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METHOD FOR QUANTITATIVE RISK ASSESSMENT
OF CYBER-PHYSICAL SYSTEMS BASED
ON VULNERABILITY ANALYSIS

Rasim Alguliyev, Ramiz Aliguliyev, and Lyudmila Sukhostat

Cyber-physical system protection against cyber-attacks is a serious problem that requires
methods for assessing the cyber security risks. This paper proposes a quantitative metric to
evaluate the risks of cyber-physical systems using the fuzzy Sugeno integral. The simulated
attack graph, consisting of vulnerable system components, allows for obtaining various pa-
rameters for assessing the risks of attack paths characterizing the elements in the cyber and
physical environment and are combined into a single quantitative assessment. Experiments are
performed on a threat model using the example of a cyber-physical system for wind energy gen-
eration. The model integrates a cyber-physical network’s topology and vulnerabilities, proving
the proposed method’s effectiveness in ensuring cyber resilience.

Keywords: cyber-physical system, risk assessment, attack graph, graph centrality mea-
sures, Sugeno λ-measure, fuzzy Sugeno integral, attack path

Classification: 68M15

1. INTRODUCTION

The connection between IT (Information Technology) and networks is essential when
modeling the criticality of the cyber-physical system (CPS) nodes. Most existing works
consider the criticality of a node in only one environment, i.e., either in an IT envi-
ronment or an OT (Operational Technology) environment. In this case, the network is
assumed to be homogeneous, in which all nodes work similarly and are configured with
the same OS.

The use and benefits derived from the convergence of IT and OT are growing and
allow for more efficient management and operation of CPS. OT consists of many sensors
[29], actuators, programmable logic controllers (PLCs), or remote telemetry devices
involved in the manufacturing process. They include human-machine interfaces (HMIs),
alarm or notification systems, engineering workstations, etc. Existing IT systems and
applications manage industrial automation and control functions throughout CPS [32].
The systems and functions at this level interact with the production area and exchange
data with corporate systems and applications to perform a certain number and types of
services. The severity of the node failure effect on CPS depends on the number of node
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services and their diversity. It proves the need to measure the criticality of the system
nodes.

Unlike existing approaches, this study aims to solve a specific problem of quantitative
measurement of the cyber-physical security of CPS, taking into account the parameters
that affect its physical and cyber layers.

Quantifying cyber security risks leads to identifying cyber vulnerabilities and will
ensure that a mitigation plan is in place to prevent security threats [30].

For example, Ou and Singhal analyzed system risk in the context of a cyberattack
using an attack graph without regard to node criticality [24]. Here, the criticality of a
node indicates the maximum amount of damage inflicted on the system when an attacker
compromises the node. The notion of node criticality was defined using a pattern of
attacks on IT infrastructure based on pre-association and post-association with other
nodes [2, 31]. Studies proved the influence of neighboring nodes of the attack graph on
the criticality of the considered node.

This paper proposes a quantitative metric for assessing CPS risks based on measuring
the vulnerabilities of attack graph nodes using a fuzzy Sugeno integral. The main
contributions of this work are summarized as follows:

• A metric for assessing CPS risks using the fuzzy Sugeno integral, which is deter-
mined by combining indices from IT and OT, is proposed.

• Node risk assessment is based on calculating indices of closeness centrality, eigen-
vector centrality, Katz centrality, betweenness centrality, integrity score, availabil-
ity score, and confidentiality score.

• An experimental evaluation of the proposed method is performed on a wind energy
generation model that integrates the topology of the cyber-physical network and
the vulnerabilities of the CPS components.

The remainder of the paper is organized as follows. Section 2 provides abbreviations,
notations, and definitions used in the paper. Related works are discussed in Section 3.
Section 4 presents the proposed approach. An example of critical cyber-physical infras-
tructure is given in Section 5. Section 6 provides experimental results and discussion.
Section 7 presents the conclusion of this paper.

2. PRELIMINARIES

In this section, abbreviations, notations and definitions are presented that used in current
paper to assist the reader.

2.1. Abbreviations

• IT: Information Technology;

• OT: Operational Technology;

• CPS: Cyber-Physical System;

• PLC: Programmable Logic Controller;
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• HMI: human-machine interface;

• CVSS: Common Vulnerability Scoring System;

• SCADA: Supervisory Control and Data Acquisition;

• RTU: Remote Terminal Unit;

• CVE: Common Vulnerabilities and Exposures;

• DoS: Denial-of-Service.

2.2. Notations

• G = (N, ε): a graph with a set of nodes (vertices) N and a set of edges ε;

• N = {1, . . . , n}: a set of nodes;

• n: a total number of nodes in a graph;

• ε = {(i, j) | i, j ∈ N}: a set of edges (i, j);

• (i, j): an edge between the nodes i and j;

• dij : a shortest distance from i to j;

• Cc
i : closeness centrality of the node i;

• Ec
i : eigenvector centrality of the node i;

• Bc
i : betweenness centrality of the node i;

• Kc
i : Katz centrality of the node i;

• A = ∥aij∥ni,j=1: an adjacency matrix of a graph G that is the n × n matrix such
that aij=1 when the ith node is connected to the jth node, and aij=0 otherwise.

• δmax: the largest eigenvalue of the adjacency matrix A;

• σij : a total number of shortest paths from the source node i to the destination
node j;

• σij,k: a total number of paths from i to j that pass through k.

2.3. Definitions

CPS systems have a diverse topological structure. Let’s consider the following indices for
assessing the criticality of attack graph nodes. These indices provide detailed information
about the entire network.
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Definition 1 (betweenness centrality). The betweenness centrality Bc
i of a node i is

defined as follows [10]:

Bc
i =

n∑
k,j=1
k ̸=j ̸=i

σkj,i

σkj
, i = 1, . . . , n. (1)

The betweenness centrality measures the number of shortest paths passing through
a particular graph vertex [10]. This graph-theoretic metric measures how often a node
acts as a “bridge” on the shortest paths between two other nodes. Shortest paths refer
to all shortest paths between every pair of vertices in a graph. If one vertex is part of the
shortest paths, then it has high betweenness centrality. When translating the network
into a graph-theoretic model, betweenness centrality of a node indicates the possibility
of an attack passing through this node.

Definition 2 (closeness centrality). The closeness centrality Cc
i for a node i is calcu-

lated as follows [1]:

C c
i =

n− 1∑n
j=1
j ̸=i

dij
, i = 1, . . . , n. (2)

The closeness centrality measures how close a node (i.e. i) is to all other nodes
by calculating the shortest path length from one node to other nodes in the network.
Nodes with a high closeness centrality score have more influence over other nodes in the
network.

Definition 3 (eigenvector centrality). The eigenvector centrality Ec
i for a node i is

defined as follows [21]:

E c
i =

1

δmax

n∑
j=1

aijE
c
j , i = 1, . . . , n. (3)

The eigenvector centrality shows the relationship between a graph’s most “influential”
vertex and neighboring vertices [21].

Definition 4 (Katz centrality). Katz centrality Kc
i of a node i is defined as [14]:

K c
i =

∞∑
q=1

n∑
j=1

βq (Aq)ij , i = 1, . . . , n, (4)

where β ∈ (0, 1) is the attenuation coefficient, i.e., the share of remote vertices partici-
pation, and (Aq)ij is the total number of q degree connections between the nodes i and j.

Katz centrality is a graph-theoretic parameter that gives importance to a node given
the network structure and the node’s position in the network. Katz centrality quantifies
the number of nodes connected through this path, and the contribution of remote nodes
is “penalized.”
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Definition 5 (fuzzy measure). Let N = {1, . . . , n} be a finite set and let µ : 2N →
[0,1] be a function that µ(∅) = 0 and µ(N) = 1 [13]. If for any A and B, such that
A⊆B⊆N , it satisfies that µ(A) ≤ µ(B). Then the fuzzy set µ is called fuzzy measure.

Definition 6 (Sugeno λ-measure). Let N = {1, . . . , n} be a finite set and let λ ∈
(−1,+∞). The function µ : 2N → [0,1] is a Sugeno λ-measure if the followings properties
hold [20]:

µ(∅) = 0, (5)

µ(N ) = 1, (6)

µ(A) ≤ µ(B), ∀A,B such that A ⊆ B ⊆ N, (7)

µ(A∪B) = µ(A) + µ(B) + λµ(A)µ(B), ∀A,B ⊆ N with A ∩B = ∅, (8)

where ∅ is the empty set.

Equation 5 and Equation 6 represents the measures of an empty set and a combination
of the all sets, respectively. Equation 7 represents monotonicity property. Equation 8
represents the possible subsets and the combined subsets.

By the recurrent application of Equation 8, for each A ⊆ N the value of µ(A) can be
calculated as follows [20]:

µ(A) =

[∏
i∈A (1 + λµ ({i}))

λ

]
. (9)

Using the constraint µ(N)=1 (Equation 6) and applying Equation 9 the λ value can
calculated by the Equation 10 [20, 22]:

λ+ 1 =

n∏
i=1

(1 + λµi) , (10)

where µi = µ ({i}).

Definition 7 (discrete Sugeno integral). Let µ be a fuzzy measure on N . The discrete
Sugeno integral of function x = (x1, x2, . . . , xn) : [0, 1]

n → [0, 1] with respect to µ is
defined as [20]:

SIµ(x) = max
1≤i≤n

(
min

(
xπ(i), µ({π(1), π(2), . . . , π(n)})

))
=

= max
1≤i≤n

{
min

{
xπ(i), µ({π(1)})

}
, . . . ,min

{
xπ(n), µ({π(1), . . . , π(n)})

}}
,

(11)

where π is a permutation on N such that xπ(1) ≤ · · · ≤ xπ(n).

Main idea of the Sugeno integral based on weighted minimum and maximum, which
allows to evaluate the importance of each model using fuzzy measures. The fuzzy Sugeno
integral determines the highest level of similarity between the target and the predicted
values.
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3. RELATED WORKS

Currently, methods for analyzing and assessing CPS risks can be divided into qualitative
[16, 34] and quantitative [17, 28] methods. The former are based on the expert’s expe-
rience and reveal the nature of the risks. In this case, quantitative estimates calculate
the magnitude of the risk. However, researchers favor quantitative risk analysis and
assessment methods because they allow more precise optimization of security resources.
Table 1 provides an analysis of modern methods for assessing CPS risks.

Summing up the above works, we propose a method based on the fuzzy Sugeno
integral for assessing the risks of attack paths on CPS, taking into account the criticality
of the attack graph nodes. CVSS (Common Vulnerability Scoring System) metrics
indicate the vulnerabilities of the nodes in the considered graph.

4. PROPOSED APPROACH

This section describes the structure of the proposed risk assessment methodology: sys-
tem modeling, system component criticality, and risk assessment.

The simulated attack graph aimed at CPS devices allows for obtaining various mea-
surements to assess cyber risks. Various measurements from the cyber and physical
environment are combined into a single quantitative assessment, which is used to diag-
nose the system’s state.

The vulnerability values of the components in the cyber and physical CPS layers are
used to calculate the system’s risk based on the fuzzy Sugeno integral. Based on the
obtained values, the most critical CPS nodes are selected, and possible attack paths are
predicted.

Risk value can be static [33], dynamic [9], and cascading [4, 12]. When an adversary
does not exploit CPS vulnerabilities, the risk score is called the static risk value R0. The
R0 value shows how easy it is to cope with the vulnerabilities of the CPS distribution
network. The dynamic risk value R (R > R0) indicates that an attacker exploited
some system vulnerabilities. The risk assessment cycle is completed and compared with
the static risk value R0. If R > R0, the risk has arisen, and emergency measures are
immediately taken to eliminate the risk. Furthermore, the next assessment is carried
out at a certain interval if there is no risk.

4.1. CPS risk assessment based on criticality indices

To ensure the cyber-resilience of the CPS based on the attack graph, it is necessary
to determine the criticality of its nodes. Risk assessment indices make it possible to
measure how vulnerable a system is to cyberattacks and to determine the location of
CPS components relative to each other.

The considered indices cover the following two main areas: (1) OT and (2) IT. The
considered environments are (1) physical and (2) cyber.

IT and OT indicators predict the state of CPS when an undesirable event occurs.
For example, to analyze the wind power system’s state for failures, the operator must
first know parameters such as the cut-in speed, the rated speed, the cut-off speed, and
the nominal power at each system node [5].
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References Proposed
approach

Main contribution Limitations Case
study

Method
type

Salayma
(2024)
[27]

An approach
to enable rep-
resenting and
maintaining at-
tack paths through
the system

Optimized treatment of
graphs

Application of dy-
namic network sce-
narios

Healthcare
system

quantitative
risk assess-
ment

Liu et al.
(2023)
[18]

A method for the
dynamic security
risk assessment of
industrial control
systems

A risk calculation method
that considers the exploit
success rate, threat value,
device importance, attack
data, and industrial pro-
tocol characteristics.

Zero-day attacks
are not analysed.

Tennessee
Eastman
process
control
system

quantitative
risk assess-
ment

Nourian
and
Madnick
(2018)
[23]

System theoretic
framework for at-
tack modeling and
threat assessment
in CPS

Causal Analysis based on
STAMP is used for the
analysis of Stuxnet to ad-
dress security risks

Zero-day attacks
are not analysed.

Uranium
enrich-
ment
infras-
tructure

quantitative
risk as-
sessment,
qualitative
risk assess-
ment

Zhang et
al. (2018)
[34]

A fuzzy probabil-
ity Bayesian net-
work approach for
dynamic Risk As-
sessment

Fuzzy probabilities re-
place the crisp probabili-
ties required in a standard
Bayesian network model.

Computational
complexity

Chemical
reactor
control
system

qualitative
risk assess-
ment

Li et al.
(2018)
[16]

Asset-based dy-
namic assessment
of cyberattacks

The total impact is quan-
tified from various possi-
ble consequences.

Execution time
depends on the
length of predicted
time and the sys-
tem size.

Chemical
control
system

qualitative
risk assess-
ment

Lyu et al.
(2020)
[19]

Bayesian Network
Based C2P Risk
Assessment

Quantification of the cy-
ber threat impact on phys-
ical process safety.

Does not suit dy-
namic risk assess-
ment.

Double-
tank
water
system

quantitative
risk assess-
ment

Semertzis
et al.
(2022)
[28]

Quantitative risk
assessment using
attack graphs

The digital twin simulates
power system cascading
failures caused by cyber-
attacks.

Focus on com-
puter networks,
indirectly consid-
ering OT through
critical assets.

IEEE
39-bus
system

quantitative
risk assess-
ment

Leao et
al. (2023)
[15]

Augmented digital
twin for cyberat-
tacks identification

Integrates IT and OT,
providing an analysis of
possible threats.

Computational
complexity

IEEE
123-bus
system

quantitative
risk assess-
ment

Beyza
and
Yusta
(2021) [3]

Integrated risk
assessment for
robustness evalua-
tion and resilience
optimization

The satisfied demand in-
dex is measured to quan-
tify the power supply
within the infrastructure.

Operational or dy-
namic limitations
were not consid-
ered.

IEEE
118-bus
system

quantitative
risk assess-
ment

Cheng et
al. (2021)
[7]

Random multi-
hazard resilience
modeling of CPS

Proves that the shape of
the resilience curve de-
pends on the convexity
of system hazard function
and availability.

Computational
complexity

IEEE
9-bus
system

quantitative
risk assess-
ment

Chen et
al. (2020)
[6]

Risk assessment
considering the
characteristics of
attack behaviors

The utility value and util-
ity attenuation model are
adopted to describe differ-
ent attacks and character-
istics of candidate targets.

Coordinated cy-
berattacks and
cascading outages
were not consid-
ered

IEEE
RTS79
system

quantitative
risk assess-
ment

Liu et al.
(2021)
[17]

A method to iden-
tify critical assets
based on their con-
nection

The method assesses risks
based on critical assets.

The attack sce-
narios focus on
the physical level,
assuming an at-
tacker has already
compromised the
system using the
threat model.

IEEE
12-bus
system

quantitative
risk assess-
ment

Tab. 1. Overview of state-of-the-art risk assessment methods in CPS.
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The failure of individual CPS components can cause uncontrolled deviations of various
parameters due to cyberattacks by intruders, which can ultimately lead to the collapse
of the system [25, 26].

Figure 1 shows an example of a CPS scheme consisting of 17 nodes: 7 cyber nodes
and 10 physical nodes. In this example, the complex system includes two layers, namely
IT and OT, and their interaction. The figure shows the links between cyber and physical
components. The red arrows represent an attack path that an intruder can take from
the input node to the target node of the attack. The path starts from the cyber node
of the system to the target node of the physical layer.

Fig. 1. Attack-path prediction demonstration diagram.

CVSS is used as a scoring system that quantifies the cyber risk of vulnerabilities that
present in a system [8]. The attack graph G makes it possible to link different vulnera-
bilities. It identifies potential threats to CPS nodes based on vulnerability information
to represent attack paths in the system. In fact, CVSS estimates the complexity of
implementing a cyber-attack, taking into account vulnerabilities for each device that
exists in a particular CPS node.

4.2. CPS risk assessment based on fuzzy Sugeno integral

Combining the CPS risk assessment criteria values is performed using fuzzy integrals,
which are determined concerning fuzzy measures. It is assumed that the values of the
fuzzy measure and all input parameters vary within a unit interval.

This study uses a metric based on the fuzzy Sugeno integral to assess the risk of
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attack paths. The risk of each attack graph’s node is calculated as follows:

Riski = Probabilityi×ImpactSIi , i = 1, . . . , n, (12)

where Probabilityi is the access probability to node i, which shows the number of attack
paths and is calculated as follows:

Probabilityi = 1−
n∏

j=1

(1− Pj ), i = 1, . . . , n, (13)

where Pj is an attack probability to node j.
Here Pi is calculated as

Pi = AVi×ACi×UIi×PRi , i = 1, . . . , n, (14)

where AVi is an attack vector, ACi is an attack complexity, UIi is the user interaction,
PRi is a privilege required.

The risk exposure using the fuzzy Sugeno integral (SI) is calculated using the indices
Bc

i , C
c
i , E

c
i and Kc

i , as well as integrity (Ii), availability (Ai) and confidentiality (Ci)
scores, derived from CVSS v3.1, as follows:

ImpactSIi = SI (Bc
i ,C

c
i ,E

c
i ,K

c
i , Ii ,Ai ,Ci), i = 1, . . . , n. (15)

Nodes with high ImpactSI values are considered more vulnerable in terms of CPS
cybersecurity (see below Algorithm).

Algorithm: Risk Assessment of CPS
Input: Attack graph G
Output: Risk value R
Step 1: For node i, get information about vulnerability v from the vulnerability
database.
Step 2: Calculate centrality measures using Equations 1 - 4 and security metrics.
Step 3: Taking into account the values obtained using Equations 1 - 4, calculate
the risk of node i using Equation 12 in case of successful vulnerability exploitation.
Step 4: Repeat steps 1-3 and calculate the risk of the considered node i
for different vulnerabilities.
Step 5: Calculate the risk of a CPS system.

A metric based on several indices characterizes each node of the system better. Unlike
a single index, it is more informative

Below we consider an example for cyber risk assessment based on the fuzzy Sugeno
integral. Once the required coefficients are calculated, they are combined using multi-
criteria decision analysis. The fuzzy Sugeno integral is used to assess the risk of attack
paths to ensure the cyber resilience of CPS.

For example, the indices used as input ImpactSIi to the node i might be: x1,i = Ii,
x2,i = Ai, x3,i = Ci, x4,i = Bc

i , x5,i = Cc
i , x6,i = Ec

i , and x7,i = Kc
i . Each of

these indices is assigned an appropriate “expert” weight: µ1, µ2, µ3, µ4, µ5, µ6 and
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µ7. Hereafter, for the sake of simplicity, the second index i of the variables x has been
omitted.

Suppose the importance of each input index is expressed through fuzzy densities µ1 =
µ(x1)=0.95, µ2 = µ(x2)=0.27, µ3 = µ(x3)=0.25, µ4 = µ(x4)=0.38, µ5 = µ(x5)=0.28,
µ6 = µ(x6)=0.19, and µ7 = µ(x7)=0.12.

The numerical value of the parameter λ can be calculated as a solution of the following
equation:

1 + λ = (1 + λµ1)(1 + λµ2)(1 + λµ3)(1 + λµ4)(1 + λµ5)(1 + λµ6)(1 + λµ7). (16)

As a result, a solution λ = −0.9893 was obtained. And fuzzy Sugeno measures
also include µ(x1, x2) = 0.9662, . . . , µ(x3, x4) = 0.5360, . . . , µ(x6, x7) = 0.2874, . . . ,
µ(x1, x2, x3) = 0.9772, . . . , µ(x1, x4, x5) = 0.9834, . . . , µ(x3, x4, x5, x6) = 0.7320, . . . ,
µ(x1, x2, x3, x4, x5, x6, x7) = 1. Further, the obtained values are fuzzified based on
the Gaussian membership function. In this case, the Sugeno fuzzy integral is equal to
0.9382.

A variable R0 is introduced, which is a threshold value at which the CPS node with
Risk higher this threshold is considered “unstable.” In practice, this value should be
determined by experienced experts. If the node is “unstable,” emergency measures are
immediately taken to eliminate the risk. If Risk is below R0, then the node is considered
“stable,” and there is no risk. In this case, the following risk assessment can be performed
after a certain interval.

The final solution Risk makes the system more cyber-resilient in terms of cyber-
physical security. Figure 2 shows the general scheme of the proposed approach for
assessing CPS risks to achieve the system’s cyber-resilient operation.

Fig. 2. General framework of the proposed CPS risk assessment

approach.
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5. CASE STUDY

For example, we consider wind energy generation to be one of the critical infrastructure
sectors (Figure 3). Wind turbines are widely used in various facilities: enterprises,
households, private houses, etc. Wind flows rotate the wind turbine’s blades, setting
it in motion [11]. The stronger the wind, the more energy is generated. This rotation
starts the turbine, which also begins to rotate. Wind turbines are devices that convert
wind energy into electrical energy. Energy is transmitted along the rotor shaft, which is
connected to a gearbox that drives an electric generator.

The turbine consists of a cooling system, a condition monitoring system, and a
weather vane. These serve as input data for the controller, which determines the po-
sition of the blades and rotor. The battery management system monitors and controls
multiple battery packs and ensures grid stabilization.

Process parameter values obtained during monitoring are stored in the data histo-
rian. The HMI provides the interaction of process operators with the control system.
Engineering workstations contain software development tools, with the help of which
an expert can make changes and additions to the system configuration via a corporate
network or the Internet. Connection via RTU (remote terminal unit) links the wind
park to the central SCADA (supervisory control and data acquisition) system.

Let’s assume that an attacker exploited the vulnerabilities of CPS components and
performed the following cyberattack scenarios (Figure 3):

• Manipulation and Denial of Control. An attacker capable of interacting with
the SCADA server can exploit the CVE-2019-14925 vulnerability to manipulate
system configurations, files, or critical values related to wind park operations. The
vulnerability could result in unauthorized access to confidential data, including
usernames, passwords, and other sensitive information. An adversary could also
abuse the fact that connections are unauthenticated (CVE-2021-27395), allowing
unauthorized data manipulation and issuing commands to the RTU. This could
stop logical tasks from running and disrupt communication between SCADA and
RTU. This would prevent operators from monitoring the compressor stations.

• Loss of Control. To compromise credentials and gain access to the wind park
network, the adversary exploits the CVE-2019-9013, CVE-2022-1159, and CVE-
2021-22797 vulnerabilities to gain code execution on RTU. This will enable the
transition to control of individual turbines. The attacker can penetrate the inter-
nal network of the control system using the CVE-2018-5452 vulnerability to ma-
nipulate the system configuration, operational settings, and controller firmware.
This can lead to the disabling of the overspeed protection function built into the
RTU and disconnecting the load to cause a turbine shutdown. Using CVE-2020-
7566, the adversary can compromise the data and turn off the health monitoring
systems that would provide early warning of danger. Additionally, they can target
the PLC and use CVE-2020-6992 to compromise credentials and obtain execution
code on the PLC. With this, an attacker can affect battery management functions,
leading to system downtime and potentially destabilizing CPS.
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Fig. 3. Examples of attack scenarios on CPS.

6. EXPERIMENTAL RESULTS AND DISCUSSION

The results of the proposed approach assessment based on creating an attack graph
using a predefined CPS vulnerability model are presented. An attacker is a host where
an intruder is located in an external network environment. The considered CPS model
consists of two layers and 17 nodes. The attacker’s ultimate goal is to compromise the
PLC and RTU nodes. A denial-of-service (DoS) attack was considered as a threat.

CPS risk assessment is performed in Python 3.7.12 using various libraries, including
the NetworkX module. All experiments are run on an Intel Xeon(R) processor X5670
@ 2.93GHz*24 with 24GB of RAM.

For each node i of the system, the values of indices Bc
i , C

c
i , E

c
i , and Kc

i , as well
as integrity (Ii), availability (Ai), and confidentiality (Ci), obtained based on CVSS
v3.1, were calculated. This made it possible to identify the critical nodes of the system.
The indices were assigned “expert” weights. The higher the weight, the higher the
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Node Vulnerability
CVE-ID

Base
Score

Impact
Score

Exploitability Access
Vector

C I A UI PR AC

1 CVE-2021-41773 7.5 3.6 3.9 0.85 0.56 0 0 0.85 0.85 0.77
2 CVE-2022-22720 9.8 5.9 3.9 0.85 0.56 0.56 0.56 0.85 0.85 0.77
3 CVE-2022-30522 7.5 3.6 3.9 0.85 0 0 0.56 0.85 0.85 0.77
4 CVE-2014-7844 7.8 5.9 1.8 0.55 0.56 0.56 0.56 0.85 0.85 0.77
5 CVE-2019-9557 6.1 2.7 2.8 0.85 0.22 0.22 0 0.62 0.85 0.77
6 CVE-2020-2512 5.9 3.6 2.2 0.85 0 0 0.56 0.85 0.85 0.44
7 CVE-2020-24673 9.8 5.9 3.9 0.85 0.56 0.56 0.56 0.85 0.85 0.77
8 CVE-2020-6992 6.7 5.9 0.8 0.55 0.56 0.56 0.56 0.85 0.27 0.77
9 CVE-2021-27395 8.1 5.2 2.8 0.85 0 0.56 0.56 0.85 0.62 0.77
10 CVE-2020-3960 8.4 5.8 2.0 0.55 0.56 0 0.56 0.85 0.62 0.77
11 CVE-2021-22797 7.8 5.9 1.8 0.55 0.56 0.56 0.56 0.62 0.85 0.77
12 CVE-2019-14925 6.5 3.6 2.8 0.85 0.56 0 0 0.85 0.62 0.77
13 CVE-2019-9013 8.8 5.9 2.8 0.62 0.56 0.56 0.56 0.85 0.85 0.77
14 CVE-2022-1159 7.2 5.9 1.2 0.85 0.56 0.56 0.56 0.85 0.27 0.77
15 CVE-2020-7566 7.3 5.2 2.1 0.62 0.56 0.56 0 0.62 0.85 0.77
16 CVE-2018-5452 7.5 3.6 3.9 0.85 0 0 0.56 0.85 0.85 0.77
17 CVE-2023-0286 7.4 5.2 2.2 0.85 0.56 0 0.56 0.85 0.85 0.44

Tab. 2. Vulnerability information (CVSS v3.1).

“informativeness” of the index.
Information about the considered vulnerabilities, including base score, impact score,

exploitability, access vector, I, A, C, UI, PR, and AC, is shown in Table 2.
Table 3 shows the index values for all 17 nodes of the considered CPS. These values

allow the evaluation system device criticality based on the impact and probability values.
The proposed approach was chosen to assess the severity of the vulnerability according

to the criteria:

R =


critical, v ∈ [5, 10]
high, v ∈ [3, 5)
medium, v ∈ [2, 3)
low, v ∈ [0, 2).

(17)

We consider various attack paths aimed at possible graph nodes to change their
states. For brevity, three targets of attacks in the simulated network are considered:
nodes 17, 16, and 12. Tables 4, 5, and 6 show the extracted attack paths and severity
of vulnerabilities that can lead to unwanted events.

So, there are five possible attack paths to nodes 17 and 12 (Tables 4 and 6). According
to Table 5, the largest attack step was determined to be six steps for node 16. We got
five attack paths for each of the considered nodes.

The highest risk was obtained for the P3 attack path and amounted to 3.1896 (Table
5). Thus, the most likely attack path is to use nodes X1, X2, X7, X10, and then attack
X8 and X15, and finally attack the final node X16 in P3. Therefore, the vulnerabilities
of the considered nodes are the most important objects of CPS, on which it is necessary
to focus the attention of experts.

Figure 4 shows the P and ImpactSI values of each attack path on the system. Com-
paring these scores makes identifying the most likely attack paths that could lead to
undesirable events easier. The P values for the attack path targeting end nodes 17 and
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Node Bc
i Cc

i Ec
i Kc

i

1 0.0125 0.1667 0.0777 0.2411
2 0.0422 0.1667 0.0777 0.2411
3 0.0125 0.1250 0.0530 0.2193
4 0.0125 0.1000 0.0362 0.2172
5 0.0042 0.1667 0.0777 0.2411
6 0.0453 0.3125 0.2199 0.3112
7 0.2060 0.3214 0.3169 0.3182
8 0.0190 0.2045 0.1500 0.2264
9 0.2500 0.2500 0.3650 0.2429
10 0.0943 0.2188 0.2162 0.2271
11 0.1390 0.2667 0.3186 0.2497
12 0.0000 0.2101 0.2490 0.2195
13 0.0229 0.2101 0.2490 0.2195
14 0.0042 0.2156 0.3398 0.2391
15 0.0688 0.2101 0.2490 0.2195
16 0.0000 0.2402 0.4018 0.2411
17 0.0000 0.2101 0.2490 0.2195

Tab. 3. Criticality assessment indices of CPS nodes.

Path Attack path description Probability Path risk Vulnerability
severity

P1 X1 → X2 → X7 → X10 → X8 → X17 0.8968 3.1415 High
P2 X1 → X6 → X7 → X10 → X8 → X17 0.8571 2.3053 Medium
P3 X1 → X2 → X7 → X11 → X8 → X17 0.7318 2.4721 Medium
P4 X1 → X6 → X7 → X11 → X8 → X17 0.8571 2.1983 Medium
P5 X1 → X6 → X9 → X11 → X8 → X17 0.7553 1.9372 Low

Tab. 4. Risk assessment of attack paths to Node #17.

Path Attack path description Probability Path risk Vulnerability
severity

P1 X1 → X6 → X7 → X10 → X8 → X15 → X16 0.9228 2.3662 Medium
P2 X1 → X2 → X7 → X11 → X8 → X15 → X16 0.9149 2.9764 High
P3 X1 → X2 → X7 → X10 → X8 → X15 → X16 0.9442 3.1896 High
P4 X1 → X6 → X7 → X11 → X8 → X15 → X16 0.9228 2.2515 Medium
P5 X1 → X6 → X9 → X11 → X8 → X15 → X16 0.8677 2.1171 Medium

Tab. 5. Risk assessment of attack paths to Node #16.
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12 are highlighted in magenta and cyan, respectively. Whereas the ImpactSI values
for the nodes of the attack path to nodes 17 and 12 are indicated in red and blue,
respectively.

The advantage of the proposed method is more clearly proved by using several in-
dices in assessing the CPS components’ risks. Therefore, we considered the three most
critical nodes of the system. Using the fuzzy Sugeno integral made it possible to most
accurately identify the risk of an attack path based on probability and impact aimed at
the most vulnerable components of CPS. It will help decision-makers allocate resources
to restrict access to particular system components that adversaries can use to attack
critical infrastructure.

Path Attack path description Probability Path risk Vulnerability
severity

P1 X1 → X2 → X7 → X10 → X8 → X12 0.9084 2.3299 Medium
P2 X1 → X6 → X7 → X10 → X8 → X12 0.8725 1.5228 Low
P3 X1 → X2 → X7 → X11 → X8 → X12 0.9084 2.2164 Medium
P4 X1 → X6 → X7 → X11 → X8 → X12 0.8725 1.4192 Low
P5 X1 → X6 → X9 → X11 → X8 → X12 0.7804 1.2694 Low

Tab. 6. Risk assessment of attack paths to Node #12.

Thus, a quantitative metric for assessing the CPS cyber risk based on the fuzzy
Sugeno integral is proposed to solve the problems of ensuring the cyber resilience of the
system.

Fig. 4. Distribution of ImpactSI and P values on the attack paths.



794 R.ALGULIYEV, R.ALIGULIYEV, AND L. SUKHOSTAT

It is intended to include various types of critical indices that affect the cyber resilience
and operation of CPS while providing a quantitative assessment of the cyber and physical
state of the system. This metric considers the vulnerabilities in IT and OT devices
deployed in the physical and cyber layers of the CPS. Experimental results based on a
DoS attack showed the effectiveness of risk assessment in the nodes of the considered
system.

7. CONCLUSIONS

This paper analyses the attacking paths to the CPS, considering the criticality of its
components based on graph theory. It gives informed control over cyber resilience, helps
identify threats based on vulnerabilities, and mitigates risk by keeping the system up
and running in the event of a cyberattack.

The paper proposes a method for quantitative risk assessment of CPS attack paths
using a metric based on the fuzzy Sugeno integral. Closeness centrality, eigenvector cen-
trality, betweenness centrality, Katz centrality, integrity, availability, and confidentiality,
leading to cyberattacks on the CPS systems, were considered as IT and OT vulnerability
assessment indices. The proposed metric considers the relationship between vulnerabil-
ities and the impact of cyberattacks on the physical layer. A threat model using the
example of a CPS for wind energy generation was used. The proposed method allows
for determining the possible risk of the system and detection of the ultimate goal on the
attack path, which will allow the expert to make the final decision more effectively.
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