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A CRYPTOGRAPHY USING LIFTING SCHEME
INTEGER WAVELET TRANSFORM OVER
MIN-MAX-PLUS ALGEBRA

Mahmud Yunus, Mohamad Ilham Dwi Firmansyah, and Subiono

We propose a cryptographic algorithm utilizing integer wavelet transform via a lifting
scheme. In this research, we construct some predict and update operators within the lifting
scheme of wavelet transforms employing operations in min-max-plus algebra, termed as lifting
scheme integer wavelet transform over min-max-plus algebra (MMPLS-IWavelet). The
analysis and synthesis process on MMPLS-IWavelet is implemented for both encryption and
decryption processes. The encryption key comprises a sequence of positive integers, where the
first element specifies MMPLS-IWavelet type and subsequent elements indicate the levels of
each executed transformation. The decryption key involves three components: the original
encryption key, a binary encoding of the analyzed signal, and a sequence of non-negative
integer representing the length of coefficient signals from the approximation and detail signals.
We present a rigorous analysis confirming the correctness of the proposed cryptographic
scheme, and evaluate its performance based on various metrics such as correlation value
between plaintext and ciphertext, encryption quality, computation time, key sensitivity,
entropy analysis, and key space analysis. We also analyze the computational costs of the
encryption and decryption processes. The experimental results demonstrate that the proposed
algorithms empirically yield satisfactory performance, exhibiting a near zero correlation
between plaintext and ciphertext for most of test data, high encryption quality (over 80%),
substantial key sensitivity, the large key space, and greater randomness in ciphertext compare
to plaintext. The algorithm is efficient in terms of computational time and has linear
complexity with respect to the number of input characters. The vast key space makes it
highly impractical for brute-force approaches to find the decryption key directly.

Keywords: cryptography, lifting scheme, min-max-plus algebra, wavelet

Classification: 15A80, 94A60, 42C40

1. INTRODUCTION

The advancement of long-distance communication system has facilitated the exchange
of information between individuals over extensive distances, necessitating secure and
confidential communication channels. Cryptography provides a robust solution to
ensure the security and privacy of such communication. Over the years, researchers
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have developed various cryptographic algorithms. Among the pioneering works, the
Diffie–Hellman protocol [11] stands out as the first public key cryptographic algorithm,
utilizing the discrete logarithm within a large finite field. Following this, Rivest,
Shamir, and Adleman introduce published the RSA protocol [19], based on the modulo
property and factoring problem of the product of two large prime numbers.
Cryptographic methods have also been applied to image-based messages. In [31],
Zarkar et al. created an anti-phishing structure utilizing visual cryptography for
image-based authentication with the RSA algorithm in the encryption process.

Wavelet transform is a mathematical technique that facilitates the analyze signals or
data in the frequency and time domains simultaneously. The proposed method integrates
the concepts of resolution analysis and Fourier transform. Wavelet transform enables
the analysis of signals at various resolutions, providing more detailed information about
the signal characteristics [14]. The basic concepts of wavelets have a long-standing
presence in various fields, such as abstract analysis, signal processing, image processing,
and theoretical physics [13]. The wavelet transforms are categorized into continuous and
discrete type, with discrete wavelet transforms being widely utilized in cryptographic
algorithm development. For example, in [8] a cryptographic algorithm using discrete
wavelet transformation demonstrated short encryption times and tend to be constant
for each number of input characters. This is proving useful for securing large commercial
applications databases. Wavelet-based cryptographic algorithms have also enhanced
image-based message security. For example, in [18, 28] introduce a wavelet transform to
increase the security in image transmission.

A lifting scheme constructs a wavelet transform for signal decomposition and
reconstruction, introduced by Sweldens [22, 23, 24].This scheme involves two main
processes: prediction and updating, and is widely applied in wavelet transform,
especially in transformations involving integer domain and codomain (see
[5, 6, 7, 16, 20, 26, 29]). Some examples of wavelet transform involving integer domain
and codomain for image compression can be seen in [4, 10, 17], wherein the
mathematical operations are predicated on max-min-plus algebra. In addition,
max-min-plus algebra has been applied in cryptographic algorithms. The investigations
in [3] and [9] utilized the max-plus algebra semiring to develop encryption and
decryption keys. Building upon these works, Cahyono et al. [2] formulated a
cryptographic algorithm employing wavelet transform based on max-plus algebra
(MP-Wavelet). This research, uses the MP-wavelet in [4], demonstrated a low
correlation value between plaintext and ciphertext in empirical studies, signifying a
weak statistical relationship. Consequently, it becomes exceedingly challenging to infer
the structure of the plaintext based solely on the corresponding ciphertext. The
proposed algorithm demonstrates good encryption quality and a relatively short
running time, and the complexity of the algorithm is linear relative to the number of
input characters.

In this research, we construct an integer wavelet transform employing lifting scheme
over min-max-plus algebra, referred to as (MMPLS-IWevelet). The test data comprises
text files in .txt format, each containing 65,536 characters from the Basic Multilingual
Plane (BMP), represented in 16-bit encoding. We use maximum, minimum, and sum
operations to construct predict and update operators, which enhance the algorithm’s
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execution efficiency. We construct some types of predict and update operators to provide
variability in the encryption key sequence. The encryption key is formulated as an array
of positive integers, where the first element specifies the type of transformation used,
and the subsequent elements denote the level of the transformation to be executed. The
decryption key consists of three components. The encryption key, a sequence of numbers
derived from encoding the signal from the transformation, and an array of positive
integers representing the lengths of signal coefficient approximations and details after
executing some levels of transformations. Furthermore, we analyze the performance of
the algorithm. Some aspects we analyze consist of computation time, correlation values
between plaintext and ciphertext, encryption quality, entropy analysis, key sensitivity,
and key space analysis.

The structure of this paper is organized as follows. Section 2 introduces
min-max-plus algebra. In Section 3, we explain the mechanism of wavelet
decomposition and reconstruction schemes. Section 4 describes the decomposition and
reconstruction signals using a lifting scheme. Section 5 describes the integer wavelet
transform using a min-max-plus lifting scheme (MMPLS-IWavelet). Section 6 discusses
the main parts of this paper, i. e., we introduce cryptographic algorithms using
MMPLS-IWavelet. Section 7 analyzes the performance of the proposed cryptographic
algorithms. Finally, Section 8 provides the conclusion of this paper and open problems.

2. MIN-MAX-PLUS ALGEBRA

Max-plus algebra is a semi-idempoten algebraic structure. Suppose we have Rε = R∪{ε}
with ε = −∞. For each m,n ∈ Rε define

m⊕ n = max{m,n} and m⊗ n = m+ n.

The structure (Rε,⊕,⊗) is called max-plus algebra where ε is neutral elements for ⊕
and e = 0 is the identity element for ⊗. Suppose a ∈ Rε and n ∈ N, exponents in
max-plus algebra are defined by

a⊗n = a⊗ a⊗ · · · ⊗ a⊗ a︸ ︷︷ ︸
n times

= n× a, (1)

and in general for r ∈ R we get a⊗r = r × a. Suppose −b denotes the usual additive
inverse of b. The difference operator ⊘ is defined as a ⊘ b = a ⊗ −b for all a, b ∈ Rε.
Given Rε′ = R ∪ {ε′} with ε′ = +∞ and for every m,n ∈ Rε′ define

m⊕′ n = min{m,n} and m⊗ n = m+ n. (2)

The structure (Rε′ ,⊕′,⊗) is called min-plus algebra. Given a mapping T : Rε → Rε′

with T (m) = am for each m ∈ Rε and a < 0, it can be shown that T is an isomorphism
that implies Rε

∼= Rε′ . Max-plus algebra or min-plus algebra have applications in
various fields, including discrete-time systems, cryptography [2], image processing [4],
control theory [32], transportation scheduling systems [12], queuing theory [15], and
optimization problems [27].



A cryptography using lifting scheme integer wavelet transform over min-max-plus algebra 579

3. WAVELET DECOMPOSITION AND RECONSTRUCTION SCHEME

Discrete wavelet transform decompose the initial signal into low-resolution
(approximation) and high-resolution (detail). Wavelet decomposition and
reconstruction can follow: coupled and uncoupled scheme decomposition [10]. In the
coupled scheme, let Vi and Wi be two signal spaces. Analysis operator exist for
approximation signals ψ↑

i : Vi → Vi+1 and for detail signal ω↑
i : Vi → Wi+1. The

synthesis operator Φ↓
i : Vi+1 × Wi+1 → Vi. Each of these operators satisfies the

following conditions:

Φ↓
i

(
ψ↑
i (si), ω

↑
i (si)

)
= si, (3)

ψ↑
i

(
Φ↓

i (si+1, di+1)
)
= si+1, (4)

ω↑
i

(
Φ↓

i (si+1, di+1)
)
= di+1, (5)

for si ∈ Vi and di ∈Wi where i is a non-negative integer. See Figure 1 for the illustration.

(a)

(b)

Fig. 1: (a) Decomposition of the approximation signal to the third level, (b)
Reconstruction of the signal to the initial signal.

4. LIFTING SCHEME

The lifting scheme is a technique for constructing a signal decomposition and
reconstruction, introduced by Sweldens (see [22, 23, 24]). Suppose that signal space Si

is decomposed into approximation signal Si and detail signal Di. The lifting scheme
consists of four steps: split, predict, update, and merge.
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1. Split: This step divides the signal Si into two disjoint subsets based on even and
odd indices, denotes as eveni and oddi, respectively. The process of splitting the
signal based on even and odd indices is called the lazy wavelet transform, defined
as:

Split(Si) := (eveni, oddi). (6)

2. Predict: We observe that the elements of eveni and oddi alternate.If the
elements of initial signal exhibit strong correlation, then eveni and oddi are
strongly correlated as well. This implies that on subset can predict the other
with a reasonable accuracy. In this case, the even subset is used to predict the
odd subset as the detail signal. In this step, the operator P is defined as follows

di+1(n) = oddi(n)⊘ P(eveni(n)), (7)

where di+1(n) ∈ Di+1.

3. Update: In this step, the detail signals obtained from the prediction step are
utilized to update eveni transforming it into the approximate signal Si+1. The
operator U is defined as follows

si+1(n) = eveni(n)⊗ U(di+1(n)). (8)

4. Merge: For the inverse scheme (signal reconstruction), the oddi(n) signal can be
quickly recovered using the following equation:

oddi(n) = di+1(n)⊗ P(eveni(n)), (9)

where eveni(n) is obtained by

eveni(n) = si+1(n)⊘ U(di+1(n)). (10)

Once the oddi and eveni signal have been successfully reconstructed, the next step
is to merge them to obtain the original signal. This step is referred to as the lazy
inverse wavelet transform and is defined as:

Si := Merge(eveni, oddi). (11)

An illustration of the wavelet transform decomposition and reconstruction using a
lifting scheme can be seen in Figure 2. In this research, we construct various types
of operators predict (P) and update (U) operators, which serve as different types of
encryption keys.

5. WAVELET DISCRETE TRANSFORM BASED ON MAX-MIN-PLUS LIFTING
SCHEME

In this research, we construct a wavelet transform with both domain and codomain in
Z. Let S0 be the input signal. For i ≥ 1, Si : Z → Z represents the signal space at
level i obtained from the analysis process via the operator U . Similarly, let Di : Z → Z
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Fig. 2: Signal decomposition and reconstruction using lifting scheme.

Fig. 3: Signal decomposition illustration with MinLS.

be a detail signal at level i obtained from the synthesis process via the operator P.
We construct wavelet decomposition and reconstruction schemes using a lifting scheme.
This involves constructing several P and U operators. For a given signal space Si, the
signal is split into even and odd indices, denotes as, eveni and oddi. Based on (7)and
(8), let x(n) ∈ eveni and y(n) ∈ Di, we provide several types of predict and update
operators as follows:

1. type 1: Min lifting scheme (MinLS)

P(x(n)) = x(n− 1)⊕′ x(n)
U(y(n)) = y(n)⊕′ y(n+ 1)⊕′ e

(12)

2. type 2: Max lifting scheme (MaxLS)

P(x(n)) = x(n− 1)⊕ x(n)
U(y(n)) = y(n)⊕ y(n+ 1)⊕ e

(13)
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3. type 3: Max-min lifting scheme (MaxMinLS)

P(x(n)) = x(n− 1)⊕ ⌊x(n− 1)⊗ x(n)⌋⊗ 1
2

U(y(n)) = y(n)⊕′ ⌊y(n)⊗ y(n+ 1)⌋⊗ 1
2 ⊕′ e

(14)

4. type 4: Average-min lifting scheme (AveMinLS)

P(x(n)) =
⌊
(x(n− 1)⊗ x(n))

⊗ 1
2

⌋
U(y(n)) = y(n)⊕′ y(n+ 1)⊕′ e

(15)

where e = 0 is the identity element of the operation ⊗ in min-max-plus algebra. Every
type is very crucial in generating encryption keys, constructing the cryptographic
algorithms, and determining the lifting scheme used for encryption and decryption.
Figure 3 illustrate the process of determining approximation and detail signal in
wavelet decomposition via lifting scheme over min-max-plus algebra. For instance, we
select the type 1 MinLS as the lifting scheme. Suppose the initial signal is
S0 = [7 10 2 1 9 13 15 3 10 8 1 6 3 13 5 9]. The next step involves dividing S0 into two
parts based on even and odd indices. We obtain odd0 = [7 2 9 15 10 1 3 5] and
even0 = [10 1 13 3 8 6 13 9]. Subsequently, an analysis is conducted to generates the
approximation and detail signals as follows:

• Based on equations (7) and (12), the elements of the detail signal d1 are computed
as follows:

d1[1] = odd0[1]⊘ even0[1] = 7⊘ 10 = −3,
d1[2] = odd0[2]⊘ (even0[1]⊕′ even0[2]) = 2⊘ (10⊕′ 1) = 1,
d1[3] = odd0[3]⊘ (even0[2]⊕′ even0[3]) = 9⊘ (1⊕′ 13) = 8,
d1[4] = odd0[4]⊘ (even0[3]⊕′ even0[4]) = 15⊘ (13⊕′ 3) = 12,
d1[5] = odd0[5]⊘ (even0[4]⊕′ even0[5]) = 10⊘ (3⊕′ 8) = 7,
d1[6] = odd0[6]⊘ (even0[5]⊕′ even0[6]) = 1⊘ (8⊕′ 6) = −5,
d1[7] = odd0[7]⊘ (even0[6]⊕′ even0[7]) = 3⊘ (6⊕′ 13) = −3,
d1[8] = odd0[8]⊘ (even0[7]⊕′ even0[8]) = 5⊘ (13⊕′ 9) = −4.

As a result, the detail signal d1 is d1 = [−3 1 8 12 7 − 5 − 3 − 4]

• Based on equations (8) and (12), the elements of the approximation signal s1 are
computed as follows:

s1[1] = even0[1]⊗ (d1[1]⊕′ d1[2]⊕′ e) = 10⊗ (−3⊕′ 1⊕′ 0) = 10⊗−3 = 7,
s1[2] = even0[2]⊗ (d1[2]⊕′ d1[3]⊕′ e) = 1⊗ (1⊕′ 8⊕′ 0) = 1⊗ 0 = 1,
s1[3] = even0[3]⊗ (d1[3]⊕′ d1[4]⊕′ e) = 13⊗ (8⊕′ 12⊕′ 0) = 13⊗ 0 = 13,
s1[4] = even0[4]⊗ (d1[4]⊕′ d1[5]⊕′ e) = 3⊗ (12⊕′ 7⊕′ 0) = 3⊗ 0 = 3,
s1[5] = even0[5]⊗ (d1[5]⊕′ d1[6]⊕′ e) = 8⊗ (7⊕′ −5⊕′ 0) = 8⊗−5 = 3,
s1[6] = even0[6]⊗ (d1[6]⊕′ d1[7]⊕′ e) = 6⊗ (−5⊕′ −3⊕′ 0) = 6⊗−5 = 1,
s1[7] = even0[7]⊗ (d1[7]⊕′ d1[8]⊕′ e) = 13⊗ (−3⊕′ −4⊕′ 0) = 13⊗−4 = 9,
s1[8] = even0[8]⊗ (d1[8]⊕′ e) = 9⊗ (−4⊕′ e) = 9⊗−4 = 5.

As a result, the approximation signal is s1 where s1 = [7 1 13 3 3 1 9 5].
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Consider a signal at level k−1 that transforms to level k and has an odd cardinality. In
this case, an additional element is appended to the signal at the last index duplicating
the previous last element. Following this adjustment, analysis process is carried out.
During the synthesis process, the additional elements added previously are removed
to restore the initial signal. Therefore, Consequently, in the proposed cryptographic
algorithm, the length of the ciphertext exceeds that of the plaintext.

6. CONSTRUCTION OF CRYPTOGRAPHIC ALGORITHM

In this section, we develop a cryptographic algorithm using MMPLS-IWavelet. The
algorithm consists of the encryption process, the decryption key generation, and
decryption process.

6.1. Encryption process

The encryption process transforms the plaintext into its corresponding ciphertext. The
encryption process consists of the following steps:

1. The plaintext input,consisting of N characters is transformed into an array PBMP

where
PBMP = [P [1], P [2], . . . , P [N ]].

The array PBMP is a sequence of non-negative integer where P [i] represents the
the BPM code for the ith character in the plaintext for i = 1, 2, . . . , N .

2. The encryption key, denoted by Keye, is a sequence of finite positive integers of
length m. Here, we have

Keye = [ke[1], ke[2], . . . , ke[m]]

wherem ∈ N and ke[1] is the type MMPLS-IWavelet used. Here, ke[1] ∈ {1, 2, 3, 4}
and ke[i] ∈ N where ke[i] ≤ log2N for 2 ≤ i ≤ m. Each ke[i] for 2 ≤ i ≤ m
represents the levels used in the transformation.

3. The approximation signals and detail signals of each transformation process for
each level in Keye are calculated using the type of MMPLS-IWavelet described in
Section 5.

4. A binary code is generated from the approximation and detail signals. For example,
if |Keye| = m, the binary code is generated from the approximation and detail
signal resulting from the last transformation at level ke(m). We define Sk,m as the
resulting signal consisting of approximation and detail signals with transformations
of type k with m − 1 transformations steps. The following formula generates the
binary signal code

BC(Sk,m[i]) =

{
1, Sk,m[i] < 0

0, Sk,m[i] ≥ 0,
(16)

where Sk,m[i] is ith element in Sk,m for i = 1, 2, 3, . . . , |Sk,m|. This binary code
BC(Sk,m[i]) will be used in constructing the decryption key during the decryption
process.



584 M. YUNUS, M. I.D. FIRMANSYAH AND SUBIONO

5. There is a possibility that the values of Sk,m exceed 65503, and we define an array
ρ, to handle such a case where

ρ[i] =

⌊
|Sk,m[i]|
65503

⌋
, (17)

for i = 1, 2, 3, . . . , |Sk,m|, where ⌊x⌋ denotes the nearest integer less than or equal
to x.

6. The BMP code for ciphertext denoted by CBMP is obtained under the following
condition condition:

(a) If
∑|Sk,m|

i=1 ρ[i] = 0 then

CBMP[i] = |Sk,m[i]|+ 32. (18)

(b) If
∑|Sk,m|

i=1 ρ[i] ̸= 0 then

CBMP[i] = |Sk,m[i]| mod 65503 + 32, (19)

and

CBMP[i+ |Sk,m|] = ρ[i] + 32, (20)

for i = 1, 2, 3, . . . , |Sk,m|. The addition of 32 ensure that all BMP codes from
the ciphertext can be represented as a character. The value 65503 is derived by
subtracting 32 from the total number of characters in the BMP.

7. The result of the encryption is the ciphertext obtained by converting CBMP into
text.

6.2. Generation of the decryption key

The decryption key consists of three components: Keyd1
, Keyd2

, and Keyd3
. Here, Keyd1

is identical to Keye as described in the encryption process. The second key, Keyd2
, is

obtained through the following procedure. First, a sequence of finite non-negative integer
is obtained by partitioning BC(Sk,m[i]) into several parts, each consisting of 16 elements,
resulting a new array of 16-bit code. The value Keyd2

is obtained by converting these
value into their corresponding decimal value. The third key, Keyd3

is a sequence of
positive integers representing the length of the coefficients of approximation and detail
signals for each level in every executed transformation.

For example, suppose a signal of length 10 is encrypted using the key level [2 3 3].
The first transformation of level 2 resulting in the decomposition of signal length into
[3 3 5 10]. The second transformation of level 3 decompose the signal length into
[2 2 3 6 11], and the third transformation at level 3 further decomposes the signal length
into [2 2 4 7 13]. As a result, the third decryption key, Keyd3

satisfies the following
condition

Keyd3
= [2 2 4 7 13 2 2 3 6 11 3 3 5 10].
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6.3. Decryption process

An encryption process E is correct with respect to the decryption process D if for every
message M we have D(E(M)) = M [21]. Based on equations (18), (19), and (20)
every message M is encrypted to produce E(M) using CBMP and three decryption keys
(Keyd1

,Keyd2
,Keyd3

). It can be inferred from the encryption process that E(M) is

generated from Sk,m. If
∑|Sk,m|

i=1 ρ[i] = 0, then the condition (18) holds, which is

E(M) = |Sk,m|+ 32 ⇒ |Sk,m| = E(M)− 32. (21)

Based on equation (16), Sk,m is non-negative if only if BC[i] = 0 and negative if only if
BC[i] = 1. Therefore, equation (21) becomes

Sk,m = (E(M)− 32) · (−1)BC .

If
∑|Sk,m|

i=1 ρ[i] ̸= 0, then equations (19) and (20) are obtained. This means that |E(M)| ≠
|BC|, or more precisely, |E(M)| = 2|BC|. Consider the following

E(M)[i] = |Sk,m[i]| mod 65503 + 32 ⇒ |Sk,m[i]| mod 65503 = E(M)[i]− 32, (22)

for i = 1, 2, 3, . . . , |BC|. From equation (22) we obtain

|Sk,m[i]| = k[i] · 65503 + E(M)[i]− 32,

for k[i] ∈ Z. In this case, the following equation holds:

k[i] =

⌊
|Sk,m|[i]
65503

⌋
= ρ[i],

for i = 1, 2, . . . , |BC|, where ⌊x⌋ denotes the nearest integer less than or equal to x. From
equation (20) we have k[i] = ρ[i] = E(M)(i+ |Sk,m|)−32. Based on equation (16), Sk,m

is non-negative if only if BC[i] = 0 and is negative if only if BC[i] = 1. Therefore,
equation (22) becomes

Sk,m[i] = ((E(M)[i+ |Sk,m|]− 32) · 65503 + E(M)[i]− 32) · (−1)BC[i],

for i = 1, 2, 3, . . . , |BC|. Next, Sk,m is inversely transformed using Keyd1
in reverse order

using MMPLS-IWavelet to obtain the original message M.
Here, we provide a detail description of the decryption process using the

MMPLS-IWavelet and the decryption key generated from the encryption results. This
step involves converting the ciphertext back into plaintext using the synthesis process
of the specified MMPLS-IWavelet type. The decryption process is outline as follows:

1. The ciphertext is converted to BMP code. We denote CBMP as a finite non-negative
integers where the value of each element is greater than or equal to 32.

2. Input the first decryption key Keyd1
which has the same structure as the encryption

key Keye.
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3. Convert the second decryption key, Keyd2
, into a binary code BC(Sk,m) where

each element in Keyd2
is represented as a 16-bit binary code. The results of

each conversion of decimal numbers to binary code are merged to form the array
BC(Sk,m).

4. Obtain the Sk,m signal (4th stage of encryption) with the following condition :

(a) if |BC(Sk,m)| = |CBMP| then

Sk,m[i] = (CBMP[i]− 32) · (−1)BC(Sk,m[i]) (23)

(b) if |BC(Sk,m)| ≠ |CBMP| then

Sk,m[i] = ((CBMP[i+ |Sk,m|]− 32) · 65503 + CBMP[i]− 32) · (−1)BC[i] (24)

for all i = 1, 2, . . . , |BC(Sk,m)| and k = 65503.

5. Input the third decryption key Keyd3
correctly. Then execute the synthesis process

signal using Sk,m convert it to signal PBMP using synthesis process type selected
from MMPLS-IWavelet.

6. The plaintext is obtained by converting the BMP ciphertext code PBMP back into
text.

6.4. A simple illustrative example

This section provides a simple example of the encryption process, key generation, and
decryption using the MMPLS-IWavelet cryptographic algorithm. As an illustration,
consider the plaintext described in Figure 4 as an input, which contains 34.

Fig. 4: Plaintext containing the word “thank you” in five languages from around the
world.

1. The plaintext is converted into BMP code, denoted as PBMP, where PBMP[1] = 84,
PBMP[2] = 104, PBMP[3] = 97, . . ., PBMP[34] = 1575. Let s0 be the original signal,
with s0[i] = PBMP[i] for i = 1, 2, . . . , 34.

2. In this example, we choose the encryption key Keye = [2, 2, 3], indicating the use
of MMPLS-IWavelet type 2 (MaxLS) with two transformations at levels 2 and 3.

3. The analysis process of MMLPLS-IWavelet type MaxLS is carried out using
equations (6), (7), (8), and (13). This process aims to obtain the signal result
after two transformations, denoted as S2,3.
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(a) The analysis process for the first transformation at level 2 is as follows. For
level 1, split the signal s0 into signals e1 (even) and o1 (odd), where e1[i] =
s0[2i] and o1[i] = s0[2i − 1] for i = 1, 2, . . . , 17. We obtain e0[1] = 104,
e0[2] = 110, . . . , e0[17] = 1575, and o0[1] = 84, o0[2] = 97, . . . , o0[17] = 1611.
Thus, the approximation signal (s1) and detail signal (d1) are as follows. For
the detail signal, we have:

d1[1] = o0[1]⊘ e0[1] = 84⊘ 104 = −20,
d1[2] = o0[2]⊗ (e1[1]⊕ e0[2]) = 97⊘ (104⊕ 110) = −13,
...
d1[17] = o0[17]⊘ (e1[16]⊕ e0[17]) = 1611⊘ (1585⊕ 1575) = 26.

For the approximation signal, we have:

s1[1] = e0[1]⊗ (d1[1]⊕ d1[2]⊕ e) = 104⊗ (−20⊕−13⊕ e) = 104,
s1[2] = e0[2]⊗ (d1[2]⊕ d1[3]⊕ e) = 110⊗ (−13⊕−3⊕ e) = 110,
...
s1[17] = e0[17]⊗ (d1[17]⊕ e) = 1575⊗ (26⊕ e) = 1601.

For level 2, since |s1| = 17, is of odd cardinality, an additional element is
added such that s1[18] = s1[17] = 1601. Split the signal s1 into two signals
e1[i] = s1[2i] and o1[i] = s1[2i − 1] for i = 1, 2, . . . , 9. We obtain e1[1] =
104, e1[2] = 42, . . . , e1[9] = 1601 and o1[1] = 110, o1[2] = 121, . . . , o1[9] =
1601. Applying equations (8), (7), and (13) as in the previous process, we
obtain the approximation signal (s2) and detail signal (d2) as follows: s2[1] =
110, s2[2] = 121, . . . , s2[9] = 1601 and d2[1] = −6, d2[2] = −79, . . . , d2[9] =
−10. Thus, the result of the first transformation is S2,2 = [s2 d2 d1], where
S2,2[1] = 110, S2,2[2] = 121, . . . , S2,2[35] = 26.

(b) The analysis process for the second transformation of level 3 is as follows.
For level 1, since |S2,2| = 35, is of odd cardinality, an additional element
is added such that S2,2[36] = S2,2[35] = 26. Redefine the initial signal s0
as s0[i] = S2,1[i] for i = 1, 2, . . . , 36. Split the signal s0 into e0 and o0,
where e0[1] = 121, e0[2] = 115, . . . , e0[18] = 26, and o0[1] = 110, o0[2] =
114, . . . , o0[18] = 26. Thus, the approximation signal (s1) and detail signal
(d1) are as follows. For the detail signal, we have

d1[1] = o0[1]⊘ e0[1] = 110⊘ 121 = −11
d1[2] = o0[2]⊘ (e0[1]⊕ e0[2]) = 114⊘ (121⊕ 115) = −7
...
d1[18] = o0[18]⊘ (e0[17]⊕ e0[18]) = 26⊘ (15⊕ 26) = 0.

For the approximation signal, we have:

s1[1] = e0[1]⊗ (d1[1]⊕ d1[2]⊕ e) = 121⊗ (−11⊕−7⊕ e) = 121
s1[2] = e0[2]⊗ (d1[2]⊕ d1[3]⊕ e) = 115⊗ (−7⊕ 34524⊕ e) = 34639
...
s1[18] = e0[18]⊗ (d1[18]⊕ e) = 26⊗ (0⊕ e) = 26⊗ e = 26.
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For level 2, following the same process as in the previous level by decomposing
the signal s1, we obtain the signals s2 and d2 as follows: s2[1] = 35613, s2[2] =
2585, . . . , s2[9] = 26, and d2[1] = −34518, d2[2] = 974, . . . , d2[9] = −11. For
level 3, following the same process, the decomposition of the signal s2 into
s3 and d3 is obtained, where s3[1] = 35613, s3[2] = 10, . . . , s3[5] = 26, and
d3[1] = 33028, d3[2] = −2595, . . . , d3[5] = 0. Thus, we obtain the result of the
transformation of level 2: S2,2 = [s3 d3 d2 d1], where S2,3[1] = 35613, S2,3[2] =
10, . . . , S2,3[37] = 0.

(c) From S2,3, the binary encoding BC(S2,3) is obtained based on (16), resulting in
BC(S2,3)[1] = 0, BC(S2,3)[2] = 0, BC(S2,3)[3] = 0, . . . ,BC(S2,3)[11] = 1, . . . ,
BC(S2,3)[37] = 0.

(d) Based on the output signal S2,3 and equation (17), we find that ρ[i] = 0 for
i = 1, 2, 3, . . . , 37.

(e) Based on equation (18), CBMP is obtained, where
CBMP[1] = |S2,3[1]|+ 32 = |35613|+ 32 = 35645, CBMP[2] = |S2,3[2]|+ 32 =
|10|+ 32 = 42, . . ., CBMP[37] = |S2,3[37]|+ 32 = |0|+ 32 = 32.

(f) Convert CBMP to text, the ciphertext as depicted in Figure 5

Fig. 5: Ciphertext of plaintext in Figure 4.

Now, We discuss the generation of the second decryption key Keyd2
obtained from

BC(S2,3), which is represented as 0000001000101110001110111011111101110. This
binary code is divided into several groups, each consisting of 16 bits. As a result, we
get the following three groups: 0000001000101110, 0011101110111111, and 01110. Ihe
last group, contains only five digits, so we add eleven of leading zeros to form a
complete 16-bit groups: 0000001000101110, 0011101110111111, and 0000000000001110.
Converting these binary groups into decimal numbers yields, 558, 15295, and 14.
Therefore, the second decryption key is Keyd2

= [558 15295 14]. For the third key
Keyd3

, since the plaintext has a length 34 characters, the first transformation at level 2
produces a signal length decomposition of [9 9 17 34]. Subsequently, for the second
transformation at level 3, the signal length decomposition of [5 5 9 18 35]. Thus, the
third decryption key is Keyd3

= [5 5 9 18 35 9 9 17 34].
Next, we describe the decryption process of ciphertext shown in Figure 5 with three

decryption keys i. e., Keyd1
= [2 2 3], Keyd2

= [558 15295 14], and Keyd3
=

[5 5 9 18 35 9 9 17 34].

1. Convert the ciphertext to BMP code, denoted as CBMP, where
CBMP[1] = 35645, CBMP[2] = 42, . . . , CBMP[37] = 32.

2. Each element in Keyd2, when converted to 16-bits binary code, is obtained
sequentially as 0000001000101110, 0011101110111111, and 0000000000001110.
Since the length of the plaintext is 37, the last binary code has the leading 11
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zeros removed, resulting in 01110. Merging all the binary codes we have
0000001000101110001110111011111101110. Thus, BC(S2,3) is obtained, where
BC(S2,3)[1] = 0, BC(S2,3)[2] = 0, BC(S2,3)[3] = 0, . . . ,BC(S2,3)[11] = 1, . . . ,
BC(S2,3)[37] = 0.

3. We can see that |CBMP| = |BC|, we calculate S2,3 based on equation (23). We
obtain S2,3[1] = 35613, S2,3[2] = 10, . . . , S2,3[37] = 0.

4. The synthesis process of MMPLS-IWavelet type 2 (MaxLS) is performed based
on equations (9), (10), and (13). The synthesis process starts with the second
transformation at level 3 and then continues with the synthesis process from the
first transformation at level 2 (the reverse of the encryption process). The third
decryption key Keyd3

is partitioned into several parts based on the number of
transformations performed or the length of the key Keyd1

minus one. If |Keyd1
| =

m, then the first partition Keyd3
corresponds to Keyd1

[m] with a partition of
length Keyd1

[m] + 2, the second partition corresponds to Keyd1
[m − 1] with a

partition of length Keyd1
[m − 1] + 2, and so on. In this example, the partition

of Keyd3
is [5 5 9 18 35 | 9 9 17 34]. These partitions for determining whether

it is necessary to remove the last element for each transformation result in the
analysis process, noting that in the analysis process, the last element of the signal
is added if the signal has an odd cardinality. The original signal s0 is obtained,
where s0[1] = 84, s0[2] = 104, s0[3] = 97, . . . , s0[34] = 1575. This result yields
PBMP, the BMP code of the plaintext, where PBMP[i] = s0[i] for i = 1, 2, . . . , 34.

5. Convert PBMP to text, resulting in the plaintext shown in Figure 4.

7. ANALYSIS AND EMPIRICAL RESULTS

We evaluate the performance of the constructed cryptographic algorithm using various
encryption keys. Several evaluation metrics are utilized to asses the algorithm’s
performance. We employ nine test data sets comprising various characters and fonts
from several countries worldwide. Summary of research results relevant MATLAB
source codes, and test data sets are available at

https://github.com/sebelumSyah/CryptographyMMPLS-IWavelet.git

MATLAB is chosen for its exceptional performance, especially in handling large matrix
and vector operations, due to its optimized algorithms and multi-threading support.

7.1. The correlation test between plaintext and ciphertext

In this section, we calculate the correlation value, which quantifies the relationship
between plaintext and ciphertext. The correlation value is computed using the following

https://github.com/sebelumSyah/CryptographyMMPLS-IWavelet.git


590 M. YUNUS, M. I.D. FIRMANSYAH AND SUBIONO

Plaintext Files Number of Character
encryption key

Type 1 Type 2 Type 3 Type 4
Test Data 1.txt 32 0.11172 0.08729 0.05113 0.10476
Test Data 2.txt 107 0.01721 0.05867 0.07281 0.00386
Test Data 3.txt 345 0.00589 0.0777 0.01413 0.00784
Test Data 4.txt 714 0.01285 0.05324 0.02861 0.02788
Test Data 5.txt 1592 0.00273 0.04431 0.05509 0.01085
Test Data 6.txt 4164 0.03951 0.00942 0.01192 0.00084
Test Data 7.txt 12265 0.00075 0.00349 0.00750 0.00335
Test Data 8.txt 28800 0.00283 0.00017 0.01128 0.00932
Test Data 9.txt 54147 0.04218 0.01984 0.06627 0.04146

Tab. 1: Correlation value for key level [2 3 2 3].

Fig. 6: Correlation value between plaintext and ciphertext for key level [3 4 2 5 5].

formula [1]

Cor =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
N

N∑
k=1

P (k)C(k)

)
−

(
N∑

k=1

P (k)

)(
N∑

k=1

C(k)

)
√√√√√
N N∑

k=1

(P (k)2)−

(
N∑

k=1

P (k)

)2
N N∑

k=1

(C(k)2)−

(
N∑

k=1

C(k)

)2


∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(25)

where N is the number of characters in the plaintext. The notation P (k) and C(k)
represent the BMP codes of plaintext and ciphertext, respectively. For example, the
plaintext in Figure 4 and the ciphertext in Figure 5 have a correlation coefficient of
0.12892. If the correlation value is close to zero, it indicates the plaintext and ciphertext
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have a weak relationship and can be considered to have no significant relationship [30].
We compute the correlation value of each test data set, which contains different

characters and test all MMPLS-IWavelet types. The setting of the level key in encryption
is arbitrary, including the length of the level key (number of transformations) and the
decomposition level for each transformation. For instance, we set the key level to [2 3 2 3]
for all types. In Table 1, the MinLS type shows a correlation interval value between
0.0008 and 0.1117, the MaxLS type hows a correlation interval value between 0.0002 and
0.0873, MaxMinLS type shows a correlation interval value between 0.0075 and 0.0728,
and the AveMinLS type shows a correlation interval value between 0.0034 and 0.1052.

We also apply the key level [3 4 2 5 5] as a comparison with the previous example,
where the settings for these key level are also arbitrary. From the experiment, we obtain
that the correlation value between the plaintext and ciphertext at key level [3 4 2 5 5]
is not significantly different to that of key level [2 3 2 3]. Figure 6 illustrates that the
correlation values for each test data and MMLS-IWavelet type lie within the interval 0 ≤
Cor ≤ 0.2. Based on the experiments, the correlation between plaintext and ciphertext
tends to be very small, very close to zero, for a large number of plaintext characters. We
conclude that the plaintext and ciphertext have a weak relationship for all types. More
detailed information about other key level experiments to calculate correlation values is
available at the Github link provided at the beginning of Section 7.

7.2. Encryption quality

We evaluate the quality of the encryption process using the encryption quality (EQ)
metric. Encryption quality is calculated by comparing the number of occurrences of
a character in plaintext and ciphertext. The value of EQ is the average value of the
absolute difference between the number of occurrences of a character in plaintext and
ciphertext [1]. Mathematically, this is expressed as

EQ =

∑n
i=32 |Hi(CBMP)−Hi(PBMP)|

n− 32
, (26)

whereHi(CBMP) andHi(PBMP) represent the number of occurrences of the ith character
of the BMP code and n represents the number of characters employed in this study,
with n = 65535, corresponding to the number of characters in the BMP. Additionally,
we determine calculate the maximum EQ value, which occurs when all characters of
the plaintext and ciphertext are different. For example, using the plaintext shown in
Figure 4 and the ciphertext in Figure 5 with the key level [2 2 3], the encryption quality
percentage of 85.13%. In our experiment, we also consider a key level [2 3 2 3] to
compute the encryption quality percentage. Based on Table 2, the MinLS type achieves
an average of EQ percentage of 81.13%, the MaxLS type achieves an average percentage
of EQ of 89.79%, the MaxMinLS type achieves an average percentage of EQ of 93.77%,
and the AveMinLS type achieves an average percentage of EQ of 92.68%.

The encryption quality percentage can be enhanced by increasing the number of
transformations and decomposition levels for each transformation. For this analysis, we
set the key level to [3 3 4 4 5] to calculate the encryption quality percentage and compare
it with encryption quality percentage for previous key level. Based on Table 3, the MinLS
type achieves an average EQ percentage of 87.26%, the MaxLS achieves an average EQ
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plaintext Files
Encryption Quality(EQ)

Max (EQ)
Percentage of (EQ) %

Type 1 Type 2 Type 3 Type 4 Type 1 Type 2 Type 3 Type 4

Test Data 1.txt 0.0009 0.0009 0.0009 0.0009 0.0010 93.75 96.87 96.87 96.87
Test Data 2.txt 0.0027 0.0029 0.0033 0.0033 0.0034 79.01 84.38 97.76 96.87
Test Data 3.txt 0.0103 0.0105 0.0106 0.0106 0.0107 95.88 98.15 99.00 98.72
Test Data 4.txt 0.0161 0.0188 0.0214 0.0214 0.0220 73.05 85.41 97.50 97.36
Test Data 5.txt 0.0473 0.0481 0.0485 0.0485 0.0486 97.36 98.93 99.74 99.68
Test Data 6.txt 0.0939 0.1110 0.1141 0.1085 0.1273 73.82 87.18 90.23 85.29
Test Data 7.txt 0.2847 0.3248 0.3599 0.483 0.3745 76.03 89.41 96.11 93.02
Test Data 8.txt 0.6402 0.7378 0.7350 0.7314 0.8793 72.80 83.91 83.58 83.17
Test Data 9.txt 1.1329 1.3865 1.3741 1.3749 1.6534 68.52 83.86 83.11 83.15

Tab. 2: Encryption quality test for key level [2 3 2 3].

Plaintext Files
Encryption Quality(EQ)

Max (EQ)
Percentage of (EQ) %

Type 1 Type 2 Type 3 Type 4 Type 1 Type 2 Type 3 Type 4
Test Data 1.txt 0.0008 0.0009 0.0009 0.0009 0.0010 84.37 93.75 93.75 96.87
Test Data 2.txt 0.0031 0.0031 0.0034 0.0034 0.0035 88.49 90.26 96.46 97.34
Test Data 3.txt 0.0106 0.0106 0.0106 0.0106 0.0107 98.43 98.72 99.01 99.00
Test Data 4.txt 0.0188 0.0191 0.0217 0.0214 0.0220 85.51 86.89 98.96 97.43
Test Data 5.txt 0.0483 0.0485 0.0485 0.0486 0.0488 98.96 99.47 99.53 99.65
Test Data 6.txt 0.1064 0.1119 0.1176 0.1081 0.1274 83.52 87.81 92.23 84.81
Test Data 7.txt 0.3250 0.3480 0.3637 0.3513 0.3746 86.74 92.88 97.07 93.77
Test Data 8.txt 0.7098 0.7456 0.7518 0.7353 0.8793 80.71 84.79 85.49 83.61
Test Data 9.txt 1.3010 1.4009 1.4172 1.3660 1.6536 78.67 84.72 85.70 82.61

Tab. 3: Encryption quality test for key level [3 3 4 4 5].

Fig. 7: Average encryption quality percentage for each test data for several level keys.

percentage of 91.0%, the MaxMinLS type achieves an average EQ percentage of 94.20%,
and for the AveMinLS type achieves an average EQ percentage of 92.79%. The results
show indicate that the encryption quality for all types of MMPLS-IWavelet has an
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Plaintext Files
Encryption time (miliseconds) Decryption time (miliseconds)

Type Type 2 Type 3 Type 4 Type 1 Type 2 Type 3 Type 4

Test Data 1.txt 0.0081 0.0082 0.0081 0.0071 0.0119 0.0105 0.0106 0.0104
Test Data 2.txt 0.0447 0.0392 0.0514 0.0223 0.0416 0.0909 0.0714 0.0782
Test Data 3.txt 0.0523 0.0532 0.0538 0.0531 0.0767 0.0794 0.0841 0.1074
Test Data 4.txt 0.0931 0.0959 0.0891 0.1020 0.1412 0.1406 0.1480 0.1801
Test Data 5.txt 0.1930 0.1934 0.1914 0.1925 0.2994 0.3157 0.3185 0.3111
Test Data 6.txt 0.6872 0.7275 0.4844 0.4861 0.8793 0.8008 0.7755 0.7794
Test Data 7.txt 1.5322 1.3491 1.3356 1.5513 2.4421 2.5419 2.4712 2.4303
Test Data 8.txt 3.2031 3.3703 3.3654 3.3365 5.9021 5.8713 5.9153 5.9999
Test Data 9.txt 5.7285 5.9611 6.0031 6.0324 11.6881 11.6885 12.0223 11.6959

Tab. 4: the encryption and decryption time for MinLS, MaxLS, MaxMinLS, and
AveMinLS at key level [2 3 2 3].

average EQ percentage above 80%. We have conducted several experiments for various
types of level keys and the results are consistent with those presented in Tables 2 and
3, as summarized in Figure 7.

In Figure 7, we illustrate the average encryption quality percentage for each test data
using several key levels, including; key 1 = [2 3 2 3], key 2 = [3 3 4 4 5], key 3 = [3 4 3 4],
key 4 = [3 4 3 4 4 4], and key 5 = [4 5 3 5 4 4 5 5]. More detailed information from
the experiments of these keys is available at the Github link provided at the beginning
of Section 7. Figure 7 demonstrate that the encryption quality percentage increases
with number of transformation levels and the number of transformations executed. In
addition, it was concluded that the type MaxMinLS consistently achieved the highest
encryption quality percentage, while the MinLS type achieved the lowest.

7.3. Algorithm complexity and running time

In this section, we the algorithm’s complexity based on computational cost. For
computational cost, we estimate the number of operations required for both the
encryption and decryption processes. For the analysis process in MMPLS-Iwavelet
type MinLS, based on equations (7), (8), and (12), assuming that N is the number of
characters in the plaintext, we observe that there is one comparison operator C, one
subtraction operator S, and one addition operator A at the kth level. Since the
number of channels in the lifting scheme is two, assuming that Wi is the number of
computations at each level i where 1 ≤ i ≤ k, we have

Wi =
N

2i
(C + S +A).
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Therefore, the total number of computations in the analysis process for all levels i where
1 ≤ i ≤ k is

W = W1 +W2 + . . .+Wk

=
N

2
(C + S +A) +

N

22
(C + S +A) + . . .+

N

2k
(C + S +A)

=

(
k∑

i=1

N

2i

)
(C + S +A)

=

(
2k − 1

2k

)
N(C + S +A) < (C + S +A)N.

It can be observed that the number of computations in the MinLs analysis process
is W < (C + S + A)N . Therefore, the algorithmic complexity of the MinLs analysis
process is O(N). Since each transformation in the analysis process has an algorithmic
complexity of O(N), the encryption algorithm consequently also has a complexity of
O(N). For the synthesis process based on equations (9), (10), and (12), let N ′ be the
number of characters in ciphertext. We observe there is one comparison operator C ′,
one subtraction operator S′, and one addition operator A′ at the kth level. Since the
number of channels in the lifting scheme is two, and assumingW ′

i represents the number
of computations at each level i where 1 ≤ i ≤ k, we have

W ′
i =

N ′

2k−i+1
(C ′ + S′ +A′).

Therefore, the total number of computations in the synthesis process for all levels i where
1 ≤ i ≤ k is

W ′ = W ′
1 +W ′

2 + . . .+W ′
k

=
N ′

2k
(C ′ + S′ +A′) +

N ′

2k−1
(C ′ + S′ +A′) + . . .+

N ′

2
(C ′ + S′ +A′)

=

(
k∑

i=1

N ′

2i

)
(C ′ + S′ +A′)

=

(
2k − 1

2k

)
N ′(C ′ + S′ +A′) < (C ′ + S′ +A′)N ′.

It can be observed that the number of computations in the MinLS synthesis process is
W < (C ′ + S′ + A′)N ′. Therefore, the algorithmic complexity of the MinLS synthesis
process is O(N ′). Since each transformation in the synthesis process has an algorithmic
complexity of O(N ′), the decryption algorithm consequently also has a complexity of
O(N ′). Thus, we conclude that the cryptographic algorithm using MMPLS-IWavelet
type MinLS has a linear complexity with respect to the number of characters. Similarly,
based on equations (7), (8), (9), and (10), for each type of MMPLS-IWavelet, we deduce
that the cryptographic algorithm using other MMPLS-IWavelet types also exhibit linear
complexity with respect to the number of characters.

Regarding running time, in this research we use MATLAB 2022b software to
implement cryptographic algorithms with MMPLS-IWavelet. We recorded the
computational time of the algorithm we construct for each plaintext dataset and for all
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types of MMPLS-IWavelet to determine the empirical running time of the algorithm in
practice. We ran the program on Intel(R) Core(TM) i5-4200M CPU 2.50GHZ
(4CPUs) with 8GB RAM.

Table 4 shows that the running times of the proposed cryptographic algorithms for
all types of the rementioned MMPLS-IWavelet are very short, even when the plaintext
contains more than 50,000 characters. Based on the various data test with lengths
ranging from 31 to 54,147 characters, we observe that the encryption time for MinLS
type ranges from 0.0081 ms to 5.7285 ms, for MaxLS type from 0.0081 ms to 5.9611
ms, for MaxMinLS from 0.0081 ms to 6.0031 ms, and for AveMinLS from 0.0071 ms to
6.0324 ms. Meanwhile, the decryption time for MinLS scheme ranges from 0.0119 ms
to 11.6881 ms, for MaxLS scheme from 0.0105 ms to 11.6885 ms, for MaxMinLS scheme
from 0.0106 ms to 12.0223 ms, and for AveMinLS scheme from 0.0104 ms to 11.6959
ms. Thus, we infer that the running time of the proposed MMPLS-IWavelet-based
cryptographic algorithms is practically efficient.

7.4. Key sensitivity analysis

We investigate the sensitivity of the encryption key. The sensitivity of the encryption
key measured by calculating the percentage of change in ciphertext if the encryption key
is modified. In this paper, we use the Hamming metric to quantify changes in ciphertext
due to alterations. The Hamming metric or Hamming distance between two sequences
of the same length is defined as the number of positions at which the corresponding
symbols differ. If the sizes of the two ciphertexts are different, then we choose the size
of the smaller ciphertext as the reference length for measuring the Hamming metric.

For example, the plaintext in Figure 4 is encrypted into ciphertext in Figure 5 using
key level of [2 3] with the MaxLS type. Modifiying the key level [3 2], results in a
91.66% change in the ciphertext, and while changing the key level to [2 3 3],results in
a 97.29% change. We modify the encryption key by swapping the order of levels in
the encryption key or by adding transformations. In this research, we present results
from two experiments with different initial keys. In the first experiment, the initial
encryption key level is [4 4 3 3]. The key is modified by changing the sequence to
become Key1 = [4 3 4 3]. For the second experiment, we define Key2 by adding level
4 to Key1, resulting in Key2 = [4 4 3 3 4]. The results of experiment are shown in in
Table 5. For the second experiment, the initial encryption key at level [2 3 2 3]. The
modification keys for this experiment are Key1 = [2 3 3 2] and Key2 = [2 3 2 3 2]. The
results of the this experiment are shown in Table 6.

Based on Tables 5 and 6, we find that the most significant percentage of ciphertext
change is achieved by increasing the number of transformations in the key level.
Regarding the sensitivity of the decryption key, the key sensitivity value is identical to
that of encryption key because the decryption process requires the same key used in
encryption. This indicates that the decryption key has very high sensitivity.
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Plaintext File
MMPLS-IWavelet

MinLS MaxLS MaxMinLS AveMinLS

Key 1 Key 2 Key 1 Key 2 Key 1 Key 2 Key 1 Key 2

Test Data 1.txt 56.25 100.0 43.75 100.0 65.62 100.0 59.37 100.0
Test Data 2.txt 34.82 100.0 33.03 99.10 38.39 100.0 34.82 100.0
Test Data 3.txt 26.42 100.0 25.85 99.71 28.69 100.0 27.84 100.0
Test Data 4.txt 24.44 99.86 24.17 99.44 25.69 100.0 25.00 100.0
Test Data 5.txt 23.32 100.0 23.32 99.94 24.26 100.0 24.06 100.0
Test Data 6.txt 98.41 99.43 99.25 99.64 99.76 99.85 99.52 99.54
Test Data 7.txt 97.22 99.42 99.38 99.80 99.83 99.91 99.73 99.83
Test Data 8.txt 22.11 99.05 22.19 98.54 22.61 99.60 22.47 99.30
Test Data 9.txt 95.13 98.72 97.44 98.30 99.28 99.60 98.89 99.16

Tab. 5: Sensitivity of encryption key, with initial key level is [4 4 3 3], modified key levels
are Key1 = [4 3 4 3] and Key2 = [4 4 3 3 4].

Plaintext File
MMPLS-IWavelet

MinLS MaxLS MaxMinLS AveMinLS

Key 1 Key 2 Key 1 Key 2 Key 1 Key 2 Key 1 Key 2

Test Data 1.txt 46.87 96.87 50.00 93.75 50.00 100.0 50.00 96.87
Test Data 2.txt 42.85 98.21 42.85 99.10 42.85 100.0 42.85 100.0
Test Data 3.txt 41.19 100.0 41.19 99.43 41.76 100.0 41.76 100.0
Test Data 4.txt 40.27 99.44 40.27 99.16 41.11 99.86 40.97 99.72
Test Data 5.txt 40.32 99.81 40.57 99.81 40.89 100.0 40.89 100.0
Test Data 6.txt 39.70 98.68 40.28 99.18 40.54 99.76 40.54 99.59
Test Data 7.txt 39.45 97.90 40.26 99.25 40.63 99.92 40.60 99.83
Test Data 8.txt 39.30 97.94 39.52 97.99 40.47 99.58 40.32 99.24
Test Data 9.txt 38.74 96.97 39.42 97.64 40.40 99.52 40.19 99.17

Tab. 6: Sensitivity of encryption key, with initial key level is [2 3 2 3], modified key levels
are Key1 = [2 3 3 2] and Key2 = [2 3 2 3 2].

7.5. Entropy analysis for plaintext and ciphertext

We measure the randomness of plaintext and ciphertext based on entropy analysis [30].
Suppose we are given the message T , the entropy value of T is defined by E(T ) as follows

E(T ) =
∑
t∈T

Prob(t) log2 (Prob(t)) , (27)

where Prob(t) denotes the probability that symbol t appears in message T . The higher
the value of E(T ) means the higher the level of randomness of symbols in the message
T . That means the message has a greater variety and is more difficult to predict. For
example, the plaintext in Figure 4 has an entropy value of 4.5473, and the ciphertext in
Figure 5 has an entropy value of 5.0473. Table 7 shows the entropy values of plaintext
and ciphertext using the key level in the encryption process [2 3 2 3]. It can be seen
in the table that the entropy values of the ciphertext are higher than the plaintext
entropy values for all MMLS-Wavalet types. That indicates that the ciphertext is much
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Plaintext File Entropy of Plaintext
Entropy of Ciphertext

Type 1 Type 2 Type 3 Type 4

Test Data 1.txt 3.6678 4.6639 4.8125 4.9375 4.5000
Test Data 2.txt 4.1946 6.2593 6.0494 6.7895 6.7359
Test Data 3.txt 5.7188 8.3060 8.4346 5.5471 8.4537
Test Data 4.txt 4.6072 7.5446 6.9024 9.3259 9.2390
Test Data 5.txt 7.1051 6.2453 6.3234 6.7196 6.3747
Test Data 6.txt 4.3976 7.3639 8.2694 9.0225 8.0062
Test Data 7.txt 4.0763 8.0965 8.9708 10.4401 9.4410
Test Data 8.txt 4.6838 7.3219 6.3880 5.2550 4.8573
Test Data 8.txt 4.1918 6.8279 6.0877 7.9484 7.1463

Tab. 7: Entropy analysis for plaintext and ciphertext.

Fig. 8: Average entropy values for each MMPLS-IWevelet type for each ciphertext test
data for several key variances.

more random or uniformly distributed than the plaintext. Table 7 also shows that the
MaxMinLS type has the highest entropy value among the others.

In Figure 7, we summarize the experimental results for determining the average for
each MMPLS-Wavelet types from each ciphertext test data by considering several
example key levels, including; key1 = [2 3 2 3], key2 = [3 2 4 5 5],
key3 = [4 5 4 3 3 2 1 4 3 2 3 4 3 4 5 5 5], key4 = [4 5 4 3 3 2 1 4 3 2 3 4 3 4 5 5 5], and
key5 = [5 4 5 3 1 2 4 5 3 5 2 3 4 1 2 2 3 4 3 5 2 4]. More detailed information from the
experiments of these keys is available at the Github link provided at the beginning of
Section 7. Based on Figure 7, entropy analysis for different types of keys shows that
the longer and larger the values in Keye, the more random and uniformly distributed
the ciphertext will be compared to the plaintext. This confirms that increased key
complexity enhances the randomness and security of the encrypted message.
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7.6. Key space analysis and cryptanalysis

In this section, we analyze the possible constructs of the decryption key. Assuming the
length of the plaintext is N and the length of the ciphertext is N ′, as discussed in Section
6.2, the decryption key is divided into three parts as follows:

(a) The first decryption key, denoted by Keyd1
is the encryption key which is a

sequence of finite positive integers. It can be represented as

Keyd1
= [Keyd1

[1],Keyd1[2], . . . ,Keyd1
(m)],

where Keyd1
[1] denotes the type of MMPLS-IWavelet, so there are four

possibilities. Here, Keyd1
[i] for i = 2, 3, . . . ,m denotes the levels that are

executed in each transformation. Given the plaintext length N , the number of
possible values for Keyd1

[i] for i = 2, 3, . . . ,m is ⌊log2N⌋. The length of Keyd1

does not have a maximum limit, as it depends on the sender’s choice. Assuming
Keyd1

has length m, the number of ways to arrange Keyd1
is 4× (⌊log2N⌋)m.

(b) The second decryption key Keyd2
is a sequence of finite non-negative integer where

each element is the binary code encoding of BC(Sk,m[i]) from the resulting signal
transformation Sk,m which consisting of approximation and detail signals. The
length of Sk,m is the same as the length of the ciphertext and BC(Sk,m[i]) contains
elements 0 and 1. Hence the number of possibilities of constructing the second
decryption key is 2N

′
.

(c) The third decryption key, Keyd3
, is a sequence of positive integers representing

the length of the signal coefficient approximation and signal detail for each level in
each transformation. Note that Keyd3

is closely related to Keyd1
. If |Keyd1

| = m
then Keyd3

is partitioned into m− 1 parts. Let Keyd3(k) be the kth part of Keyd3

with |Keyd3(k)| = Keyd1
[k + 1] + 2 for k = 1, 2, . . . ,m − 1. Based on Section

6.2 we obtain that N ≤ max(Keyd3(k)) < N ′ for k = 1, 2, . . . ,m − 1 and the
other elements of Keyd3(k) depend on max(Keyd3(k)). Therefore, the number of
possibilities for max(Keyd3(k)) is N

′−N , so the number of ways to construct Keyd3

is (N ′ −N)m−1 × (⌊log2N⌋)m−1.

Based on the above calculations, assuming that the lengths of the plaintext and
ciphertext are N and N ′ respectively, and the length of Keyd1

is m, there are

4 × (⌊log2N⌋)2m−1 × 2N
′ × (N ′ − N)m−1 possibilities for decryptions key from

cryptographic algorithms using MMPLS-IWavelet. The key space of the decryption
key grows exponentially in terms of N , N ′, and m (the length of Keyd1

). This result
implies that obtaining the decryption key using exhaustive search attack is
computationally infeasible.

In cryptanalysis, it is assumed that the attacker knows how to encrypt and decrypt
data using a cryptographic algorithm in cryptanalysis. A ciphertext-only attack is a
cryptanalysis model where the attacker only has access to the encrypted data. The
attack is successful if the attacker can obtain the plaintext or, even better, the key [25].

In MMPLS-IWavelet, an attacker must determine the type of scheme used, the
number of transformations used, and the levels executed for each transformation.
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When using brute-force attack, the attacker must be able to guess the key length and
the arrangement of levels used for each transformation based on the estimated
plaintext length.

8. CONCLUSIONS AND OPEN PROBLEMS

In this research, we have developed a cryptogaphic algorithm using an integer wavelet
transform based on the min-max-plus lifting scheme (MMPLS-IWavelet). The
encryption and decryption process in this cryptography are executed through the
decomposition and reconstruction of MMPLS-IWavelet. The key space analysis of the
decryption key shows that it is computationally infeasible to obtain the decryption key
exhaustively. We conducted experiments for some test data set in .txt format
containing various characters to evaluate the performance of the constructed
cryptographic algorithms across multiple evaluation metrics. In Table 1, the
correlation value between plaintext and ciphertext for types MMPLS-IWavelet scheme
types shows fluctuation but generally remain sufficiently close to zero as the number of
characters in the plaintext increase. The encryption quality percentage for each
MMPLS-IWavelet type average above 80%, indicating significant difference in the
distribution of characters between plaintext and ciphertext. According to Tables 3 and
2, the MaxMinLS type exhibits the highest percentage for encryption quality among
the four types, while the MinLS type has the lowest percentage in this category. The
key level significantly impacts on ciphertext changes, as evident in Table 5. Entropy
analysis indicates that the randomness of characters in the ciphertext is consistently
greater than in plaintext. Tests with various level keys reveal that the MaxMinLs type
consistently has the highest entropy value among all types. The decryption key
exhibits identical sensitivity due to the requirement of using the same key for both
encryption and decryption, suggesting its high sensitivity. Based on the computational
cost, the asymptotic complexity of the proposed algorithm is linear with respect the
number of input characters. The running time of the proposed algorithm is relatively
fast,taking no more than 13 ms to encrypt a text document containing around 50,000
characters. Empirical tests indicates that the MaxMinLS scheme outperforms the four
other proposed schemes. Overall, the constructed cryptographic algorithm
demonstrates satisfactory and efficient performance.

One drawback of the proposed cryptosystem is that the generated ciphertext can be
longer than the original plaintext. This is not the case for many currently used
cryptographic systems, such as RSA. Therefore, a future challenge is to develop
alternative encryption schemes that maintain equal ciphertext and plaintext lengths
while still achieving good performance based on the empirical tests presented in this
paper. In this paper, we have demonstrate that brute-force attacks are
computationally infeasible for retrieving the key based on the key space analysis in
Section 7.6. However, the cryptosystem may be vulnerable to other attack methods
such as Known-plaintext attack, Chosen-plaintext attack, Differential cryptanalysis,
and others. Further research is required to address these potential vulnerabilities.

(Received August 21, 2023)
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