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A NOVEL KERNEL FUNCTION BRIDGING ITERATION
BOUNDS IN INTERIOR-POINT ALGORITHMS
FOR LINEAR PROGRAMMING

Imene Touil and Sajad Fathi-Hafshejani

Kernel functions play an important role in designing and analyzing interior-point methods.
They are not only used for determining search directions but also for measuring the distance
between the given iterate and the µ-center in the algorithms. Currently, interior-point methods
based on kernel functions are among the most effective methods for solving different types
of optimization problems and are very active research area in mathematical programming.
Therefore, in this work, we introduce a novel kernel function that bridges the gap between the
iteration bounds for large-update and small-update methods. To the best of our knowledge, we
are the first to achieve these results.

Keywords: linear programming, primal-dual interior point methods, kernel functions,
complexity analysis, large- and small-update methods

Classification: 90C05, 90C51

1. INTRODUCTION

Consider the following primal linear programming (LP) problem in standard form:

(P )
min cTx
s.t. Ax = b,

x ≥ 0,

where A ∈ Rm×n, b ∈ Rm, and c, x ∈ Rn.
Its dual problem is written as follows:

(D)
max bT y
s.t. AT y + s = c,

s ≥ 0,

where s ∈ Rn and y ∈ Rm.
The sets of strictly feasible solutions of (P) and (D) are:

F0(P ) = {x ∈ Rn
++ : Ax = b},

F0(D) = {(y, s) ∈ Rm × Rn
++ : AT y + s = c},
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respectively.
Without any loss of generality, we assume throughout this paper that:

• (H1) The matrix A satisfies rank(A) = m ≤ n.

• (H2) F0(P )×F0(D) ̸= ∅ (called the Interior Point Condition (IPC)).

Over the years, various methods have been developed for solving LP problems.
Among these, Interior Point Methods (IPMs) have proven to be particularly effective for
large-scale optimization problems. Initially introduced by N. Karmarkar in 1984 [13],
IPMs represent a class of polynomial-time algorithms that have become fundamental
for solving not only LPs [4, 10, 11, 13, 15, 17, 21] but also convex quadratic program-
ming (CQP) [1, 6, 7, 12] and semidefinite programming (SDP) [2, 8, 15, 18, 19, 20, 23].
Their theoretical foundations, combined with practical innovations and wide applicabil-
ity, make them indispensable in fields ranging from operations research and finance to
engineering and machine learning.

Kernel functions (KFs) have played a crucial role in the development of IPMs for
optimization problems. N. Karmarkar [13] introduced the polynomial IPM for LP in
1984, laying a foundational step despite not explicitly utilizing KFs. In 1994, R. E.
Nesterov and A.Ṡ. Nemirovskii [14] introduced self-concordant barriers, which essentially
function as KFs for convex optimization problems. This framework unified existing
approaches and established a robust theoretical foundation. Y.Q. Bai and C. Roos [3]
subsequently made significant contributions to the understanding of KFs, particularly
in long- and short-step methods, and explored the impact of various barrier functions
on the efficiency of interior-point algorithms (IPAs).

In the past two decades, many new KFs have been developed to improve the com-
plexity analysis and efficiency of IPMs for LP problems. KFs were first introduced by
Peng et al. [15], where it was shown that some of them almost closed the gap between
the iteration bounds for large-update and small-update methods. In 2004, Bai et al. [4]
introduced the first new KF with a trigonometric barrier term. The IPM with this func-
tion was further analyzed by El Ghami et al. [9] in 2012. They established the iteration

complexity as O(n
3
4 log n

ϵ ) for large-update methods. A year later, Wang et al. [23]
introduced the first new KF with a simple algebraic expression. They proved that the
IPM based on this KF had iteration bounds of O(qn log n

ϵ ) and O(q2
√
n log n

ϵ ), q > 1 for
large-update and small-update IPMs, respectively. Since then, several KFs using similar
barrier terms have been proposed and analyzed. In 2020, Touil et al. [20, 22] intro-
duced the first KF with a hyperbolic barrier term, establishing iteration complexities of
O(n

2
3 log n

ϵ ) and O(n
3
4 log n

ϵ ) for large-update methods. Subsequently, researchers have
sought to introduce KFs that could yield improved iteration bounds for small-update
methods, as large-update methods are generally more efficient in practice. However,
none of the KFs introduced to date have surpassed the iteration bounds established by
[5, 16]. At best, their iteration bounds are comparable to those reported in these earlier
works, indicating that the pursuit of an optimal KF remains unresolved.

1.1. Contribution

This paper presents the following contributions:
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• We propose a novel IPA for solving LP problems, utilizing a new logarithmic KF.

• We demonstrate that the IPM derived from our algorithm achieves an iteration
complexity of O(

√
n log n

ϵ ) for the large-update method, thereby improving upon
the previously established result of O(

√
n log n log n

ϵ ). The obtained result is on
par with small-update methods, which were previously considered more efficient
in practice.

• The new KF represents an advancement in KF theory by bridging the gap between
large- and small-update methods. This innovation addresses a long-standing issue
in IPM research.

The paper is organized as follows: Section 2 reviews fundamental concepts related
to IPMs, presents the new KF, and establishes its properties. Section 3 analyzes the
complexity of the algorithm. Finally, Section 4 concludes with remarks on the findings.

In this paper, we adopt the following notational conventions. The Euclidean norm of
a vector is denoted by ∥ · ∥. The non-negative and positive orthants are represented by
Rn

+ and Rn
++, respectively. The expressions xs and

x
s denote component-wise operations

on the vectors x and s, resulting in components xisi and
xi

si
, respectively. Additionally,

we use diagonal matrices X and S, whose diagonal entries are the components of vectors
x and s, respectively. The function ⌈.⌉ represents the ceiling function, which rounds any
number up to the next nearest integer. We say that f(t) = Θ (g(t)), if there exist positive
constants ω1 and ω2 such that ω1g(t) ≤ f(t) ≤ ω2g(t) for all t ∈ R++. Similarly, we say
that f(t) = O (g(t)), if there exists a positive constant ω such that f(t) ≤ ωg(t) for all
t ∈ R++.

2. SEARCH DIRECTION AND NEW KERNEL FUNCTION

For the current iterate (x, y, s) ∈ F0(P )×F0(D), finding the optimal solutions of both
problems (P ) and its dual (D) is equivalent to solving the following system: Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,
XSe = 0,

where e = (1, 1, . . . , 1)T . In IPMs, the last equation of this system is generally replaced
by the parameterized equation XSe = µe, where µ > 0. This leads to the following
perturbed system:  Ax = b, x > 0,

AT y + s = c, s > 0,
XSe = µe, µ > 0,

where µ is a positive parameter that decreases over iterations, driving the solution toward
optimality.

It is well known that under the IPC assumption, the perturbed system has a unique
solution, denoted (xµ, yµ, sµ), for each µ > 0. Note that xµ is called the µ-center of (P ),
and (yµ, sµ) is called the µ-center of (D). The set {(xµ, yµ, sµ); µ > 0} is called the
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central path of (P ) and (D) (or the set of µ-centers). As µ approaches 0, the limit of
the central path exists and yields optimal solutions for both problems (P ) and (D) [4].

By applying the Newton method, we linearize the perturbed system as follows: A∆x = 0,
AT∆y +∆s = 0,
S∆x+X∆s = µe−XSe,

(1)

where (∆x,∆y,∆s) represents the unique search direction obtained by solving this sys-
tem.

To follow the central path more efficiently, for any strictly feasible primal and dual
(x, s), where x > 0 and s > 0, and for any positive parameter µ, we define the scaled
vectors v and v−1 as:

v :=

√
xs

µ
, v−1 =

√
µ

xs
,

where
√

xs
µ denotes the component-wise square root of the vector xs

µ . The new search

directions dx and ds are then defined as follows:

dx =
v∆x

x
, ds =

v∆s

s
. (2)

With this, system (1) is reduced to
Adx = 0,

A
T
∆y + ds = 0,

dx + ds = v−1 − v = −∇Ψc(v),

(3)

where A = 1
µAV

−1X, V = diag(v).

Here Ψc(v) =
∑n

i=1 ψc(vi), is the logarithmic barrier (or proximity) function of the
classical KF ψc(t), where

ψc(t) =

(
t2 − 1

2
− log t

)
.

The basic idea in IPMs for approximating the central path is to replace ψc(t) by any
strictly convex function ψ(t) : (0,+∞[→ [0,+∞[ which is minimal at t = 1 with ψ(1) =
0.

By replacing the proximity function Ψc(v) with a new proximity function Ψ(v) =∑n
i=1 ψ(vi), where ψ(t) is our new KF defined in (6), we obtain:

Adx = 0,

A
T
∆y + ds = 0,

dx + ds = −∇Ψ(v).

(4)

Thanks to (H1), system (4) possesses a unique solution denoted as (dx,∆y, ds). Having
dx and ds, the directions ∆x and ∆s can be readily computed according to (2). By
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taking a suitable step size, denoted as α, along the search direction, the new iterates
x+, y+ and s+ are updated as:

x+ := x+ α∆x, y+ := y + α∆y and s+ := s+ α∆s, (5)

where α ∈ (0, 1) is chosen to be the largest possible value such that x+ > 0 and s+ > 0.
The above generic method can be outlined in the following primal-dual IPA:

Algorithm 1 : Primal-dual algorithm for LP

Input
A proximity function Ψ(v);
a threshold parameter τ ≥ 1;
an accuracy parameter ε > 0;
a barrier update parameter θ, 0 < θ < 1;

(x0, y0, s0) ∈ F0(P ) × F0(D), µ0 = 1 and v0 =

√
x0s0

µ0
such that Φ

(
x0, s0;µ0

)
:=

Ψ(v0) ≤ τ ;
begin
x := x0; y := y0; s := s0;µ := µ0; v := v0;
while nµ ≥ ϵ do
begin (outer iteration)
µ : = (1− θ)µ;
while Ψ(v) > τ do

begin (inner iteration)
Solve system (4) and use (2) to obtain (∆x,∆y,∆s);
x := x+ α∆x;
s := s+ α∆s;
y := y + α∆y;

v :=

√
xs

µ
;

end while (inner iteration)
end while (outer iteration)

2.1. New kernel function and its properties

The new KF is defined as follows:

ψ (t) =
t2 − 1

2
+ 2 log

(
1 + t

2t

)
,∀t > 0. (6)

Subsequently, for all t > 0 the first three derivatives of ψ(t) are:

ψ′(t) = t− 2

t2 + t
, ∀t > 0, (7)

ψ′′(t) = 1 +
4t+ 2

(t2 + t)2
> 1, ∀t > 0, (8)
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ψ′′′(t) = −4
3t2 + 3t+ 1

(t2 + t)3
< 0, ∀t > 0. (9)

Lemma 2.1. Let ψ (t) be the KF defined in (6), then we have

(i) tψ′′(t) + ψ′(t) > 0, ∀t > 0, (called as the e-convex property of ψ(t)), i. e.,

ψ(
√
t1t2) ≤

1

2
(ψ(t1) + ψ(t2)) , ∀t1, t2 > 0.

(ii) tψ′′(t)− ψ′(t) > 0, ∀t > 0.

(iii) ψ′′(t) is monotonically decreasing on ]0,+∞[.

(iv) ψ′′ (t)ψ′ (βt)− βψ′ (t)ψ′′ (βt) > 0,∀t > 1, β > 1.

P r o o f . For (i) and (ii), using (7) and (8), we have

tψ′′(t) + ψ′(t) = 2t+
2

t2 + t

(
1− 1

t+ 1

)
> 0, ∀t > 0.

tψ′′(t)− ψ′(t) =
4t2 + t

t(t2 + t)2
+

2

t2 + t
> 0, ∀t > 0.

To show that ψ′′(t) is monotonically decreasing on the interval ]0,+∞[, we need to
demonstrate that its derivative, ψ′′′(t), is negative for all t > 0.

It is clear that:

ψ′′′(t) = −4
3t2 + 3t+ 1

(t2 + t)3
< 0, ∀ t > 0.

Thus, it shows that ψ′′(t) is monotonically decreasing for all t > 0.
For the last item, and based on Lemma 2.4 in [4], if ψ(t) satisfies (ii) and (iii) of this

Lemma, then ψ(t) satisfies:

ψ′′ (t)ψ′ (βt)− βψ′ (t)ψ′′ (βt) > 0, ∀t > 1, β > 1.

For t > 1, let us define the function f(β) as follows:

f(β) := ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt), β ≥ 1.

Given that f(1) = 0, we can establish (iv) by showing that f ′(β) > 0 for β > 1. This is
demonstrated as follows:

f ′(β) = tψ′′(t)ψ′′(βt)− ψ′(t)ψ′′(βt)− βtψ′(t)ψ′′′(βt).

This simplifies to:

f ′(β) = ψ′′(βt)[tψ′′(t)− ψ′(t)]− βtψ′(t)ψ′′′(βt) > 0.

The inequality holds because ψ′′(βt) ≥ 0 (from (8)), tψ′′(t) − ψ′(t) ≥ 0 (as stated in
item (ii) of this Lemma), and −βtψ′(t)ψ′′′(βt) > 0. Given that t > 1, it follows that
ψ′(t) > 0 (from (7)) and ψ′′′(βt) < 0 (as shown in item (iii) of this Lemma).

Hence, the proof is completed. □
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Lemma 2.2. For ψ(t), we have

(i) (t− 1)2 ≤ ψ(t) ≤ 1

2
(ψ′(t))2, ∀t > 0.

(ii) ψ(t) ≤ 5

4
(t− 1)2, ∀t ≥ 1.

P r o o f . For (i), since ψ′′(t) > 1 from (8), we have

ψ(t) =
t∫
1

ξ∫
1

ψ′′(ζ) dζdξ ≥
t∫
1

ξ∫
1

dζdξ = (t− 1)2,

and

ψ(t) =

t∫
1

ξ∫
1

ψ′′(ζ) dζdξ ≤
t∫

1

ξ∫
1

ψ′′(ξ)ψ′′(ζ) dζdξ =
1

2
(ψ′(t))

2
.

To prove (ii), we apply the Taylor theorem, we get:

ψ(t) = ψ(1) + ψ′(1)(t− 1) +
1

2
ψ′′(1)(t− 1)2 +

1

3!
ψ′′′(ζ)(ζ − 1)3,

where 1 < ζ < t. Since ψ(1) = ψ′(1) = 0, ψ′′(1) = 5
2 and ψ′′′(ζ) < 0, we can conclude

that:

ψ(t) ≤ 5

4
(t− 1)2.

This completes the proof. □

Lemma 2.3. Let ϱ : [0,+∞) −→ [1,+∞) be the inverse function of ψ(t) for t ≥ 1, and
let ρ : [0,+∞) −→ (0, 1] be the inverse function of − 1

2ψ
′(t) for 0 < t ≤ 1. Then, we

have:

(i) 1 + 2

√
z

5
≤ ϱ(z) ≤ 1 +

√
z, ∀z ∈ [0,+∞).

(ii) ρ(z) ≥
√

2

λ(2z + 1)
, where z = − 1

2ψ
′(t) ≥ 0 and λ is an upper bound for

(
1 + 1

t

)
over t ∈ (0, 1].

P r o o f . For (i), let z = ψ(t) ≥ 0 for all t ≥ 1. Thus, we have ϱ(z) = t. By applying
parts (i) and (ii) of Lemma 2.2, we can derive the following:

z = ψ(t) ≥ (t− 1)2,

which implies that
t ≤ 1 +

√
z.

This establishes the right side of (i).
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Next, from the inequality

z ≤ 5

4
(t− 1)2,

we deduce that

t ≥ 1 + 2

√
z

5
,

thereby confirming the left side of (i).
For (ii), consider z ≥ 0 and t ∈ (0, 1] such that z = − 1

2ψ
′(t). Hence, we have ρ(z) = t.

Using the relation from (7), we find:

z = −1

2
ψ′(t) = − t

2
+

1

t2 + t
.

This leads us to the following equation:

2

t2 + t
= 2z + t ≤ 2z + 1, ∀t ∈ (0, 1]. (10)

To manipulate the left-hand side, we write:

2

t2 + t
=

2

t2(1 + 1
t )
.

Assuming t ∈ (0, 1], we can define t0 > 0 (however small) such that t ∈ [t0, 1]. We
denote:

λ = 1 +
1

t0
then 1 +

1

t
≤ λ, (11)

which implies:

2

t2(1 + 1
t )

≥ 2

λt2
.

From the previous inequality and (10), we can derive:

2

λt2
≤ 2z + 1, z ∈ [0,+∞),

leading to:

t = ρ(z) ≥

√
2

λ(2z + 1)
,

thereby completing the proof of (ii). □

Now, we derive an estimate for the effect of updating the barrier parameter µ on
the value of the proximity function during an iteration. We start with an important
theorem which is valid for all KFs ψ(t) that are strictly convex and satisfies (ii) and (iii)
of Lemma 2.1.
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Lemma 2.4. (Bai et al. [4]) For any v > 0 and β > 1, we have

Ψ (βv) ≤ nψ

(
βϱ

(
Ψ(v)

n

))
.

Corollary 2.5. Let θ be such that 0 < θ < 1. If Ψ(v) ≤ τ, then

Ψ(v+) = Ψ (βv) ≤ 5

4(1− θ)

(
θ
√
n+

√
τ
)2
, β =

1√
1− θ

> 1.

P r o o f . Using (ii) of Lemma 2.2 for t ≥ 1, we have

ψ(t) ≤ 5

4
(t− 1)2.

Therefore, based on the previous lemma, we obtain

Ψ (βv) ≤ 5n

4

(
βϱ

(
Ψ(v)

n

)
− 1

)2

.

Thus, according to property (i) of Lemma 2.3, we have

Ψ(βv) ≤ 5n

4

(
β

(
1 +

√
Ψ(v)

n

)
− 1

)2

.

Given that β = 1√
1−θ

, then

Ψ (βv) ≤ 5n

4(1− θ)

(√
Ψ(v)
n + (1−

√
1− θ)

)2

≤ 5

4(1− θ)

(
θ
√
n+

√
Ψ(v)

)2
,

the last inequality is obtained from the fact that 1−
√
1− θ = θ

1+
√
1−θ

≤ θ.

Under the assumption Ψ(v) ≤ τ just before the µ−update, we have

Ψ(v+) ≤
5

4(1− θ)

(
θ
√
n+

√
τ
)2

:= Ψ0, (12)

Consequently, Ψ0 serves as an upper bound for Ψ(v+) throughout the execution of the
algorithm. □

We define the proximity measure σ(v) based on the norm as follows:

σ(v) =
1

2
∥∇Ψ(v)∥ =

1

2
∥dx + ds∥ , for any v > 0. (13)

The next Lemma provides a lower bound of σ(v) in terms of the proximity function
Ψ(v).
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Lemma 2.6. For any v > 0, we have

σ(v) ≥
√

Ψ(v)

2
.

P r o o f . Utilizing (13) and from property (i) of Lemma 2.2, we get

σ2(v) =
1

4
∥∇Ψ(v)∥2 =

1

4

n∑
i=1

(ψ′(vi))
2 ≥ 1

2

n∑
i=1

ψ(vi) =
1

2
Ψ(v).

This proves the Lemma. □

Remark 2.7. Throughout the entire paper, it is assumed that τ ≥ 1. By applying
the aforementioned lemma and considering the assumption Ψ(v) ≥ τ , it follows that

σ(v) ≥ 1√
2
.

3. ANALYSIS OF THE ALGORITHM AND ITS COMPUTATIONAL
COMPLEXITY

The objective of this section is to calculate a default step size α such that the tuple
(x+, y+, s+) defined in our algorithm remains feasible, and the proximity function de-
creases adequately.

It is worth noting that the parameter µ remains fixed during an inner iteration.
Therefore, by substituting (2) into (5), we obtain:

x+ =
x

v
(v + αdx), s+ =

s

v
(v + αds).

Consequently, the updated vector v+ is expressed as:

v+ =

√
x+s+
µ

=
√
(v + αdx)(v + αds).

Exploiting the e-convex property of ψ(t), we can deduce that:

Ψ (v+) ≤
1

2
(Ψ(v + αdx) + Ψ(v + αds)) .

Let us define f(α) = Ψ (v+)−Ψ(v) .
For simplicity, in the subsequent part of this section, we denote σ as σ(v).

Lemma 3.1. (Lemmas 4.4 and 4.7 in Touil and Chikouche [20]) The largest possible
value of the step size α∗ is:

α∗ =
ρ (σ)− ρ (2σ)

2σ
.

Furthermore

α∗ ≥ 1

ψ′′ (ρ (2σ))
,

and we have for all α ∈ [0, α∗]
f(α) ≤ −ασ2.
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The next corollary presents the decrease of the proximity function in the inner iteration.

Corollary 3.2. Let us set ᾱ =
1

ψ′′ (ρ (2σ))
, as the default step size and let λ be defined

in (11). Suppose that σ ≥ 1, we have

f(ᾱ) ≤ − σ2

ψ′′ (ρ (2σ))
≤ − Ψ(v)

1
2

2 (1 + 8λ)
. (14)

P r o o f . From (8) , for t ∈]0, 1] or more precisely t ∈ [t0, 1], we have

ψ′′(t) = 1 +
4t+ 2

(t2 + t)2
< 1 +

4t+ 4

(t2 + t)2
= 1 +

4

(1 + t)t2
,

since
1

1 + t
< 1 for t > 0, we obtain

ψ′′(t) < 1 +
4

t2
.

By setting t = ρ(2σ) and using (ii) of Lemma 2.3 in this inequality, we obtain

ψ′′(ρ(2σ)) < 1 +
4

ρ(2σ)2
≤ 1 + 2λ(4σ + 1).

Now, using the last inequality in Lemma 3.1, for ᾱ =
1

ψ′′ (ρ(2σ))
∈ [0, α∗], we get

f (ᾱ) ≤ −σ2ᾱ ≤ − σ2

1 + 2λ(4σ + 1)
< − σ2

σ
(√

2 + 8λ+ 2
√
2λ
) = − σ√

2 + 8λ+ 2
√
2λ
.

where the last inequality is due to Remark 2.7.
Using Lemma 2.6, we have

f (ᾱ) ≤ −

√
Ψ(v)
2√

2 + 8λ+ 2
√
2λ

= − Ψ(v)
1
2

2 + 8
√
2λ+ 4λ

< − Ψ(v)
1
2

2 (1 + 8λ)
.

This completes the proof. □

We need to compute how many inner iterations are required to return to the situation
where Ψ(v) ≤ τ after µ−update. Let us define the value of Ψ(v) after µ−update as Ψ0,
and the subsequent values in the same outer iteration as Ψk, k = 1, . . . ,K, where K
stands for the total number of inner iterations in the outer iteration. By the definition
of f(α) and according to (14) , for k = 1, . . . ,K − 1, we obtain

Ψk+1 ≤ Ψk −
Ψ

1
2

k

2 (1 + 8λ)
.
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Lemma 3.3. (Choi and Lee [8]) Suppose t0, t1, . . . , tk be a sequence of positive numbers
such that

tk+1 ≤ tk − βt1−γ
k , k = 0, 1, . . . ,K − 1,

where β > 0 and 0 < γ ≤ 1. Then K ≤
⌈

tγ0
βγ

⌉
, where ⌈.⌉ is the ceiling function.

From this lemma and by taking tk = Ψk, β =
1

2 (1 + 8λ)
and γ =

1

2
, we can get the

following lemma.

Lemma 3.4. LetK be the total number of inner iterations in the outer iteration. Then,
we have

K ≤
⌈
Ψγ

0

βγ

⌉
= 4(1 + 8λ)Ψ

1
2
0 .

Now, we derive the complexity bounds for large- and small-update methods.

Theorem 3.5. The total number of iterations to obtain an approximate solution is
bounded by: (

4(1 + 8λ)Ψ
1
2
0

)( log n
ϵ

θ

)
. (15)

P r o o f . We know that the number of outer iterations for the situation nµ ≤ ϵ is
bounded by 1

θ (log
n
ϵ ).

Knowing that an upper bound for the total number of iterations is obtained by
multiplying the number of inner and outer iterations, we obtain the result thanks to the
above lemma. □

For large-update methods with τ = O (n) and θ = Θ(1) , the complexity of the
primal-dual IPMs based on our new KF is given by O

(√
n log n

ϵ

)
. This complexity

coincides with the currently best-known iteration bound for small-update methods with

τ = O (1) and θ = Θ
(

1√
n

)
. In our Knowledge, these results are the first to reach this

goal.

4. CONCLUSIONS AND REMARKS

In this work, we have introduced a new KF with a logarithmic barrier term. Firstly, we
have presented various properties of this new KF, and through simple analytical tools,
we have shown that the large-update IPM based on this KF has an O

(√
n log n

ϵ

)
iter-

ation bound in the worst case. This bound coincides with the best-known complexity
bound of IPMs for small-update methods. This result is significant as it is the first to
close the gap between the large-update and small-update IPMs.
Some interesting topics for future work include the extension to semidefinite program-
ming (SDP), second-order cone programming (SOCP), and convex quadratic semidefi-
nite programming (CQSDP). Furthermore, numerical tests to investigate the behavior
of the algorithm so as to be compared with other approaches.
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