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Abstract. We characterize the unit group for the group algebras of non-metabelian groups
of order 128 over the finite fields whose characteristic does not divide the order of the
group. Up to isomorphism, there are 2328 groups of order 128 and only 14 of them are
non-metabelian. We determine the Wedderburn decomposition of the group algebras of
these non-metabelian groups and subsequently characterize their unit groups.

Keywords: non-metabelian groups; finite field; group algebra; unit group

MSC 2020 : 16U60, 20C05

1. Introduction

Let K be the finite field of order q = pk, where p is a prime number. Let KG

denote the group algebra of the finite group G of order n over K and let U(KG)

denote the collection of units in KG. Here, U(KG) is called the unit group of KG.

The study of the unit groups is a very interesting and demanding problem since

these units are employed in so many fields. For example, convolution codes can be

constructed by the units (see [10]–[12]) and unit groups are also used to solve the

various combinatorial number theoretical problems in [6].

Throughout this paper, we assume that p does not divide n. This means

that the group algebra KG is semisimple (see [26]). To determine the unit

group of a semisimple group algebra is an extensively studied research problem.

One of the main advancements in this direction is due to the seminal work of

Bakshi et al. (see [2]). The authors completely characterized the unit groups

of semisimple group algebras of metabelian groups. We recall that a group is
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metabelian if its derived subgroup is abelian. Therefore, the research in this di-

rection is focused only on the unit groups of semisimple group algebras of non-

metabelian groups.

In some of the recent works, Sharma et al. (see [29], [30]) classified the unit

group of the group algebras of some non-abelian groups. Tang et al. in [31] also

made a contribution in this direction by studying the unit groups of the group

algebras of some groups up to order 21. For the alternating group A4, the unit

group of the group algebra KA4 is characterized in [8], [28]. The unit groups of the

group algebras of dihedral groups are studied in [4], [9], [16]–[18] and that of some

symmetric/alternating groups are studied in [1], [14], [19], [28].

The unit group of the group algebras of non-metabelian groups of order 24 are

discussed in [13], [15]. Recently, Mittal and Sharma (see [20]) studied the unit

groups of semisimple group algebras of all non-metabelian groups up to order 72.

Furthermore, Mittal and Sharma in [21], [22], [27] also studied the unit groups of

semisimple group algebras of all groups of order 108 and 120 (except the symmetric

group S5). The unit group of the semisimple group algebra of Sn for any n is given

in [1]. Furthermore, Mittal and Sharma in [23] characterized the unit group of group

algebras of some groups of order 144.

Due to the seminal work of Pazderski (see [25]), one can completely isolate the

possible orders of non-metabelian groups. Using [25], we observe that the next

possible order of a non-metabelian group greater than 120 is 128 (one can man-

ually compute it from the list of possible orders of non-metabelian groups given

in [25]). We note that any group of order 128 is strongly monomial. Broche et

al. discussed the Wedderburn decomposition of abelian-by-supersolvable group in [3]

as the extension work of Olivieri et al., where the authors have computed the Wed-

derburn decomposition of a rational group algebra, see [24]. Since every abelian-

by-supersolvable group is strongly monomial, one can compute the Wedderburn

decomposition of groups of order 128 using the method of [3] but the method re-

quires deep knowledge of recently discovered sophisticated algebraic concepts such

as Shoda pairs, strong Shoda pairs and tools from character theory, which is a

difficult task. In this work, we are studying the unit group of semisimple group

algebras of non-metabelian groups of order 128 through an alternative technique,

which does not require sophisticated methods and a deep knowledge of algebraic

concepts. To be more precise, we use the results of [5] and [26] to compute the

unit group via a comparative approach simpler than [3]. Using GAP (see [7]), we

note that there are totally 2328 non-isomorphic groups of order 128 out of which

only 14 are non-metabelian. We explicitly compute the unit groups of the semisim-

ple group algebras of these 14 groups after computing their respective Wedderburn

decompositions.
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This paper is organized as follows. Section 2 deals with the preliminaries while

Section 3 contains our main results on the structure of the unit group of all 14

non-metabelian groups of order 128. The final section is concluding in nature.

2. Preliminaries

In this paper, K denotes the finite field of order q = pk and G denotes the finite

group. The definitions given below are as in [5].

Definition 2.1. An element x ∈ G is called p-regular if p ∤ |x|, where |x| is the

order of x.

Let the least common multiple of the orders of all p-regular elements in G be

denoted by s. Let the primitive sth root of unity over K be denoted by θ. There-

fore, K(θ) is the splitting field over K and Gal(K(θ)/K) denotes the Galois group

of K(θ) over K. Since the Galois group Gal(K(θ)/K) is a cyclic group, for any

σ ∈ Gal(K(θ)/K) there exists some t ∈ Z∗

s such that σ(θ) = θt. Therefore, we define

the set

TG,K = {t ∈ Z∗

s : σ(θ) = θt, where σ ∈ Gal (K(θ)/K)}.

Clearly, TG,K is the subset of the multiplicative group Z
∗

s . Further, using the set TG,K,

we define another set SK(γg).

Definition 2.2. For any p-regular element g ∈ G, let γg denote the sum of all

conjugates of g ∈ G. In other words, γg =
∑

h∈Cg

h, where Cg is the conjugacy class

of g ∈ G. Then the cyclotomic K-class of γg is the set defined as

SK(γg) = {γgt : t ∈ TG,K}.

The cardinality of cyclotomic K-classes would play an important role in determin-

ing the degrees of the extensions of the simple components of Z(KG/J(KG)) (see

Propositions 2.1 and 2.2).

Proposition 2.1 ([5], Proposition 1.2). The number of simple components of

KG/J(KG) is equal to the number of cyclotomic K-classes in G, where J(KG) is the

Jacobson radical of KG.

Proposition 2.2 ([5], Theorem 1.3). Suppose the Galois group Gal (K(θ) : K) is

cyclic and t is the number of cyclotomic K-classes in G. If K1,K2, . . . ,Kt are the

simple components of Z(KG/J(KG)) and S1, S2, . . . , St are the cyclotomic K-classes

of G, then |Si| = [Ki : K] with a suitable ordering of the indices.

3



Lemma 2.1 ([26], Proposition 3.6.11). Let KG be a semi-simple group algebra

and G′ be the commutator subgroup of G. Then

KG ≃ KGeG′
⊕△(G,G′),

where KGeG′
= K(G/G′) is the sum of all commutative simple components of KG

and △(G,G′) is the sum of all others.

3. Main result

Throughout this section, let K denote the finite field of characteristic p, where p is

an odd prime number. Let the commutator of any two elements x, y of any group G

be denoted as x−1y−1xy = [x, y]. We study the unit groups of the semisimple group

algebras of groups of order 128 in the subsequent 14 subsections. But before that,

we explicitly write the structure of 14 non-metabelian groups of order 128 as follows:

(1) (C4 ⋊ C8)⋊ C2)⋊ C2,

(2) ((C8 ⋊ C4)⋊ C2)⋊ C2,

(3) ((C8 ⋊ C4)⋊ C2)⋊ C2,

(4) (C2 × C2) · (C4 × C2)⋊ C2,

(5) (((C2 × C2 × C2)⋊ (C2 × C2))⋊ C2)⋊ C2,

(6) (((C4 × C4)⋊ C2)⋊ C2)⋊ C2,

(7) (((C2 × C2 × C2)⋊ C4)⋊ C2)⋊ C2,

(8) (((C2 × C2 × C2)⋊ (C2 × C2))⋊ C2)⋊ C2,

(9) (((C2 × C2 × C2)⋊ (C2 × C2))⋊ C2)⋊ C2,

(10) (((C2 ×Q8)⋊ C2)⋊ C2)⋊ C2,

(11) (((C2 ×Q8)⋊ C2)⋊ C2)⋊ C2,

(12) (((C4 × C4)⋊ C2)⋊ C2)⋊ C2,

(13) (((C2 ×Q8)⋊ C2)⋊ C2)⋊ C2,

(14) (Q8 ×Q8)⋊ C2.

The structure description, presentation, conjugacy classes and the commutator sub-

groups of all the groups are computed through the GAP software (see [7]).

3.1. Unit group of KqG1, where G1 = ((C4⋊C8)⋊C2)⋊C2. The presentation

of the group G1 is given by

G1 = 〈x1, x2, x3, x4, x5, x6, x7 : x2
1x

−1
4 , [x2, x1]x

−1
3 , [x3, x1]x

−1
5 , [x4, x1], [x5, x1]x

−1
6 ,

[x6, x1]x
−1
7 , [x7, x1], x

2
2, [x3, x2], [x4, x2]x

−1
7 x−1

5 , [x5, x2]x
−1
7 , [x6, x2]x

−1
7 ,

[x7, x2], [x4, x3]x
−1
7 x−1

6 , x2
3, [x5, x3]x

−1
7 , [x6, x3], [x7, x3], x

2
4, [x5, x4]x

−1
7 ,

[x6, x4], [x7, x4], x
2
5x

−1
7 , [x6, x5], [x7, x5], x

2
6, [x7, x6], x

2
7〉.

4



There are a total of 17 conjugacy classes for group G1 as given below.

Representative e x1 x2 x3 x4 x5 x6 x7 x1x2 x1x4 x2x4

Size 1 16 8 8 8 4 2 1 8 16 16
Order 1 4 2 2 2 4 2 2 8 4 8

x2x6 x3x4 x1x2x4 x1x2x7 x3x4x5 x1x2x4x5

8 4 8 8 4 8
4 4 8 8 4 8

The exponent of the group G1 is 8 and the commutator subgroup of G1 is G
′

1 =

C2 × D8. Consequently, the factor group G1/G
′

1 ≃ C4 × C2. Also, as p > 2, the

group algebra KqG1 is semisimple.

Theorem 3.1. Let G1 be the group defined above and Kq be the finite field of

characteristic p not equal to 2. Then

(1) for k even or pk ≡ 1 mod 8, U(KqG1) ≃ (K∗

q)
8 ⊕ (GL2(Kq))

2 ⊕ (GL4(Kq))
7,

(2) for pk ≡ {3, 7} mod 8, U(KqG1) ≃ (K∗

q)
4⊕ (Kq∗2)2⊕ (GL2(Kq))

2⊕ (GL4(Kq))
5⊕

GL4(Kq2),

(3) For pk ≡ 5 mod 8, U(KqG1) ≃ (K∗

q)
8⊕ (GL2(Kq))

2⊕ (GL4(Kq))
3⊕ (GL4(Kq2))

2.

P r o o f. Case 1: k is even in q = pk. Since k is even, pk ≡ 1 mod 8 ⇒

|SK(γg)| = 1 for all g ∈ G1. The Wedderburn decomposition of KqG1 is given by

KqG1 ≃
17⊕
r=1

Mnr
(Kq). By Lemma 2.1, it holds that

KqG1 ≃ (Kq)
8

9⊕

r=1

Mnr
(Kq), nr > 2 ⇒ 120 =

9∑

r=1

n2
r.

The values of nr can be

(2(6), 4(2), 8), (2(5), 5(4)), (2(4), 3(2), 5(2), 6), (2(3), 3(4), 6(2)), (2(3), 3(3), 4(2), 7),

(2(2), 4(7)), (2, 3(3), 4(4), 5), and (3(6), 4, 5(2)).

To find it uniquely, we take the normal subgroupN1 = 〈x7〉 of G1. The corresponding

factor groupH1 = G1/N1 ≃ ((C8⋊C2)⋊C2)⋊C2 has the following conjugacy classes.

We remark that every element here is a coset.

Representative e x1 x2 x3 x4 x5 x6 x1x2 x1x4 x2x4 x2x6 x3x4 x1x2x4

Size 1 8 4 4 4 2 1 8 8 8 4 4 8
Order 1 4 2 2 2 2 2 8 4 4 2 4 8
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We note that k is even and so, |SK(γh)| = 1 for all h ∈ H1. The commutator subgroup

of H1 is H
′

1 = C2 × C2 × C2 and H1/H
′

1 ≃ C4 × C2. By Lemma 2.1, it holds that

KqH1 ≃ (Kq)
8

5⊕

r=1

Mnr
(Kq) ⇒ 56 =

5∑

r=1

n2
r ⇒ nr = (2(2), 4(3)), (2, 3(3), 5).

This reduces the choices of nr’s in the decomposition of KqG1 only to (2(2), 4(7)),

(2, 3(3), 4(4), 5). Again, to find the uniqueness, we consider the normal subgroupN2 =

〈x6, x7〉. The conjugacy classes of the factor groupH2 = G1/N2 = (C2×C2×C2)⋊C4

are given below.

Representative e x1 x2 x3 x4 x5 x1x2 x1x4 x2x4 x3x4 x1x2x4

Size 1 4 4 2 2 1 4 4 4 2 4
Order 1 4 2 2 2 2 4 4 4 2 4

Here, |SK(γh)| = 1 for all h ∈ H2. The commutator subgroup of H2 is H
′

2 = C2×C2

and H2/H
′

2 ≃ C4 × C2. By Lemma 2.1, we see that

KqH2 ≃ (Kq)
8

3⊕

r=1

Mnr
(Kq) ⇒ 24 =

3∑

r=1

n2
r ⇒ nr = (2(2), 4).

This uniquely tells the choice of nr’s for G1 to be (2
(2), 4(7)). Consequently, we have

KqG1 ≃ (Kq)
8 ⊕ (M2(Kq))

2 ⊕ (M4(Kq))
7.

It is straightforward to deduce the unit group from the knowledge of Wedderburn

decomposition.

Case 2: k is odd and pk ≡ 1 mod 8. The result is the same as in Case 1.

Case 3: k is odd; pk ≡ 3 mod 8 or pk ≡ 7 mod 8. We have

⊲ for pk ≡ 3 mod 8, SK(γx1
) = {γx1

, γx1x4
}, SK(γx1x2

) = {γx1x2
, γx1x2x4x5

},

SK(γx1x2x4
) = {γx1x2x4

, γx1x2x7
} and SK(γg) = {γg}, for the remaining g ∈ G1,

⊲ for pk ≡ 7 mod 8, SK(γx1
) = {γx1

, γx1x4
}, SK(γx1x2

) = {γx1x2
, γx1x2x4

},

SK(γx1x2x7
) = {γx1x2x4x5

, γx1x2x7
} and SK(γg) = {γg}, for the remaining

g ∈ G1.

In both cases, by Lemma 2.1, the Wedderburn decomposition is given by

KqG1 ≃ (Kq)
4 ⊕ (Kq2)

2
7⊕

r=1

Mnr
(Kq)⊕Mn8

(Kq2), nr > 2 ⇒ 120 =

7∑

r=1

n2
r + 2 · n2

8.

The values of nr can be

(2(6), 4(2), 8), (2(5), 5(4)), (2(4), 3(2), 5(2), 6), (2(3), 3(4), 6(2)), (2(3), 3(3), 4(2), 7),

(2(2), 4(7)), (2, 3(3), 4(4), 5), and (3(6), 4, 5(2)).
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To find the unique choice, we consider the factor groups corresponding to the normal

subgroups N1 and N2 as in Case 1. For H1, SK(γx1
) = {γx1

, γx1x4
}, SK(γx1x2

) =

{γx1x2
, γx1x2x4

} and SK(γg) = {γg}, for the remaining g ∈ H1. This means that

KqH1 ≃ (Kq)
4 ⊕ (Kq2)

2
5⊕

r=1

Mnr
(Kq), nr > 2 ⇒ 56 =

5∑

r=1

n2
r.

The values of nr can be (2
(2), 4(3)), (2, 3(3), 5). This reduces the choices of nr’s in

the decomposition of KG1 as (2
(2), 4(7)), (2, 3(3), 4(4), 5). Next, for H2, SK(γx1

) =

{γx1
, γx1x4

}, SK(γx1x2
) = {γx1x2

, γx1x2x4
} and SK(γg) = {γg}, for the remaining

g ∈ H2. This provides that

KqH2 ≃ (Kq)
4 ⊕ (Kq2)

2
3⊕

r=1

Mnr
(Kq), nr > 2 ⇒ 24 =

3∑

r=1

n2
r.

The values of nr’s are (2
(2), 4). This reduces the choices of nr’s in the decomposition

of KG1 as (2
(2), 4(7)). Hence, we have

KqG1 ≃ (Kq)
4 ⊕ (Kq2)

2 ⊕ (M2(Kq))
2 ⊕ (M4(Kq))

5 ⊕M4(Kq2).

Case 4: k is odd and pk ≡ 5 mod 8. In this case, we have SK(γx1x2
) =

{γx1x2
, γx1x2x7

}, SK(γx1x2x4
) = {γx1x2x4

, γx1x2x4x5
} and SK(γg) = {γg}, for the

remaining g ∈ G1. By Lemma 2.1, the Wedderburn decomposition is given by

KqG1 ≃ (Kq)
8

5⊕

r=1

Mnr
(Kq)

7⊕

r=6

Mnr
(Kq2), nr > 2 ⇒ 120 =

5∑

r=1

n2
r + 2 · n2

6 + 2 · n2
7.

To find the values of nr’s uniquely, we again consider the factor groups corresponding

to normal subgroups N1 and N2 as in Case 1. For H1, SK(γg) = {γg} for all g ∈ H1.

Therefore, we have

KqH1 ≃ (Kq)
8

5⊕

r=1

Mnr
(Kq) ⇒ 56 =

5∑

r=1

n2
r.

This gives the possibilities (2(2), 4(3)) and (2, 3(3), 5). Again, for H2, SK(γg) = {γg}

for all g ∈ H2. Consequently, we have

KqH2 ≃ (Kq)
8

3⊕

r=1

Mnr
(Kq) ⇒ 24 =

3∑

r=1

n2
r.

This gives the only possibility (2(2), 4). Thus, we have

KqG1 ≃ (Kq)
8 ⊕ (M2(Kq))

2 ⊕ (M4(Kq))
3 ⊕ (M4(Kq2))

2.

This completes the proof. �
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3.2. Unit group of KqG2, where G2 = ((C8⋊C4)⋊C2)⋊C2. The presentation

of the group G2 is given by

G2 = 〈x1, x2, x3, x4, x5, x6, x7 : x2
1x

−1
4 , [x2, x1]x

−1
3 , [x3, x1]x

−1
5 , [x4, x1], [x5, x1]x

−1
6 ,

[x6, x1]x
−1
7 , [x7, x1], x

2
2, [x3, x2], [x4, x2]x

−1
7 x−1

5 , [x5, x2]x
−1
7 , [x6, x2]x

−1
7 ,

[x7, x2], x
2
3, [x4, x3]x

−1
7 x−1

6 , [x5, x3]x
−1
7 , [x6, x3], [x7, x3], x

2
4x

−1
7 ,

[x5, x4]x
−1
7 , x2

6, [x6, x4], [x7, x4], x
2
5x

−1
7 , [x6, x5], [x7, x5], [x7, x6], x

2
7〉.

There are totally 17 conjugacy classes for group G2 as given below.

Representative e x1 x2 x3 x4 x5 x6 x7 x1x2 x1x4 x2x4

Size 1 16 8 8 8 4 2 1 8 16 16
Order 1 8 2 2 4 4 2 2 8 8 8

x2x6 x3x4 x1x2x4 x1x2x7 x3x4x5 x1x2x4x5

8 4 8 8 4 8
4 4 8 8 4 8

The exponent of the group G2 is 8 and the commutator subgroup of G2 is G
′

2 =

C2 × D8. The factor group G2/G
′

2 ≃ C4 × C2. Also, we observe that the group

algebra KqG2 is semisimple.

Theorem 3.2. Let G2 be the group defined above and Kq be the finite field of

characteristic p not equal to 2. Then

(1) for k even or pk ≡ 1 mod 8 or pk ≡ 5 mod 8, U(KqG2) ≃ (K∗

q)
8 ⊕ (GL2(Kq))

2 ⊕

(GL4(Kq))
7.

(2) for pk ≡ 3 mod 8 or pk ≡ 7 mod 8, U(KqG2) ≃ (K∗

q)
4 ⊕ (Kq∗2)2 ⊕ (GL2(Kq))

2 ⊕

(GL4(Kq))
3 ⊕ (GL4(Kq2))

2.

P r o o f. Case 1: k is even in q = pk. Since k is even, pk ≡ 1 mod 8 ⇒

|SK(γg)| = 1 for all g ∈ G2. The Wedderburn decomposition of KqG2 is given by

KqG2 ≃

17⊕

r=1

Mnr
(Kq).

By Lemma 2.1, we have KqG2 ≃ (Kq)
8

9⊕
r=1

Mnr
(Kq), nr > 2 ⇒ 120 =

9∑
r=1

n2
r.

The values of nr can be (2
(6), 4(2), 8), (2(5), 5(4)), (2(4), 3(2), 5(2), 6), (2(3), 3(4), 6(2)),

(2(3), 3(3), 4(2), 7), (2(2), 4(7)), (2, 3(3), 4(4), 5) and (3(6), 4, 5(2)). For uniqueness, we

consider the normal subgroup N1 = 〈x7〉 and the factor group is H1 = G2/N1 ≃

8



((C8⋊C2)⋊C2)⋊C2, which is the same as in the case of H1 already in Theorem 3.1.

This implies that

KqH1 ≃ (Kq)
8

5⊕

r=1

Mnr
(Kq) ⇒ 56 =

5∑

r=1

n2
r ⇒ nr = (2(2), 4(3)), (2, 3(3), 5).

This reduces the choices of nr’s in the decomposition of KqG2 to (2(2), 4(7)),

(2, 3(3), 4(4), 5). Again, to find the unique solution, we consider the normal subgroup

N2 = 〈x6, x7〉. We observe that the factor group H2 = G2/N2 = (C2×C2×C2)⋊C4

is the same as H2 in Theorem 3.1. Hence, we have

KqH2 ≃ (Kq)
8

3⊕

r=1

Mnr
(Kq) ⇒ 24 =

3∑

r=1

n2
r ⇒ nr = (2(2), 4).

Therefore, the choices of nr’s for G2 are reduced to (2
(2), 4(7)), which provides that

KqG2 ≃ (Kq)
8 ⊕ (M2(Kq))

2 ⊕ (M4(Kq))
7.

Case 2: k is odd and pk ≡ 1 mod 8. The result is the same as Case 1.

Case 3: k is odd; pk ≡ 3 mod 8 and pk ≡ 7 mod8. We note that

SK(γx1
) = {γx1

, γx1x4
}, SK(γx1x2

) = {γx1x2
, γx1x2x4x5

},

SK(γx3x4
) = {γx3x4

, γx3x4x5
}, SK(γx1x2x4

) = {γx1x2x7
, γx1x2x4

}

and SK(γg) = {γg}, for the remaining g ∈ G2. We use Lemma 2.1 to write the

Wedderburn decomposition as

KqG2 ≃ (Kq)
4 ⊕ (Kq2)

2
5⊕

r=1

Mnr
(Kq)

7⊕

r=6

Mnr
(Kq2), nr > 2

⇒ 120 =
5∑

r=1

n2
r + 2 · n2

6 + 2 · n2
7.

The values of nr can be

(2(6), 4(2), 8), (2(5), 5(4)), (2(4), 3(2), 5(2), 6), (2(3), 3(4), 6(2)), (2(3), 3(3), 4(2), 7),

(2(2), 4(7)), (2, 3(3), 4(4), 5), and (3(6), 4, 5(2)).

To uniquely find the Wedderburn decomposition, we consider the factor groups H1

and H2 as in Case 1. For H1, we have SK(γx1
) = {γx1

, γx1x4
}, SK(γx1x2

) =

{γx1x2
, γx1x2x4

}, and SK(γg) = {γg}, for the remaining g ∈ H1. This immediately

implies that

KqH1 ≃ (Kq)
4 ⊕ (Kq2)

2
5⊕

r=1

Mnr
(Kq), nr > 2 ⇒ 56 =

5∑

r=1

n2
r.
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The values of nr can be (2
(2), 4(3)), (2, 3(3), 5). This reduces the choices of nr’s in

the decomposition of KG2 to (2(2), 4(7)), (2, 3(3), 4(4), 5). Now, for H2, SK(γx1
) =

{γx1
, γx1x4

}, SK(γx1x2
) = {γx1x2

, γx1x2x4
} and SK(γg) = {γg}, for the remaining

g ∈ H2. Consequently, we get

KqH2 ≃ (Kq)
4 ⊕ (Kq2)

2
3⊕

r=1

Mnr
(Kq), nr > 2 ⇒ 24 =

3∑

r=1

n2
r.

The values of nr’s are (2
(2), 4). This reduces the choices of nr’s in the decomposition

of KG2 to (2
(2), 4(7)). Hence, we have

KqG2 ≃ (Kq)
4 ⊕ (Kq2)

2 ⊕ (M2(Kq))
2 ⊕ (M4(Kq))

3 ⊕ (M4(Kq2))
2.

Case 4: k is odd and pk ≡ 5 mod 8. In this case, SK(γg) = {γg} for all g ∈ G2.

Therefore, the result is the same as in Case 1. This completes the proof. �

3.3. Unit group of KqG3, where G3 = ((C8⋊C4)⋊C2)⋊C2. The presentation

of the group G3 is given as follows.

G3 = 〈x1, x2, x3, x4, x5, x6, x7 : x2
1x

−1
4 , [x2, x1]x

−1
3 , [x3, x1]x

−1
5 , [x4, x1], [x5, x1]x

−1
6 ,

[x6, x1]x
−1
7 , [x7, x1], x

2
2, [x3, x2]x

−1
7 , [x4, x2]x

−1
5 , [x5, x2]x

−1
7 , [x6, x2]x

−1
7 ,

[x7, x2], x
2
3x

−1
7 , [x4, x3]x

−1
7 x−1

6 , [x5, x3]x
−1
7 , [x6, x3], [x7, x3], x

2
4,

[x5, x4]x
−1
7 , [x6, x4], [x7, x4], x

2
5x

−1
7 , [x6, x5], [x7, x5], x

2
6, [x7, x6], x

2
7〉.

It can be seen that the groups G2 and G3 are non-isomorphic to each other due to

different actions of the group C2 onto the group (C8 ⋊ C4) ⋊ C2 (see [7]). More

specifically, the group G3 is different (non-isomorphic) from G2 because of the fol-

lowing reasons:

⊲ In G2, [x3, x2] = e, whereas in G3, [x3, x2] = x7.

⊲ In G2, [x4, x2] = x5x7, whereas in G3, [x4, x2] = x5.

⊲ In G2, x
2
3 = e, whereas in G3, x

2
3 = x7.

⊲ In G2, x
2
4 = x7, whereas in G3, x

2
4 = e.

There are totally 17 conjugacy classes for group G3 as given below.

Representative e x1 x2 x3 x4 x5 x6 x7 x1x2 x1x4 x2x4

Size 1 16 8 8 8 4 2 1 8 16 16
Order 1 4 2 4 2 4 2 2 8 4 8

x2x6 x3x4 x1x2x4 x1x2x5 x3x4x5 x1x2x4x6

8 4 8 8 4 8
4 4 8 8 4 8
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The exponent of the group G3 is 8 and the commutator subgroup of G3 is G
′

3 =

C2 × Q8. So, the factor group G3/G
′

3 ≃ C4 × C2. Also, the group algebra KqG3 is

semisimple.

Theorem 3.3. Let G3 be the group defined above and Kq be the finite field of

characteristic p not equal to 2. Then

(1) for k even or pk ≡ 1 mod 8 or pk ≡ 5 mod 8, U(KqG3) ≃ (K∗

q)
8 ⊕ (GL2(Kq))

2 ⊕

(GL4(Kq))
7,

(2) for pk ≡ 3 mod 8 or pk ≡ 7 mod 8, U(KqG3) ≃ (K∗

q)
4 ⊕ (Kq∗2)2 ⊕ (GL2(Kq))

2 ⊕

(GL4(Kq))
3 ⊕ (GL4(Kq2))

2.

P r o o f. The proof is the same as that of Theorem 3.2 and we skip it here. �

3.4. Unit group of KqG4, where G4 = ((C2 × C2).(C4 × C2) ⋊ C2). The

presentation of the group G4 is given by

G4 = 〈x1, x2, x3, x4, x5, x6, x7 : x2
1x

−1
4 , [x2, x1]x

−1
3 , [x3, x1]x

−1
5 , [x4, x1], [x5, x1]x

−1
6 ,

[x6, x1]x
−1
7 , [x7, x1], x

2
2, [x3, x2]x

−1
7 , [x4, x2]x

−1
5 , [x5, x2]x

−1
7 , [x6, x2]x

−1
7 ,

[x7, x2], x
2
3x

−1
7 , [x4, x3]x

−1
7 x−1

6 , [x5, x3]x
−1
7 , [x6, x3], [x7, x3], x

2
4x

−1
7 ,

[x5, x4]x
−1
7 , [x6, x4], [x7, x4], x

2
5x

−1
7 , [x6, x5], [x7, x5], x

2
6, [x7, x6], x

2
7〉.

There are totally 17 conjugacy classes for group G4 as given below.

Representative e x1 x2 x3 x4 x5 x6 x7 x1x2 x1x4 x2x4

Size 1 16 8 8 8 4 2 1 8 16 16
Order 1 8 2 4 4 4 2 2 8 8 8

x2x6 x3x4 x1x2x4 x1x2x5 x3x4x5 x1x2x4x6

8 4 8 8 4 8
4 4 8 8 4 8

The exponent of the group G4 is 8 and the commutator subgroup of G4 is G
′

4 =

C2 ×Q8. Thus, the factor group G4/G
′

4 ≃ C4 ×C2. Also, we observe that the group

algebra KqG4 is semisimple.

Theorem 3.4. Let G4 be the group defined above and Kq be the finite field of

characteristic p not equal to 2. Then

(1) for k even or pk ≡ 1 mod 8, U(KqG4) ≃ (K∗

q)
8 ⊕ (GL2(Kq))

2 ⊕ (GL4(Kq))
7,

(2) for pk ≡ 3 mod 8 or pk ≡ 7 mod 8, U(KqG4) ≃ (K∗

q)
4 ⊕ (Kq∗2)2 ⊕ (GL2(Kq))

2 ⊕

(GL4(Kq))
5 ⊕GL4(Kq2),

(3) For pk ≡ 5 mod 8, U(KqG4) ≃ (K∗

q)
8⊕(GL2(Kq))

2⊕(GL4(Kq))
3⊕(GL4(Kq2))

2.

P r o o f. The proof is the same as that of Theorem 3.1 and we skip it here. �
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3.5. Unit group of KqG5, where G5 = (((C2×C2×C2)⋊(C2×C2))⋊C2)⋊C2.

The presentation of the group G5 is given by

G5 = 〈x1, x2, x3, x4, x5, x6, x7 : x2
1, [x2, x1]x

−1
4 , [x3, x1]x

−1
5 , [x4, x1], [x5, x1],

[x6, x1]x
−1
7 , [x7, x1], x

2
2, [x3, x2], [x4, x2], [x5, x2]x

−1
7 x−1

6 , [x6, x2],

[x7, x2], x
2
3, [x4, x3]x

−1
6 , [x5, x3], [x6, x3], [x7, x3], x

2
4, [x5, x4]x

−1
7 ,

[x6, x4], [x7, x4], x
2
5, [x6, x5], [x7, x5], x

2
6, [x7, x6], x

2
7〉.

There are 20 conjugacy classes for group G5 as given below.

Representative e x1 x2 x3 x4 x5 x6 x7 x1x2 x1x3 x1x6 x2x3

Size 1 8 4 4 4 4 2 1 16 16 8 8
Order 1 2 2 2 2 2 2 2 4 4 4 2

x2x5 x2x6 x3x4 x3x7 x4x5 x1x2x3 x2x3x4 x2x3x4x7

8 4 8 4 4 16 4 4
4 2 4 2 4 8 4 4

The exponent of the group G5 is 8 and the commutator subgroup of G5 is G
′

5 =

C2 ×D8. So, the factor group G5/G
′

5 ≃ C2 × C2 × C2. Also, we observe that the

group algebra KqG5 is semisimple.

Theorem 3.5. Let G5 be the group defined above and Kq be the finite field of

characteristic p not equal to 2. Then

U(KqG5) ≃ (K∗

q)
8 ⊕ (GL2(Kq))

6 ⊕ (GL4(Kq))
6.

P r o o f. It can be verified that for any pk, |SK(γg)| = 1 for all g ∈ G5. Conse-

quently, the Wedderburn decomposition of KqG5 is given by

KqG5 ≃

20⊕

r=1

Mnr
(Kq).

By Lemma 2.1, we have KqG5 ≃ (Kq)
8

12⊕
r=1

Mnr
(Kq), nr > 2 ⇒ 120 =

12∑
r=1

n2
r. The

values of nr can be

(2(10), 4, 8), (2(7), 3(3), 4, 7), (2(6), 4(6)), (2(5), 3(3), 4(3), 5),

(2(4), 3(6), 5(2)), and (2(3), 3(8), 6).

To find it uniquely, we take the normal subgroup N = 〈x7〉 and the factor group

H = G5/N ≃ ((C2 ×C2 ×C2 ×C2)⋊C2)⋊C2. This factor group has the following

conjugacy classes.

12



Representative e x1 x2 x3 x4 x5 x6 x1x2 x1x3 x1x6

Size 1 4 4 4 2 2 1 8 8 4
Order 1 2 2 2 2 2 2 4 4 2

x2x3 x2x5 x3x4 x4x5 x1x2x3 x2x3x4

4 4 4 2 8 4
2 4 4 2 4 4

For all pk, it can be verified that |SK(γg)| = 1 for all g ∈ G5. Also, H/H ′ ≃

C2 × C2 × C2. Therefore, we have

KqH ≃ (Kq)
8

8⊕

r=1

Mnr
(Kq) ⇒ 56 =

8∑

r=1

n2
r ⇒ nr = (2(6), 4(2)).

This reduces the choices of nr’s in the decomposition of KqG5 to (2
(6), 4(6)). Hence,

we have

KqG5 ≃ (Kq)
8 ⊕ (M2(Kq))

6 ⊕ (M4(Kq))
6.

This completes the proof. �

3.6. Unit group of KqG6, where G6 = (((C4 × C4) ⋊ C2) ⋊ C2) ⋊ C2. The

presentation of the group G6 is given by

G6 = 〈x1, x2, x3, x4, x5, x6, x7 : x2
1, [x2, x1]x

−1
4 , [x3, x1]x

−1
5 , [x4, x1], [x5, x1],

[x6, x1]x
−1
7 , [x7, x1], x

2
2x

−1
7 , [x3, x2], [x4, x2], [x5, x2]x

−1
7 x−1

6 , [x6, x2],

[x7, x2], x
2
3, [x4, x3]x

−1
6 , [x5, x3], [x6, x3], [x7, x3], x

2
4, [x5, x4]x

−1
7 ,

[x6, x4], [x7, x4], x
2
5, [x6, x5], [x7, x5], x

2
6, [x7, x6], x

2
7〉.

There are 20 conjugacy classes for group G6 as given below.

Representative e x1 x2 x3 x4 x5 x6 x7 x1x2 x1x3 x1x6 x2x3

Size 1 8 4 4 4 4 2 1 16 16 8 8
Order 1 2 4 2 2 2 2 2 4 4 4 4

x2x5 x2x6 x3x4 x3x7 x4x5 x1x2x3 x2x3x4 x2x3x4x7

8 4 8 4 4 16 4 4
4 4 4 2 4 8 4 4

The exponent of the group G6 is 8 and the commutator subgroup of G6 is G
′

6 =

C2 ×D8 and so, the factor group G6/G
′

6 ≃ C2 ×C2 ×C2. Also, we observe that the

group algebra KqG6 is semisimple.
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Theorem 3.6. Let G6 be the group defined above and Kq be the finite field of

characteristic p not equal to 2. Then

⊲ for k even or pk ≡ {1, 5} mod 8, U(KqG6) ≃ (K∗

q)
8⊕ (GL2(Kq))

6⊕ (GL4(Kq))
6,

⊲ for pk ≡ {3, 7} mod 8, U(KqG6) ≃ (K∗

q)
8 ⊕ (GL2(Kq))

6 ⊕ (GL4(Kq))
2 ⊕

(GL4(Kq2))
2.

P r o o f. Case 1: k is even or pk ≡ 1 mod8 or pk ≡ 5 mod 8. For all these

possibilities, we have |SK(γg)| = 1 for all g ∈ G6. The Wedderburn decomposition

of KqG6 is given by

KqG6 ≃

20⊕

r=1

Mnr
(Kq).

By Lemma 2.1, we get KqG6 ≃ (Kq)
8

12⊕
r=1

Mnr
(Kq), nr > 2 ⇒ 120 =

12∑
r=1

n2
r. The

values of nr can be

(2(10), 4, 8), (2(7), 3(3), 4, 7), (2(6), 4(6)), (2(5), 3(3), 4(3), 5),

(2(4), 3(6), 5(2)) and (2(3), 3(8), 6).

To find it uniquely, we take the normal subgroup N = 〈x7〉 and the corresponding

factor group as H = G6/N ≃ ((C2 × C2 × C2 × C2) ⋊ C2) ⋊ C2, which is the

same as in Theorem 3.5. Here, we observe that |SK(γg)| = 1 for all g ∈ G6. Also,

H/H ′ ≃ C2 × C2 × C2. Consequently, we have

KqH ≃ (Kq)
8

8⊕

r=1

Mnr
(Kq) ⇒ 56 =

8∑

r=1

n2
r ⇒ nr = (2(6), 4(2)).

This reduces the choices of nr’s in the decomposition of KqG6 to (2
(6), 4(6)). Hence,

it holds that

KqG6 ≃ (Kq)
8 ⊕ (M2(Kq))

6 ⊕ (M4(Kq))
6.

Case 2: pk ≡ 3 mod 8 or pk ≡ 7 mod 8. For these possibilities, we have SK(γx2
) =

{γx2
, γx2x6

}, SK(γx2x3x4
) = {γx2x3x4

, γx2x3x4x7
} and SK(γg) = {γg}, for the remain-

ing g ∈ G6. We engage Lemma 2.1 to write the Wedderburn decomposition as:

KqG6 ≃ (Kq)
8

8⊕

r=1

Mnr
(Kq)

10⊕

r=9

Mnr
(Kq2), nr > 2 ⇒ 120 =

8∑

r=1

n2
r +2 ·n2

9+2 ·n2
10.

The values of nr can be

(2(10), 4, 8), (2(7), 3(3), 4, 7), (2(6), 4(6)), (2(5), 3(3), 4(3), 5),

(2(4), 3(6), 5(2)) and (2(3), 3(8), 6).
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To find it uniquely, we consider the factor group H as in Case 1. For H , SK(γg) =

{γg} for all g ∈ H . This gives that

KqH ≃ (Kq)
8

8⊕

r=1

Mnr
(Kq), nr > 2 ⇒ 56 =

8∑

r=1

n2
r.

The values of nr must be (2
(6), 4(2)). This reduces the choices of nr’s in the decom-

position of KG6 to (2
(6), 4(6)). Hence, we have

KqG6 ≃ (Kq)
8 ⊕ (M2(Kq))

6 ⊕ (M4(Kq))
2 ⊕ (M4(Kq2))

2.

This completes the proof. �

3.7. Unit group of KqG7, where G7 = (((C2 ×C2×C2)⋊C4)⋊C2)⋊C2. The

presentation of the group G7 is given by

G7 = 〈x1, x2, x3, x4, x5, x6, x7 : x2
1, [x2, x1]x

−1
4 , [x3, x1]x

−1
5 , [x4, x1], [x5, x1],

[x6, x1]x
−1
7 , [x7, x1], x

2
2x

−1
7 , [x3, x2], [x4, x2], [x5, x2]x

−1
7 x−1

6 , [x6, x2],

[x7, x2], x
2
3x

−1
7 , [x4, x3]x

−1
6 , [x5, x3], [x6, x3], [x7, x3], x

2
4, [x5, x4]x

−1
7 ,

[x6, x4], [x7, x4], x
2
5, [x6, x5], [x7, x5], x

2
6, [x7, x6], x

2
7〉.

There are 20 conjugacy classes for group G7 as given below.

Representative e x1 x2 x3 x4 x5 x6 x7 x1x2 x1x3 x1x6 x2x3

Size 1 8 4 4 4 4 2 1 16 16 8 8
Order 1 2 4 4 2 2 2 2 4 4 4 2

x2x5 x2x6 x3x4 x3x7 x4x5 x1x2x3 x2x3x4 x2x3x4x7

8 4 8 4 4 16 4 4
4 4 4 4 4 8 4 4

The exponent of the group G7 is 8 and the commutator subgroup of G7 is G
′

7 =

C2 ×D8. So, the factor group G7/G
′

7 ≃ C2 × C2 × C2. Also, we observe that the

group algebra KqG7 is semisimple.

Theorem 3.7. Let G7 be the group defined above and Kq be the finite field of

characteristic p not equal to 2. Then

⊲ for k even or pk ≡ {1, 5} mod 8, U(KqG7) ≃ (K∗

q)
8⊕ (GL2(Kq))

6⊕ (GL4(Kq))
6,

⊲ for pk ≡ {3, 7} mod 8, U(KqG7) ≃ (K∗

q)
8 ⊕ (GL2(Kq))

6 ⊕ (GL4(Kq))
2 ⊕

(GL4(Kq2))
2.
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P r o o f. Case 1: k is even or pk ≡ 1 mod 8 or pk ≡ 5 mod 8. The proof for these

possibilities is the same as that of Case 1 in Theorem 3.6.

Case 2: pk ≡ 3 mod 8 or pk ≡ 7 mod 8. For these possibilities, we have SK(γx2
) =

{γx2
, γx2x6

}, SK(γx3
) = {γx3

, γx3x7
} and SK(γg) = {γg}, for the remaining g ∈ G7.

We note that, even though the sets SK(γg) are different for these possibilities, the

proof follows on the lines of Case 2 of Theorem 3.6. This completes the proof. �

3.8. Unit group of KqG8, where G8 = (((C2×C2×C2)⋊(C2×C2))⋊C2)⋊C2.

The presentation of the group G8 is given by

G8 = 〈x1, x2, x3, x4, x5, x6, x7 : x2
1, [x2, x1]x

−1
4 , [x3, x1]x

−1
5 , [x4, x1], [x5, x1],

[x6, x1]x
−1
7 , [x7, x1], x

2
2, [x3, x2]x

−1
7 , [x4, x2], [x5, x2]x

−1
7 x−1

6 , [x6, x2],

[x7, x2], x
2
3, [x4, x3]x

−1
6 , [x5, x3], [x6, x3], [x7, x3], x

2
4, [x5, x4]x

−1
7 ,

[x6, x4], [x7, x4], x
2
5, [x6, x5], [x7, x5], x

2
6, [x7, x6], x

2
7〉.

There are 17 conjugacy classes for group G8 as given below.

Representative e x1 x2 x3 x4 x5 x6 x7 x1x2 x1x3 x1x6

Size 1 8 8 8 4 4 2 1 16 16 8
Order 1 2 2 2 2 2 2 2 4 4 4

x2x3 x2x5 x3x4 x4x5 x1x2x3 x2x3x4

8 8 8 4 16 8
4 4 4 4 8 4

The exponent of the group G8 is 8 and the commutator subgroup of G8 is G
′

8 =

C2 ×D8. So, the factor group G8/G
′

8 ≃ C2 × C2 × C2. Also, we observe that the

group algebra KqG8 is semisimple.

Theorem 3.8. Let G8 be the group defined above and Kq be the finite field of

characteristic p not equal to 2. Then

U(KqG8) ≃ (K∗

q)
8 ⊕ (GL2(Kq))

6 ⊕ (GL4(Kq))
2 ⊕GL8(Kq).

P r o o f. It can be verified that for any pk, |SK(γg)| = 1 for all g ∈ G8. Conse-

quently, the Wedderburn decomposition of KqG8 is given by

KqG8 ≃

17⊕

r=1

Mnr
(Kq).
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By Lemma 2.1, we see that KqG8 ≃ (Kq)
8

9⊕
r=1

Mnr
(Kq), nr > 2 ⇒ 120 =

9∑
r=1

n2
r. The

values of nr can be

(2(6), 4(2), 8), (2(5), 5(4)), (2(4), 3(2), 5(2), 6), (2(3), 3(4), 6(2)), (2(3), 3(3), 4(2), 7),

(2(2), 4(7)), (2, 3(3), 4(4), 5) and (3(6), 4, 5(2)).

To find it uniquely, we take the normal subgroup N = 〈x7〉. The factor group

H = G8/N ≃ ((C2×C2×C2×C2)⋊C2)⋊C2 is the same as in Theorem 3.5. Further,

for all pk, we observe that |SK(γg)| = 1 for all g ∈ G8. Also, H/H ′ ≃ C2 × C2 ×C2.

Therefore, it holds that

KqH ≃ (Kq)
8

8⊕

r=1

Mnr
(Kq) ⇒ 56 =

8∑

r=1

n2
r ⇒ nr = (2(6), 4(2)).

This reduces the choices of nr’s in the decomposition of KqG8 to (2
(6), 4(2), 8). Hence,

we have

KqG8 ≃ (Kq)
8 ⊕ (M2(Kq))

6 ⊕ (M4(Kq))
2 ⊕M8(Kq).

This completes the proof. �

3.9. Unit group of KqG9, where G9 = (((C2×C2×C2)⋊(C2×C2))⋊C2)⋊C2.

The presentation of the group G9 is given by

G9 = 〈x1, x2, x3, x4, x5, x6, x7 : x2
1, [x2, x1]x

−1
4 , [x3, x1]x

−1
5 , [x4, x1], [x5, x1],

[x6, x1]x
−1
7 , [x7, x1], x

2
2x

−1
7 , [x3, x2]x

−1
7 , [x4, x2], [x5, x2]x

−1
7 x−1

6 ,

[x6, x2], [x7, x2], x
2
3, [x4, x3]x

−1
6 , [x5, x3], [x6, x3], [x7, x3], x

2
4,

[x5, x4]x
−1
7 , [x6, x4], [x7, x4], x

2
5, [x6, x5], [x7, x5], x

2
6, [x7, x6], x

2
7〉.

There are 17 conjugacy classes for group G9 as given below.

Representative e x1 x2 x3 x4 x5 x6 x7 x1x2 x1x3 x1x6

Size 1 8 8 8 4 4 2 1 16 16 8
Order 1 2 4 2 2 2 2 2 4 4 4

x2x3 x2x5 x3x4 x4x5 x1x2x3 x2x3x4

8 8 8 4 16 8
2 4 4 4 8 4

The exponent of the group G9 is 8 and the commutator subgroup of G9 is G
′

9 =

C2 ×D8. So, the factor group G9/G
′

9 ≃ C2 × C2 × C2. Also, we observe that the

group algebra KqG9 is semisimple.
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Theorem 3.9. Let G9 be the group defined above and Kq be the finite field of

characteristic p not equal to 2. Then

U(KqG9) ≃ (K∗

q)
8 ⊕ (GL2(Kq))

6 ⊕ (GL4(Kq))
2 ⊕GL8(Kq).

P r o o f. The proof is the same as that of Theorem 3.8. �

3.10. Unit group of KqG10, where G10 = (((C2 ×Q8)⋊C2)⋊ C2)⋊ C2. The

presentation of the group G10 is given by

G10 = 〈x1, x2, x3, x4, x5, x6, x7 : x2
1, [x2, x1]x

−1
4 , [x3, x1]x

−1
5 , [x4, x1], [x5, x1],

[x6, x1]x
−1
7 , [x7, x1], x

2
2x

−1
7 , [x3, x2]x

−1
7 , [x4, x2], [x5, x2]x

−1
7 x−1

6 ,

[x6, x2], [x7, x2], x
2
3x

−1
7 , [x4, x3]x

−1
6 , [x5, x3], [x6, x3], [x7, x3], x

2
4,

[x5, x4]x
−1
7 , [x6, x4], [x7, x4], x

2
5, [x6, x5], [x7, x5], x

2
6, [x7, x6], x

2
7〉.

There are 17 conjugacy classes for group G10 as given below.

Representative e x1 x2 x3 x4 x5 x6 x7 x1x2 x1x3 x1x6

Size 1 8 8 8 4 4 2 1 16 16 8
Order 1 2 4 4 2 2 2 2 4 4 4

x2x3 x2x5 x3x4 x4x5 x1x2x3 x2x3x4

8 8 8 4 16 8
4 4 4 4 8 4

The exponent of the group G10 is 8 and the commutator subgroup of G10 is G
′

10 =

C2 ×D8. So, the factor group G10/G
′

10 ≃ C2 × C2 × C2. Also, we observe that the

group algebra KqG10 is semisimple.

Theorem 3.10. Let G10 be the group defined above and Kq be the finite field of

characteristic p not equal to 2. Then

U(KqG10) ≃ (K∗

q)
8 ⊕ (GL2(Kq))

6 ⊕ (GL4(Kq))
2 ⊕GL8(Kq).

P r o o f. The proof is the same as that of Theorem 3.8. �

3.11. Unit group of KqG11, where G11 = (((C2 ×Q8)⋊C2)⋊ C2)⋊ C2. The

presentation of the group G11 is given by

G11 = 〈x1, x2, x3, x4, x5, x6, x7 : x2
1, [x2, x1]x

−1
4 , [x3, x1]x

−1
5 , [x4, x1]x

−1
7 , [x5, x1]x

−1
7 ,

[x6, x1]x
−1
7 , [x7, x1], x

2
2, [x3, x2], [x4, x2]x

−1
7 , [x5, x2]x

−1
7 x−1

6 , [x6, x2],

[x7, x2], x
2
3, [x4, x3]x

−1
6 , [x5, x3]x

−1
7 , [x6, x3], [x7, x3], x

2
4x

−1
7 , [x5, x4]x

−1
7 ,

[x6, x4], [x7, x4], x
2
5x

−1
7 , [x6, x5], [x7, x5], x

2
6, [x7, x6], x

2
7〉.
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There are 17 conjugacy classes for group G11 as given below.

Representative e x1 x2 x3 x4 x5 x6 x7 x1x2 x1x3 x1x6

Size 1 8 8 8 4 4 2 1 16 16 8
Order 1 2 2 2 4 4 2 2 8 8 4

x2x3 x2x5 x3x4 x4x5 x1x2x3 x2x3x4

8 8 8 4 16 8
2 4 4 4 8 4

The exponent of the group G11 is 8 and the commutator subgroup of G11 is G
′

11 =

C2 ×Q8. So, the factor group G11/G
′

11 ≃ C2 × C2 × C2. Also, we observe that the

group algebra KqG11 is semisimple.

Theorem 3.11. Let G11 be the group defined above and Kq be the finite field of

characteristic p not equal to 2. Then

U(KqG11) ≃ (K∗

q)
8 ⊕ (GL2(Kq))

6 ⊕ (GL4(Kq))
2 ⊕GL8(Kq).

P r o o f. The proof is the same as that of Theorem 3.8. �

3.12. Unit group of KqG12, where G12 = (((C4 × C4)⋊ C2)⋊ C2)⋊ C2. The

presentation of the group G12 is given by

G12 = 〈x1, x2, x3, x4, x5, x6, x7 : x2
1, [x2, x1]x

−1
4 , [x3, x1]x

−1
5 , [x4, x1]x

−1
7 , [x5, x1]x

−1
7 ,

[x6, x1]x
−1
7 , [x7, x1], x

2
2x

−1
7 , [x3, x2], [x4, x2]x

−1
7 , [x5, x2]x

−1
7 x−1

6 , [x6, x2],

[x7, x2], x
2
3, [x4, x3]x

−1
6 , [x5, x3]x

−1
7 , [x6, x3], [x7, x3], x

2
4x

−1
7 , [x5, x4]x

−1
7 ,

[x6, x4], [x7, x4], x
2
5x

−1
7 , [x6, x5], [x7, x5], x

2
6, [x7, x6], x

2
7〉.

There are 17 conjugacy classes for group G12 as given below.

Representative e x1 x2 x3 x4 x5 x6 x7 x1x2 x1x3 x1x6

Size 1 8 8 8 4 4 2 1 16 16 8
Order 1 2 4 2 4 4 2 2 8 8 4

x2x3 x2x5 x3x4 x4x5 x1x2x3 x2x3x4

8 8 8 4 16 8
4 4 4 4 8 4

The exponent of the group G12 is 8 and the commutator subgroup of G12 is G
′

12 =

C2 ×Q8. So, the factor group G12/G
′

12 ≃ C2 × C2 × C2. Also, we observe that the

group algebra KqG12 is semisimple.
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Theorem 3.12. Let G12 be the group defined above and Kq be the finite field of

characteristic p not equal to 2. Then

U(KqG12) ≃ (K∗

q)
8 ⊕ (GL2(Kq))

6 ⊕ (GL4(Kq))
2 ⊕GL8(Kq).

P r o o f. The proof is the same as that of Theorem 3.8. �

3.13. Unit group of KqG13, where G13 = (((C2 ×Q8)⋊C2)⋊ C2)⋊ C2. The

presentation of the group G13 is given by

G13 = 〈x1, x2, x3, x4, x5, x6, x7 : x2
1, [x2, x1]x

−1
4 , [x3, x1]x

−1
5 , [x4, x1]x

−1
7 , [x5, x1]x

−1
7 ,

[x6, x1]x
−1
7 , [x7, x1], x

2
2, [x3, x2]x

−1
7 , [x4, x2]x

−1
7 , [x5, x2]x

−1
7 x−1

6 , [x6, x2],

[x7, x2], x
2
3, [x4, x3]x

−1
6 , [x5, x3]x

−1
7 , [x6, x3], [x7, x3], x

2
4x

−1
7 , [x5, x4]x

−1
7 ,

[x6, x4], [x7, x4], x
2
5x

−1
7 , [x6, x5], [x7, x5], x

2
6, [x7, x6], x

2
7〉.

There are 20 conjugacy classes for group G13 as given below.

Representative e x1 x2 x3 x4 x5 x6 x7 x1x2 x1x3 x1x6 x2x3

Size 1 8 8 8 4 4 2 1 16 16 8 8
Order 1 2 2 2 4 4 2 2 8 8 4 4

x2x5 x3x4 x4x5 x1x2x3 x2x3x4 x2x3x5 x2x4x5 x3x4x7

4 4 4 16 4 4 4 4
4 4 4 8 4 4 4 4

The exponent of the group G13 is 8 and the commutator subgroup of G13 is G
′

13 =

C2 ×Q8. So, the factor group G13/G
′

13 ≃ C2 × C2 × C2. Also, we observe that the

group algebra KqG13 is semisimple.

Theorem 3.13. Let G13 be the group defined above and Kq be the finite field of

characteristic p not equal to 2. Then

⊲ for k even or pk ≡ {1, 5} mod 8, U(KqG13) ≃ (K∗

q)
8⊕(GL2(Kq))

6⊕(GL4(Kq))
6,

⊲ for pk ≡ {3, 7} mod 8, U(KqG13) ≃ (K∗

q)
8 ⊕ (GL2(Kq))

6 ⊕ (GL4(Kq))
2 ⊕

(GL4(Kq2))
2.

P r o o f. The proof is the same as that of Theorem 3.6. �
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3.14. Unit group of KqG14, where G14 = (Q8 × Q8) ⋊ C2. The presentation

of the group G14 is given by

G14 = 〈x1, x2, x3, x4, x5, x6, x7 : x2
1, [x2, x1]x

−1
4 , [x3, x1]x

−1
5 , [x4, x1]x

−1
7 , [x5, x1]x

−1
7 ,

[x6, x1]x
−1
7 , [x7, x1], x

2
2x

−1
7 , [x3, x2]x

−1
7 , [x4, x2]x

−1
7 , [x5, x2]x

−1
7 x−1

6 ,

[x6, x2], [x7, x2], x
2
3x

−1
7 , [x4, x3]x

−1
6 , [x5, x3]x

−1
7 , [x6, x3], [x7, x3], x

2
4x

−1
7 ,

[x5, x4]x
−1
7 , [x6, x4], [x7, x4], x

2
5x

−1
7 , [x6, x5], [x7, x5], x

2
6, [x7, x6], x

2
7〉.

There are 20 conjugacy classes for group G14 as given below.

Representative e x1 x2 x3 x4 x5 x6 x7 x1x2 x1x3 x1x6 x2x3

Size 1 8 8 8 4 4 2 1 16 16 8 8
Order 1 2 4 4 4 4 2 2 8 8 4 4

x2x5 x3x4 x4x5 x1x2x3 x2x3x4 x2x3x5 x2x4x5 x3x4x7

4 4 4 16 4 4 4 4
4 4 4 8 4 4 4 4

The exponent of the group G14 is 8 and the commutator subgroup of G14 is G
′

14 =

C2 ×Q8. So, the factor group G14/G
′

14 ≃ C2 × C2 × C2. Also, we observe that the

group algebra KqG14 is semisimple.

Theorem 3.14. Let G14 be the group defined above and Kq be the finite field of

characteristic p not equal to 2. Then

U(KqG14) ≃ (K∗

q)
8 ⊕ (GL2(Kq))

6 ⊕ (GL4(Kq))
6.

P r o o f. The proof is the same as that of Theorem 3.5. �

4. Conclusion

We have explicitly given the characterization of the unit groups U(KqG) of

semisimple group algebras of 14 non-metabelian groups of order 128. With this

paper, the study of characterization of unit groups of U(KqG) for all groups G up

to order 128 is complete (except that of order 96). Finally, this paper motivates

the researchers to come up with new techniques to uniquely deduce the struc-

ture of the unit groups of the group algebras of non-metabelian groups of order

greater than 128.
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