2,3) we obtain 
the expression 

f(t) + £d.[rtt, s)] f(s) - j \ [K( t , r)] (f(r) + j \ [ r ( r , , ) ] f(S)) = l(t). 

Hence 

/(t) = f(f) + 
n 

d5[r(t,s)-K(t,s)]f(s)- dr[K(t,r)] ds[r(r,S)]f(S). 
1 Jo Jo 

Using 1.6.20 we obtain 

f 'dr[K(t, r)] f !ds[r(r, s)] f(s) = f 'ds ( {\[K{t, r)] T(r, 5)) f(s), i.e. 
Jo Jo Jo \Jo / 

'W = f(<) + j \ [ ty s) - K(̂ . s) + £ W - r)] r(r'5)] f(s) = f(f) 
since F: I -» !-(_*,.) satisfies (2,15) and consequently (2,16) gives the solution-of (2,3). 

. This concludes the proof of our theorem. 

2.6. Remark. The matrix valued function _T(f, s): I-+L(Rn) given in 2.6 is the 
resolvent of the Fredholm-Stieltjes integral equation (2,3). This resolvent gives 
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by (2,16) the unique solution of (2,3) for every feBVn. For the existence of the re­
solvent r(t, s) the assumption oc(A) = dim (/ — K) = 0 is essential. 

Further let us investigate the equation (2,3) when r = OL(A) = dim (I — K) + 0. 
By assertion II. from 2.1 the homogeneous equation (2,4) admits in this case r 

linearly independent solutions xu..., xr e BVn and R(l — K) + BV„, i.e. (2,3) has 
no solutions for all feBVn 

The following theorem holds in this situation. Let K: I = [0,1] x [0, 1] -> L(Rn) 
satisfy (2,1), (2,2), (2,5) and K(r, s + ) = K(t,s) for any fe[0,1], se(0, 1), K(t,0) = 0 
for any t e [0,1]. Then there exists an n x rc-matrix valued function f(t, s): I -> L(#„) 
such that v7(_f) < oo, var0 f( . , 0) < oo, var0 f(0, .) < oo and if the Fredholm-
Stieltjes integral equation (2,3) has solutions for feBVn (i.e. if feR(l — K), see 
also 2.3), then one of them is given by the formula 

(2,20) x(t) = f(t) + I ds[f(t, s)] f(s), t e [0,1] . 
Jo 

The general form of solutions of (2,3) is 

x(t) = f(t)+ [\[t\t,s)]f(s) + icc,x^t), 
Jo .-=1 

where x1, i = 1,..., r are linearly independent solutions of the homogeneous equation 
(2,4) (cf. 2.1) and a1?...,ar are arbitrary constants. 

The proof of this assertion is based on some pseudoresolvent technique using 
projections in BVn. The theorem is completely proved in Schwabik [6]. 

3. Volterra-Stieltjes integral equations 

In this section we consider integral equations of the form 

(3.1) x(t) - J ds[K(t, s)] x(s) = f(t), t e [0,1] 

in the Banach space BVn[0,1] = BVn with' feBVn. Equations of the form (3,1) 
are called Volterra-Stieltjes integral equations. 

Throughout this paragraph it will be assumed that K: / = [0,1] x [0,1] -> L(Rn) 
satisfies 

(3.2) v7(K) < oo 

and 

(3.3) varoK(0, . ) < oo . 

Let us mention that (3,3) can be replaced by var0 K(t0, .) < oo, where t0 e [0,1] 
is arbitrary. This follows from 1.6.6. 
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Since (3,2) and (3,3) are assumed, for every fixed t e [0,1] we have var* K(t, .) < oo 
by 1.6.6. Hence for any xeBVn and f e[0,1] the integral J"0 ds[K(t, s)] x(s) exists 
by 1.4.19. 

Let us show that the equation (3,1) is a special case of the Fredholm-Stieltjes 
integral equation considered in the previous Section II.2. 

To any given kernel K: / -> L(Rn) satisfying (3,2) and (3,3) we define a new 
"triangular" kernel KA: I -• L\Rn) as follows: 

(3.4) KA(t, s) = K(r, s) - K(f, 0) if 0 < s < t < 1, 

K% s) = K(r, r) - K(r, 0) = KA(r, r) if 0 < t < s < 1. 

It is obvious that KA(t, 0) = 0 for any t e [0,1] and KA(0, s) = KA(0,0) = 0 for any 
SG [0,1]. Let 

Ju = [ a i-1 ' a d x K - 1 ' aj] > Uj = 1,..., fc 

be an arbitrary net-type subdivision of the interval I corresponding to the sub­
division 0 = a0 < ctl < ... < (xk = 1 of [0,1]. By definition (3,4) of KA we have 

mKA(J0) = mK(J0) if 0 < j < i < k, 

mKA(J0) = 0 if 0 < i < j < k 
and 

mK A(JU) = K(a£, â ) - K(a„ af _ j) for i = 1,2,..., k . 

(For mK(J) see 1.6.2.) Hence 

i K4Jij)\ = i L K(-!u)| + i |K(a„ a,) - K(a, a;_ .)| 
U = l i = l j=l i = l 

^ i I M - U I + 1 .*(«..«.) - K K «.-1) - K(°> «.)+K(°> «<-i)i 
i = l j = l i = l 

+ i |K(0, a;) - K(0, a,-_ .)| < v7(K) + varj K(0, . ) . 
i = l 

Consequently we obtain by definition (cf. 1.6.1, 1.6.3) 

(3.5) v,(KA) < v7(K) + varj K(0, .) < GO 

Since K*(t,s) is by definition constant on the interval [t, 1] for every te[0,1], 
we have 

(3.6) j \ [K A ( t , s ) ]x(s ) = 0 

for every x e BVn. Further 

'ds[K% s) - K(t, s)]x{s) = - f ds[K(t, 0)] x(s) - 0, 
o Jo 
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ì.e 
'ds[K*(t,s)]x(s) = fds[K(t,s)]x(s). 
o Jo 

Using (3,6) we obtain for an arbitrary Te [0,1] the equality 

(ЗJ) d s[K(t,s)]x(s)= fTds[KA(t,s)]x(s) 
o Jo 

for any x e BVn and t e [0, T]. 
Let us summarize these results. 

3.1. Proposition. Let K: I -> L(Rn) satisfy (3,2), (3,3). Then for the triangular kernel 
KA: I -» L(Rn) defined by the relations (3,4) the following is valid. 

(a) var0 KA(., 0) = 0, varj KA(0, .) = 0, v7(KA) < oo, 

(b) for every xeBVn, Te [0,1] and £e[0, T] the equality (3,7) ho/ds, i.e. by the 
relation 

(3,8) Kx = J ds[K(t, s)] x(s) = I \lK\t, s)] x(s), X6BF„ 
JO JO 

an operator on BVn is defined and by 1.5 we have KeK(BVn). 

3.2. Remark. Proposition 3.1 states that the Volterra-Stieltjes integral equation (3,1) 
is equivalent to the Fredholm-Stieltjes integral equation 

(3,9) x(t) ds[Kд(í,s)]x(s) = f(í), t є [ 0 , l ] . 

Hence by Theorem 2.1 either the equation (3,1) admits a unique solution in BVn 

for every feBVn or the corresponding homogeneous equation 

(3.10) x(t) - J ds[K(t, sj] x(s) = 0, f 6 [0,1] 

has a finite number of linearly independent solutions in BVn. Our aim is to give 
conditions under which the equation (3,1) is really of Volterra type, i.e. when the 
equation (3,10) admits only the trivial solution x = 0 in BVn. 

3.3. Theorem. Let the kernel <: I -.» L(Rn) satisfy (3,2), (3,3) and 

(3.11) lim|K(r,cj)-K(t,s)| = 0 
< T " + S -

for any r 6 [0,1], 5 G (0,1], Then the homogeneous Volterra-Stieltjes integral equation 
(3,10) has only the trivial solution x = 0 in BVn. 
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Proof. Let KA: / -> L(Rn) be the triangular kernel corresponding to K by the 
relations (3,4). Since (3,11) holds we have also 

(3,12) lim |KA(r, a) - KA(r,s)| = 0 
< T - + S -

for any t e [0,1], s e (0,1]. Let us set 

coA(0) = 0, co*(s) = v [ 0 t l ] X I O i S l(KA) for se(0, 1] . 

The function or*: [0,1] -• R is evidently nonnegative and nondecreasing (see 1.6.7). 
Since (3,12) holds we have cof(s —) = coA(s) for every se(0,1] by 1.6.11, i.e. C/JA is 
left continuous on [0,1]. 

Assume that xeBVn is a solution of (3,10). Then evidently x(0) = 0 and 

|x(s)| < |x(0)| + var0 x = var0 x 

for every s e [0,1]. Using (b) from 3.1 we get 

var 0 x = var0 ( fd,[K(t,s)] x(s)) = var0 f ^[K A (. ,s)] x(s)\ 

for every ^ e [0,1]. If (1.6,14) from 1.6.18 is used then we obtain 

varS x = varS ( f"ds[KA(., s)] x(s)) < [jx(s)| dorf(s) < £var 0 x da;A(s) 

and 1.4.30 yields the inequality var& x < 0 for every £ e [0,1]. Hence x(s) = 0 
on [0,1], i.e. x=0eBVn. 

3.4. Example. Let us define h(t) = 0 if 0 < t < \, h(t) = \\t if \ < t < 1, g(s) = 0 
if 0 < s < | , g(s) = s if \ < s < 1. Evidently KgeBV If we set fc(t,s) = h(t)g(s) 
for ( t ,s)e/ = [0,1] x [0,1], then clearly v,(fc) < oo (cf. 1.6.4), var£fc(0, .) < oo 
and var£fc(.,0) < oo. Let us consider the homogeneous Volterra-Stieltjes integral 
equation 

x(t) = \\W?>s)] x(s) = MO \x(s) Ms)> t € [0,1] . 
Jo Jo 

Let us set y(s) = 0 for 0 < s < f, j^s) = 1 for ^ < s < 1. By easy computations 
using 1.4,21 we obtain 

. \y(s)dg(s) = 0 if 0 < t < | , 
Jo 

[y(s)dg(s) = ±y($+ f y(S)ds~t if \ 
Jo Jl/2 

h(t)ťy(s)dg(s) = y(t) 

^<t<\ 
Jl/2 

and consequently 

93 



II.3 

for every t e [0,1]. Hence y e BV is a solution of the homogeneous Volterra-Stieltjes 
integral equation and y + 0. The condition (3,11) is in this case affected. In fact, 

lim (k(u a) - k(t, ±)) = $h(t) and h(t) * 0 e.g. for t = i 
<r-+ 1 /2 -

3.5. Remark. Example 3.4 shows that for K: I -> L(Rn) satisfying (3,2) and (3,3) 
the corresponding homogeneous Volterra-Stieltjes integral equation (3,10) need not 
have in general only trivial solutions, i.e. for the corresponding operator K e K(BVn) 
we can obtain in general a nontrivial null space N(l — K). If (3,11) is assumed, 
then this situation cannot occur. The condition (3,11) is too restrictive as will be 
shown in the following. We shall give necessary and sufficient conditions on 
K: / -> L(Rn) satisfying (3,2) and (3,3) such that the equation (3,10) has only the 
trivial solution in BVn. 

3.6. Proposition. Let #M: / = [0, 1] x [0, 1] -• L(Rn) satisfy v,(M) < oo, 
varQ.M(0, .) < oo. Then for any ae[0,1] there exists a nondecreasing bounded 
function £: [a, 1] -> [0, -Foo) such that for every be [a, 1] and xeBVn we have 

(3.13) v a r ^ d s . [ M M ] x ( s ) J < |x(a)| (£(a + ) - £(<,)) + ||x|^ i i I. f fc l(^) - %a + )). 

Proof. Let M*: I -> L(Rn) be the triangular kernel which corresponds to 
M: I -> L(Rn) (see 3A). For any re [a, b] we have (see (3,7)) 

(3.14) Pds[M(t, s)] x(s) = \bds[M% sf] x(s). 
Ja Ja 

Let us define the function 

* ) = v[fl)1]xM(A1A) for t e ( a , l ] , ^(a) = 0. 

£: [a, 1] -> R is evidently nondecreasing and bounded on [a, 1] (cf. 1.6.7). 
From (1.6,14) in 1.6.18 we obtain 

(3.15) var* (Jd,[M(t, s)] x(s)) < |jx(s)l d^(s) • 

Using 1.4.13 we have 

(3.16) f|x(s)| di(s) = \x(a)\ («(a+) - {(a)) + Hm P |x(S)| dZ(s) 
Ja Ja+d 

and for any 0 < ( 5 < b - a b y 1.4.27 

Í " |x(s)| dф) < sup |x(s)| (Џ) - ф + ô)) < Ц x l ^ ^ Ь ) - ţ(a + )). 
Ja + d se[a + d,b] 

Hence (3,15) and (3,16) imply (3,13). 
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3.7. Proposition. Let H: [0,1] -• L(Rn) be such that 

(i) var0 H < oo, 
(ii) there is an at most countable set of points t{ e [0,1], i = 1, 2,... such that 

H(t) = 0 for re [0,1], f-M,-, i = 1,2,..., 

(iii) the matrix I — H(t) is regular for all t e [0,1]. Let us define the linear operator 

(3.17) Tz = [l-H(t)]~1z(t), t e [0,1] for ze£V„. 

The/? there exlsfs a constant C > 0 such that 

(3.18) ||Tz||BVn < C\\z\\BVn for every zeBVn, 

i.e. TeB(BVn). 

Proof. By (iii) the inverse matrix [/ — H(t)]"1 exists for every te[0,1] and the 
operator T from (3,17) is well-defined. 

Since / = (/ - H(t)) [I - H(t)] ~ x = [/ - H(t)] ~ l - H(t) [/ - H(t)] ~l for any 
re [0,1], we have [I - H(t)]~l = I + H(t) [I - H(tj]~* and for any zeBVn 

we have 

(3.19) Tz = z + u 

where 

(3.20) u(t) = H(t) [I - H(t)] ~1 z(t), t e [0,1] . 

The assumption (ii) implies u(t) = 0 for any te[0,1] , t =4= ti9 i = 1,2,.... Hence 
evidently 

(3.21) var0 u = 2 £ |u(t,.)| = 2 £ |H(t,) [/ - H(t,)] " J r(^)| 
i=l i=l 

oo 

^2||z||BVnY:|H(tI.)M[/-H(ti)]-
1|. 

i = l 

By (i) and (ii) we have 

£ \H(ti)\ < |H(0)| + |H(1)| + 2 X |H(t.)| = var0 H < oo ; 
I = l f , e ( 0 , l ) 

hence there exists an integer i0 > 0 such that \H(tt)\ < \ for any i > i0. This implies 

|[/ - H(fi)r| < 1 + \H(ti)\ + ... + |H(0|" + ... = -_jL__ < 2 

for i > i0 and immediately also the inequality 

£|H(tj)||[/-H(fi)]-
1|<Z|H(fi)M[/-H(ti)]-

1| + 2 £ |H('.)I 
r = l i=l i = to + 1 

< ( max | [ / - H ( t i ) ] - 1 | + 2)£|H(^)l = Co<oo 
i= 1 .2 , . . . , io i = l 
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which yields by (3,21) 
var0u<2C0 | |z | | f lKn . 

Hence (see (3,19)) 

\\Tz\\BVn = |[/ - H(O)]"1 z(0)| + var0 Tz < (|[l - H(O)]"1! + 1 + 2C0) \\z\\BVn 

and (3,18) is satisfied with C = 1 + 2C0 + \[l - H(0)]'l\. 

3.8. Proposition. Let us assume that K: I = [0,1] x [0,1] -> L(Rn) satisfies (3,2) 
and (3,3). Define M: I -+ L(Rn) as follows: 

(3,22) M(u s) = K(r, s) if (f, s) e I, r.+ s, 

M(t,t) =K(t,t~) if £e(0 , l ] , 

M(0,0) = K(0,0). 
Then 

(i) v7(M) < oo, varoM(0, .) < oo, 
(ii) if xeBVn, then for any fixed te[0,1] we have 

lim ľds[/И(t,5)]x(s) = 
t-" _ Jo J 

ds[/И(ŕ, s)]x(s), 

i.e. £/ie integral J0 ds[iM(t, s)] x(s) does not depend on the value x(t) e Rn9 

(iii) for every xeBVn and re[0,1] we have 

(3.23) |'ds[K(t, s)] x(s) = |ds[M(t, s)] x(s) + H(t) x(t) 
JO JO 

where 

(3.24) H(r) = K(t, t) - K(t, t-) for t e (0,1] , 

H(0) = 0, 

(iv) for H: [0,1] -> L(K„) given b>> (3,24) there exists an at most countable set of 
points tt e [0,1], i= 1,2,... sucfc t/iat H(r) = 0 for te [0,1], £ + £t, i = 1,2,... 
and var0 H < oo. 

Proof. In order to prove (i) let us mention that M(0, s) = K(0, s) for all s e [0,1] 
and consequently var0 M(0, .) = var0 K(0, .) < oo. Further let 0 = a0 < at < ... 
< ak = 1 .be an arbitrary subdivision of [0,1] and let 

Ju = [<*i- u «.] x [a,-1» a J , *\j = 1,..., fc 

be the corresponding net-type subdivision of I. We consider the sum Y, |m/v.(A/)l 
where l J = 1 

^AI(^O) = M(*i> a1) ~ M K a 1 -1)"" A 1 ( a »-1 ' a1) + M ( a i - 1 . a1-1) 
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for ij = 1,..., k. Usual considerations using the definition of Ai in (3,22) give 

£ \mM(Ju)\ < v,(K) + 4 £ |K(a„ a,) - K(a,, a-)\. 
U=l j=l 

Since 

£ |K(a , , a , ) -K(a„a , - ) | 
; = i 

< £ |K(^ a,) - K(a,, a , - ) - K(0, a,) + K(0, a , - ) | + £ |K(0, a,) - K(0, a , - ) | 
7 = 1 y = i 

< v,(K) + var^ K(0, . ) , 
we obtain 

t \mJJtJ)\ < 5v,(IC) + 4 var0 K(0, .) < oo 

and (i) holds since J,7 was an arbitrary net-type subdivision. 
Let te(0, 1] be fixed, x,yeBVn, x(s) = y(s) for se[0,t) . By 1.4.21 and from the 

definition of M we obtain 

/'• 
Jo 

ds[M(t, s)] (x(s) - y(s)) = (M(t, t) - M(t, t-)) (x(t) - y(t)) = 0. 
;o 

Hence 

d s[/И(ř,S)]x(5)= ds[M(t,s)]ү(s) 
JO JO 

or in other words: for all xeBV„ we have 

lim \ds[M(t,s)]x(s)= \'ds[M(t,s)]x(s). 
*-*<- Jo Jo 

For t = 0 the statement is trivial. Hence (ii) is proved. 
Further for any te(0,1] and xeBVn we have 

I ds[K(£, s) - M(r, s)] x(s) = [K(t, t) - M(t, t) -K(t,t-) + M(t, t-)] x(t) 

= [K(t, t) - K(t, t -)] x(t) = H(t) x(t), 

and (3,23) holds. For t = 0 the equality (3,24) is evident. Hence (iii) is valid. 
By 1.6.8 the set of discontinuity points of K(t, s) in the second variable s lies on 

an at most countable system of lines in I which are parallel to the t axis, i.e. there 
is an at most countable system ti9 i = 1,2,... of points in [0,1] such that H(t) 
= K(t, t) - K(t, t~) = 0 for all te [0,1], t =f= tt, i = 1,2,.... 

For any te[0,1] we have evidently 

\H(t)\ = \K(t,t)-K(t,t-)\ 

< \K(t, t) - K(t, t-) - K(0, t) + K(0, t-)\ + |K(0, t) - K(0, t-)\. 
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Let 0 = a0 < a1 < ... < ak = b be an arbitrary finite subdivision of [0,1]. Then 

t | H ( a i ) - H ( a , . _ 1 ) | < 2 i ; | H ( a , . ) | 
1 = 1 1 = 1 

< 2H|*M . ) - *(«*«_-) ~ *(<U) + K(0,a£-)| + |K(0,a,) - K^a,^)!] 
<2(v7(K) +varoK(0, .))< oo 

and (iv) is also proved. 

3.9. Theorem. Let the kernel K: I -> L(Rn) (I = [0,1] x [0,1]) satisfy (3,2) and 
(3,3). Then the homogeneous Volterra-Stieltjes integral equation (3,10) has only the 
trivial solution x = 0 in BVn if and only if the matrix I — (K(t, t) — K(t, f —)) :s regular 
for any re(0,1] *). 

Proof. By (iii) from 3.8 the equation (3,10) can be written in the equivalent form 

(3.25) x(t) = d8[M{t, s)] x(s) + H(t) x(t), t e [0,1] 
Jo 

where M: I - L(Rn), H: [0,1] -> L(K„) are defined by (3,22), (3,24) respectively. 
Hence if we assume that for any t e [0,1] the matrix / — H(t) = / — (K(f, t) — K(t, t —)) 
is regular, then the inverse [/ — H(t)] - 1 exists for any te [0,1] and (3,25) can be 
rewritten in the equivalent form 

(3.26) x(t) = [/ - H(t)] -1 I ds[M(t, 5)] x(s), t e [0,1] . 
Jo 

This equality can be formally written in the form x = TMx where 

Tz = [/ - H(t)]"x z(t) for z e BVn 

and 

/Иx = ds[/И(í, s)] x(s) for xєBVn. 

Assume that xeBVn is a solution of (3,10). Then evidently x(0) = 0 and by 3.7, 
3.6 we have for any 5 (0 < 8 < 1) 

(3,27) | |x|B V n [ 0,a ] = |x(0)| + var0 x = ||TA1x||BKn[0,d] < c||/V1x||BKn[0,a] 

= C varS (£ds[M(.,s)] x(s)) < c(|x(0)| (.(0+) - {(0)) + ||x||Bn,[M](£(<5) - .(0 + )) 

= C(i(5) - .(0 + )) |x||BK„[0,a] 

*) In this ease we have K(0,0) = K(0,0-) if we use the agreement K(0, s) = K(0,0) for s < 0, i.e. 
in fact / — (K(0,0) — K(0,0 —)) = / is also regular. Nevertheless this is not used in the proof of the 
theorem and the result does not depend on the behaviour of K(0,0) - K((), 0 - ) . 
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where £: [0,1] —> [0, +oo) is bounded and nondecreasing by 3.6 and C > 0 is 
a constant (cf. 3.7). The function £ is of bounded variation and has consequently 
onesided limits at all points of [0,1]. Hence we can find a O > 0 such that 
C(£(8) - £(0 + )) < i and by (3,27) we obtain 

| |X | |BVn[0,<5] < 2i |X | |BVn[0,<5] » 

i.e. x(t) = 0 for all te[0,5]. 
Let us now assume that t*e[0, 1] is the supremum of all such positive 3 that 

the solution x e BVn of the equation (3,10) equals zero on [0, 3~\. Evidently x(t) = 0 
for all t e [0, t*). Since by (ii) from 3.8 we have 

v rx 
ds[M(r*, s)] x(s) = lim ds[M(r*, s)] x(s) = 0 

o *-'*- Jo 

and [/ - H^*)]'1 exists, we have by (3,26) x(t*) = 0, i.e. x(t) = 0 for te[0,f*]. 
Now assuming t* < 1 we have 

x f = [/ - Цt)]-> ľds[Л1(ř,S)]x(5) - [I - H ( t ) Г 
Jo 

ds[/И(í,s)]x(s) 

for all t e [t*, 1]. Using the same procedure as above we can determine a 3 > 0 
such that the inequality 

| |X | |BVn[f*,r* + <5] - ^ 2 | | X | | f iV n [ t* , t* + a] 

holds and consequently x(t) — 0 for te[t*, t* + 3]. Hence we obtain a con­
tradiction to the property of t*. In this way we have t* = 1, i.e. x(t) = 0 for all 
t e [0,1] and the "if part of the theorem is proved. 

For the proof of the "only if part of the theorem we refer to the Fredholm alter­
native included in 2.1. (cf. also 3.2) which states that either (3,10) has only the trivial 
solution x = 0 in BVn or there exists feBVn such that the equation (3,1) has no 
solutions in BVn. 

Let us now assume that the matrix / — (K(t,t) — K(t,t — )) = / — H(t) is not 
regular for all t e (0,1]. This may occur only for a finite set of points 0 < tx < ... < tk 

in (0,1] because var0 H < oo by (iv) from 3.8 and consequently \H(t)\ < \ for all 
t e [0,1] except for a finite set of points in (0,1], Hence [/ — H(t)j"1 exists for all 
t e [0,1], t + t.9 i = 1,2,..., k, and / — H(t.), i = 1,2,..., k is not regular. Evidently 
there exists yeRn such that y$R(l — H(tx))9 i.e. the linear algebraic equation 

(l-H(tl))x = Y 

has no solutions in R„. Let us define 

f(t) = 0 for t e [ 0 , l ] , r * t l f f(tx) = y 

and consider the nonhomogeneous equation (3,1) with this right-hand side. Let us 
assume that xeBVn is a solution of this equation. In the same way as in the proof 
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of the "if part we can show that x(t) = 0 for all te [0, tx) since [/ — H^j]'1 exists 
for all t e [0, t,). Using the expression (3,23) and (ii) from 3.8 for JJ.J ds[K(t-, s)] x(s) 
we obtain 

[/ - H(.,)] x(r,) = \"ds[M(tus)] x(s) + f(f,) = y 
Jo 

and x(f.) cannot be determined since y$R(l - H(tx)) and consequently there is no 
xeBVn satisfying (3,1) with the given feBVn. By the above quoted Fredholm 
alternative the equation (3,10) possesses nontrivial solutions and our theorem is 
completely proved. 

3.10. Theorem. Assume that K: I = [0, 1] x [0,1] -> L(Rn) satisfies (3,2), (3,3) and 
the matrix I — K(t, t) — K(t, t — )) is regular for any te(0,1]. 

Then there exists a uniquely determined T: I -» L(Rn) such that the unique solution 
in BVn to the Volterra-Stieltjes integral equation (3,1) with feBVn is given by the 
relation 

(3.28) x(t) = f(t) + j \ [ r ( t , s)] f(s), t e [0,1] . 

The matrix T(t, s) satisfies the integral equation 

(3.29) T(t, s) = K(t, s) - K(t, 0) 4- | dr[K(t, r)] T(r, s) for 0 
Jo 

KVe have r(t, s) = T(t, t) for 0 < t < s < 1, T(t,0) = 0, var0 T(0, .) < oo and 
\t(r) < oo. 

Proof. By 3.1 the equation (3,1) can be written in the equivalent Fredholm-Stieltjes 
form 

(3.30) x(t) - fds[K
A(t, s)] x(s) = f (t), t G [0,1] 

where KA: / -> L(-Rw) is the corresponding triangular kernel given by (3,4). By 3.9 
the homogeneous equation 

< s < í < 1. 

« ( - ) - ds[Kд(t,s)]x(s) = 0, t є [ 0 , l ] 

has only the trivial solution x = 0 in BVn. Since KA satisfies evidently all assumptions 
of 2.6, we obtain by this theorem the existence of .T: / -> L(Rn) such that the 
solution of (3,30) and consequently also of the equivalent equation (3,1) is given by 

(3,31) x(t) = f(t) + Pd-ITX'. 5)] f(s), t e [0,1] 
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where F(t, s) satisfies the matrix integral equation 

F(f, s) = K% s) + | dr[KA(t, r)] F(r, s) for all (t, s) e I . 
Jo 

Using the definition (3,4) of KA(t, s) and (3,8) we have 

r(f, s) = K(t9 s) - K(t, 0) + dr[K(t, r)] F(r, s) for 0 < s < t < 1 
Jo 

and (3,29) is satisfied. For 0 < t < s < 1 we have similarly 

Г{t,s) = K%t) + 

and 

Hence 

d,[K(t,r)]Г(r,s) 

Г(t,t) = KA(t,t) + \d,[K(t,r)-]Г(r,t). 

Г(t, s) - Г(t, t) = àr[K(t,r)-](Г(r,s)-Г(r,t)), 

i.e. T(t, s) = r(t, t) since Theorem 3.9 yields that the homogeneous equation 
x(t) - j 0 ds[K(t, s)] x(s) = 0 has only the trivial solution x = 0eBVn. Similarly 
we obtain .T(t, 0) = 0 for all t e [0,1], The inequalities var0 T(0, .) < oo, v7(F) < oo 
are immediate consequences of 2.5. 

From *he equality T(r, s) = T(t, t) valid for t < s we get 

[1ds[r(r,s)]x(s)= f'ds[r(f,s)]x(s) 
Jo Jo 

for all xe BVn and hence by (3,31) we obtain (3,28). 

3.11. Theorem. Let K: / = [0,1] x [0,1] -» L(Rn) satisfy (3,2), (3,3) and let 
t0 G [0,1] be fixed. Then the integral equation 

(3,32) x(í) = ľd.[K(í,s)]. 
•Iřo 

r(s), í є [ 0 , l ] 

possesses only the trivial solution x = 0 in BVn if and only if for any te(t0,1] the 
matrix I — (K(t, t) — K(t, t —)) is regular and for any t e [0, t0) the matrix 
I + K(t, t + ) - K(t, t) is regular. 

The proof of this statement can be given by a modification of the proof of 3.9. 
Since serious technical troubles do not occur we add only a few remarks on this 
proof. It is evident that x(t0) = 0 for any solution of (3,32). The proof of the fact 
that x(t) = 0 for t e (t0, l ] if and only if / - (K(r, t) - K(t,t-)) is a regular matrix 
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for te(t0, 1], follows exactly the line of the proof of 3.9. For proving "x(t) = 0 
for t e [0, t0) if and only if / + K(t, t +) - K(t, t) is regular for all t e [0, t0)", the 
decomposition (t e [0, t0)) 

I d.v[K(t, s)] x(s) = (ds[/И(í, s)] x(s) - (K(t, t+) - K(í, t)) x(t) 
J-o 

valid for any xeBVn can be used where the integral J|0 d,[M(t, s)] x(s) does not 
depend on the value x(t). This can be done in the same way as in 3.8 when it is assumed 
that M(t,s) = K(t,s) if (f,s)e/, t + s, M(t, t) = K(r, t +) if te[0,l) , M(l, 1) = K(l, 1). 
Using the above decomposition of J|0 ds[K(f, s)] x(s) the approach from 3.9 can be 
used in order to prove the result. 

3.12. Corollary. Let K: I-+L(Rn) satisfy (3,2), (3,3) and let foe[0,1] be fixed. 
Then the integral equation 

(3,33) x(t) = ds[K(t,s)]x(s)+f(í), t є [ 0 , l ] 

has a unique solution for every feBVn if and only if for any te(t0, l] the matrix 
I - (K(t,t) - K(t,t-)) is regular and for any te[0,to) the matrix / + K(t, t + ) 
— K(t, t) is regular. 

Proof. Let us define a new kernel Kr°: I -> L(Rn) as follows. 
If t0 < t < 1, then 

Kr°(r, s) = K(r, s) for t0 < s < t, 

Kt0(r, s) = K(u t) for t < s < 1, 

Kt0(t, s) = K(t, t0) for 0 < s < r0 

and if 0 < t < t0, then 

Kf0(r, s) = -K(t, s) for t < s < t0, 

Kf0(t,'s) = -K(t, t) for 0 < s < t, 

K'°(t, s) = -K(t, t0) for t0 < 5 < L 

It is a matter of routine to show that vz(K'°) < oo, var0 K
fo(0, .) < oo and 

'd s[K(t,s)]x(s)= f ' d ^ K ' ^ s ) ] ^ ) , 
Jto JO 

for every te [0,1] and xeBVn. Hence the equation (3,33) can be rewritten in the 
equivalent Fredholm-Stieltjes form 

c(í) ds[K">(t,s)]x(s) = f(t), Í Є [ 0 , 1 ] . 
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By 3,11 the corresponding homogeneous equation 

<(/)- ľds[K'°(t,S)]x(5) = 0, fє [0, l ] 

has only the trivial solution if and only if the regularity conditions given in the 
corollary are satisfied. The corollary follows now immediately from 2.1. 

Notes 
The Fredholm-Stieltjes integral equation theory is based on the investigations due to Schwabik 

[-]• [5]-
The case of Volterra-Stieltjes integral equations was considered by many authors in terms of product 

integrals, the left and right Cauchy integral or other types of integrals. See e.g. Bitzer [ l ] , Helton [l], 
Herod [ l] , Honig [ l] , Mac Nerney [2]. 

103 


		webmaster@dml.cz
	2016-07-01T10:03:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




