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Abstract. We introduce the notion of relative co-annihilator in lattice equality algebras
and investigate some important properties of it. Then, we obtain some interesting rela-
tions among ∨-irreducible filters, positive implicative filters, prime filters and relative co-
annihilators. Given a lattice equality algebra E and F a filter of E, we define the set of all F-
involutive filters of E and show that by defining some operations on it, it makes a BL-algebra.
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1. Introduction

Equality algebras were introduced by Jenei in [9] and are assumed for possible

algebraic semantics of fuzzy type theory (FTT). It was proved in [4], [9] that any

equality algebra has a corresponding BCK-meet-semilattice and any BCK(D)-meet-

semilattice (with distributivity property) has a corresponding equality algebra. From

a logical point of view, various filters have natural interpretation as various sets of

provable formulas, which has a very close relationship with decision-making.

Davey studied the relationship between minimal prime ideals conditions and an-

nihilators conditions on distributive lattices, see [5]. Turunen defined co-annihilator

of a nonempty subset of a BL-algebra and proved some of its properties (see [17]).

Leustean introduced the notion of co-annihilator relative to a filter F on pseudo

BL-algebras (see [11]). Then Meng introduced generalized co-annihilators in BL-

algebras and gave characterizations of prime and minimal prime filters (see [14]).

Also, Zou et al. introduced the notion of annihilators in BL-algebras and investi-

gated some related properties of them in [20]. Filipoiu in [6] used the notion of

c© The author(s) 2024. This is an open access article under the CC BY-NC-ND licence cbnd

DOI: 10.21136/MB.2024.0120-23 585

https://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.21136/MB.2024.0120-23


annihilator for Baer extensions of MV-algebras. In [1], [8] the notion of annihilators

was studied for BCK-algebras. Leustean in [12] used the notion of co-annihilator for

Baer extensions of BL-algebras. Recently, as the generalization of the co-annihilator

in a BL-algebra, Saeid et al. in [13] introduced the co-annihilator of a set relative to

another set in a residuated lattice, where they gave some relations between filters

and co-annihilators. It is helpful for the co-annihilators to study structures and

properties in algebraic systems.

In this paper, we introduce the notion of co-annihilator in equality algebras. We

study basic properties of co-annihilators and investigate the relationship between

them and some special types of filters. Also, we obtain some interesting relations

among ∨-irreducible filters, positive implicative filters, prime filters and relative co-

annihilators. Moreover, we define the set of all F-involutive filters of E and show
that by defining some operations on it, it makes a BL-algebra.

The paper is organized as follows: In Section 2, we gather the basic notions and

results on equality algebras. In Section 3, we introduce the notion of co-annihilator

relative to a filter in equality algebras and get some interesting results about them.

Then, we study the relation among ∨-irreducible filters, positive implicative filters,

prime filters and relative co-annihilators. Finally, we prove that the set of all F-
involutive filters of E can make a BL-algebra.

2. Preliminaries

In this section, we gather some basic notions and results relevant to the equality

algebra, which will be needed in the next sections. For a survey of equality algebras

we refer to [19].

Definition 2.1 ([9]). An algebraic structure E = (E;∧,∼, 1) of type (2, 2, 0) is

called an equality algebra if for all α, γ, η ∈ E it satisfies the following conditions:

(E1) (E,∧, 1) is a commutative idempotent integral monoid,

(E2) α ∼ γ = γ ∼ α,

(E3) α ∼ α = 1,

(E4) α ∼ 1 = α,

(E5) α 6 γ 6 η implies α ∼ η 6 γ ∼ η and α ∼ η 6 α ∼ γ,

(E6) α ∼ γ 6 (α ∧ η) ∼ (γ ∧ η),

(E7) α ∼ γ 6 (α ∼ η) ∼ (γ ∼ η).

The operation ∧ is called meet and ∼ is an equality operation. On an equality

algebra E we write α 6 γ if and only if α ∧ γ = α. It is easy to see that “6” is

a partial order relation on E. Also, other two derived operations are defined, as the
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following, and we call them implication and equivalence, respectively:

α → γ = α ∼ (α ∧ γ) and α ↔ γ = (α → γ) ∧ (γ → α).

An equality algebra E is bounded if there is an element 0 ∈ E such that 0 6 α for

all α ∈ E. A lattice equality algebra is an equality algebra which is a lattice.

Proposition 2.2 ([9], [16], [19]). Let (E;∧,∼, 1) be an equality algebra. Then

for all α, γ, η ∈ E, the following conditions hold:
(i) α → γ = 1 if and only if α 6 γ,

(ii) 1 → α = α, α → 1 = 1, and α → α = 1,

(iii) α 6 γ → α,

(iv) α 6 (α → γ) → γ,

(v) α → (γ → η) = γ → (α → η),

(vi) α 6 γ implies γ → η 6 α → η and η → α 6 η → γ.

If E is a lattice equality algebra, then
(vii) α → γ = (α ∨ γ) → γ.

Definition 2.3 ([10]). Let (E;∧,∼, 1) be an equality algebra and F be a non-
empty subset of E. Then F is called a deductive system or filter of E if for all α, γ ∈ E
we have

(i) α ∈ F and α 6 γ imply γ ∈ F;
(ii) α ∈ F and α ∼ γ ∈ F imply γ ∈ F.

Proposition 2.4 ([2], [4], [10]). Let (E;∧,∼, 1) be an equality algebra and F be
a nonempty subset of E. Then F is a filter of E if and only if for all α, γ ∈ E
(i) 1 ∈ F,
(ii) α ∈ F and α → γ ∈ F imply γ ∈ F.

The set of all filters of E is denoted by F(E). Clearly, 1 ∈ F for all F ∈ F(E).
A filter F of E is called a proper filter if F 6= E. Clearly, if E is a bounded equality
algebra, then a filter is proper if and only if it does not contain 0. A proper filter F
of E is called a prime filter if α → γ ∈ F or γ → α ∈ F for all α, γ ∈ E. A maximal
filter (or ultra filter) is a proper filter of E that is not included in any other proper
filter. The set of all prime (maximal) filters of E is denoted by Prime(E) (Max(E)).

Definition 2.5 ([4]). Let (E;∧,∼, 1) be an equality algebra and θ ⊆ E × E.
Then θ is called a congruence relation of E if it is an equivalence relation on E and
if (α1, γ1), (α2, γ2) ∈ θ,

(α1 ∧ α2, γ1 ∧ γ2) ∈ θ, (α1 ∼ α2, γ1 ∼ γ2) ∈ θ

for all α1, α2, γ1, γ2 ∈ E.
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The set of all congruences of E is denoted by Con(E). For any F ∈ F(E), a binary
relation θF associated by defining: α θF γ if and only if α ∼ γ ∈ F. In [4], it is
proved that there is a one-to-one correspondence between F(E) and Con(E). Denote
E/F = E/θF := {[α] : α ∈ E}, where [α] := {γ ∈ E : (α, γ) ∈ θF}.

Theorem 2.6 ([4]). Let (E;∧,∼, 1) be an equality algebra and F ∈ F(E). Then
(E/F; ∧̄,−∼,F) is an equality algebra with the following operations:

[α]∧̄[γ] := [α ∧ γ], [α]−∼ [γ] := [α ∼ γ]

for all α, γ ∈ E.

Definition 2.7 ([2]). Let F be a nonempty subset of E such that 1 ∈ F. Then F
is called a positive implicative filter if α → (γ → η) ∈ F and α → γ ∈ F imply
α → η ∈ F for all α, γ, η ∈ E.

Let X ⊆ E. The smallest filter of E containing X is called the generated filter

by X in E and is denoted by 〈X 〉. Indeed, 〈X 〉 =
⋂

X⊆F∈F(E)
F .

Proposition 2.8 ([15]). Let ∅ 6= X ⊆ E. Then

〈X 〉 = {α ∈ E : p1 → (p2 → (. . . → (pn → α) . . .)) = 1

for some n ∈ N and p1, . . . , pn ∈ X}.

In particular, for any element p ∈ E we have

〈p〉 = {α ∈ E : p →n α = 1 for some n ∈ N},

where α →0 γ = γ and α →n γ = α → (α →n−1 γ).

If F ∈ F(E) and p ∈ E \ F, then

〈F ∪ {p}〉 = {α ∈ E : p →n α ∈ F for some n ∈ N}.

If F,G ∈ F(E), then

〈F ∪G〉 = {α ∈ E : g → α ∈ F for some g ∈ G}

= {α ∈ E : m → α ∈ G for some m ∈ F}.

Proposition 2.9 ([15]). Let F and G be two proper filters of E. Then for all
X ,Y ⊆ E and α, p, q ∈ E, the following statements hold:
(i) if X ⊆ Y, then 〈X 〉 ⊆ 〈Y〉;

(ii) if F ⊆ G, then 〈F ∪ {α}〉 ⊆ 〈G ∪ {α}〉;

(iii) if p 6 q, then 〈q〉 ⊆ 〈p〉;

(iv) if F is a positive implicative filter, then 〈F ∪ {p}〉 = {α ∈ E : p → α ∈ F}.
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Theorem 2.10 ([15]). The algebraic structure (F(E),⊆,∧,∨, {1},E) is a boun-
ded distributive complete lattice, where for any F,G ∈ F(E),

F ∧G := F ∩G, F ∨G := 〈F ∪G〉.

N o t e. From now on, we let (E,∼,∧, 0, 1) or E be a lattice equality algebra, unless
otherwise stated, where for any α, γ ∈ E, the join operation ∨ on E is defined as

α ∨ γ := ((α → γ) → γ) ∧ ((γ → α) → α).

Definition 2.11 ([15]). Let F be a proper filter of E. Then F is called
a ∨-irreducible filter of E if α ∨ γ ∈ F implies α ∈ F or γ ∈ F for all α, γ ∈ E.

Corollary 2.12 ([15]). Let F ∈ F(E). Then for each p /∈ F there exists a ∨-

irreducible filter P containing F such that p /∈ P.

Definition 2.13 ([7]). The algebraic structure (L,∧,∨,⊙,→, 0, 1) of type

(2, 2, 2, 2, 0, 0) is called a BL-algebra if the following conditions hold for all x, y, z ∈ L:

(BL1) (L,∧,∨, 0, 1) is a bounded lattice;

(BL2) (L,⊙, 1) is a commutative monoid;

(BL3) x⊙ y 6 z if and only if x 6 y → z;

(BL4) x ∧ y = x⊙ (x → y);

(BL5) (x → y) ∨ (y → x) = 1.

In the bounded lattice (L,∧,∨, 0, 1) and given a pair of elements a, b ∈ L, if

a ∧ b = 0 and a ∨ b = 1, then one of a and b is called a complement of the other. If

any a ∈ L has its complement, then L is called a complemented lattice. If a lattice is

both complemented and distributive, then it is called a Boolean algebra or a Boolean

lattice (see [3]).

3. Relative co-annihilators

In this section, we introduce the notion of relative co-annihilators on a lattice

equality algebra E and investigate some related properties of them. Moreover, we
show that for any G ∈ F(E), its relative pseudo complement with respect to F is the
relative co-annihilator of G with respect to F.

Definition 3.1. Let F ∈ F(E) and X ⊆ E. We define a co-annihilator of X
relative to F as

{α ∈ E : α ∨ p ∈ F ∀ p ∈ X},

and denote it by (F : X ). When X = {p}, we denote (F : {p}) by (F : p) for

short. If F = {1}, then ({1} : X ) = X⊤ = {α ∈ E : α ∨ p = 1 for all p ∈ X} and

({1} : p) = p⊤. For more details, see [15].
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E x am p l e 3.2. Let E = {0, p, q, r, s, 1} be a set, where 0 6 p 6 s 6 1 and

0 6 q 6 r 6 s 6 1. Define the operation “∼” on E as follows:

∼ 0 p q r s 1
0 1 r p p 0 0
p r 1 0 0 p p
q p 0 1 s r q
r p 0 s 1 r r
s 0 p r r 1 s
1 0 p q r s 1

→ 0 p q r s 1
0 1 1 1 1 1 1
p r 1 r r 1 1
q p p 1 1 1 1
r p p s 1 1 1
s 0 p r r 1 1
1 0 p q r s 1

Then (E,∼,∧, 1) is an equality algebra. Clearly, F = {s, 1} ∈ F(E). If X = {p, s}

and Y = {r}, then (F : X ) = {q, r, s, 1} and (F : r) = {p, s, 1}. In addition,

X⊤ = {1} = r⊤.

Proposition 3.3. Let p, q ∈ E and F,G ∈ F(E). Then the following state-
ments hold:

(i) If p 6 q, then (F : p) ⊆ (F : q).

(ii) If p ∈ F, then (F : p) = E. The converse is true when E is bounded.
(iii) (F : p) ∩ (G : p) = (F ∩G : p) and (F : p) ∪ (G : p) = (F ∪G : p).

(iv) (F : p ∧ q) ⊆ (F : p ∨ q).

(v) (F : p) ∪ (F : q) ⊆ (F : p ∨ q). If p, q are comparable, then the converse is true.

(vi) ((F : p) : q) = ((F : q) : p) = (F : p ∨ q).

P r o o f. (i) Let p 6 q and α ∈ (F : p). Then α ∨ p ∈ F and since α ∨ p 6 α ∨ q,

we get α ∨ q ∈ F. Thus α ∈ (F : q) and so, (F : p) ⊆ (F : q).

(ii) Let p ∈ F. Then for all α ∈ E we have p 6 p ∨ α and so, p ∨ α ∈ F. Hence,
α ∈ (F : p), which means E ⊆ (F : p). On the other hand, we always have (F : p) ⊆ E.
Therefore, (F : p) = E. Now, let E be bounded and E = (F : p). Then 0 ∈ (F : p)

and so, p ∨ 0 = p ∈ F.
(iii) α ∈ (F : p) ∩ (G : p) if and only if α ∨ p ∈ F∩G if and only if α ∈ (F ∩G : p).

Similarly, the next one is true.

(iv) Since p ∧ q 6 p ∨ q and (i), we have (F : p ∧ q) ⊆ (F : p ∨ q).

(v) If α ∈ (F : p) ∪ (F : q), then α ∨ p ∈ F or α ∨ q ∈ F. From p, q 6 p ∨ q, we get

α∨p, α∨q 6 α∨(p∨q) and by F ∈ F(E), we have α ∈ (F : p∨q). Conversely, let p, q

be comparable and α ∈ (F : p∨q). Since p 6 q or q 6 p, we get α∨q = α∨(p∨q) ∈ F
or α ∨ p = α ∨ (p ∨ q) ∈ F. Hence, α ∈ (F : p) ∪ (F : q).

(vi) From α ∨ (p ∨ q) = (α ∨ p) ∨ q = (α ∨ q) ∨ p, the proof is obvious. �

The other sides of inclusions of Proposition 3.3 (iv) and (v) are not true, in general.
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E x am p l e 3.4. Let (E,∧,∼, 1) be as in Example 3.2 and F = {d, 1}. Then

(F : a) = {b, c, d, 1}, (F : b) = {a, d, 1}. Since a ∧ b = 0 and a ∨ b = d, we get

E = (F : d) = (F : a ∨ b) * (F : a ∧ b) = (F : 0) = F.

Also, E = (F : a ∨ b) * (F : a) ∪ (F : b) = {b, c, d, 1} ∪ {a, d, 1} = {a, b, c, d, 1}.

Proposition 3.5. Let X ⊆ E and F ∈ F(E). Then (F : X ) ∈ F(E).

P r o o f. Let p ∈ X . Since 1 ∨ p = 1 ∈ F, we have 1 ∈ (F : X ). If α, α → γ ∈

(F : X ), then α∨p ∈ F and (α → γ)∨p ∈ F, for all p ∈ X . Suppose η := γ∨p. Since

p, γ 6 η, we get p 6 η 6 α → η and α → γ 6 α → η by Proposition 2.2 (iii) and (vi),

respectively. Hence, (α → γ)∨ p 6 (α → η)∨ p = α → η. Since (α → γ)∨ p ∈ F and
F ∈ F(E), we get α → η ∈ F. Moreover, p 6 η, then α ∨ p 6 α ∨ η. From α ∨ p ∈ F
and F ∈ F(E), we get α∨η ∈ F. Now, by Proposition 2.2 (vii), α → η = (α∨η) → η.

In addition, α → η, α ∨ η ∈ F and F ∈ F(E), we obtain η ∈ F. Thus, γ ∨ p ∈ F, i.e.,
γ ∈ (F : X ). Therefore (F : X ) ∈ F(E). �

Proposition 3.6. Let X ,Y ⊆ E and F,G ∈ F(E). Then the following state-
ments hold:

(i) F ⊆ (F : X ).

(ii) (F : E) = F and (F : F) = E.
(iii) (F : (F : E)) = E and (F : (F : F)) = F.
(iv) If X ⊆ Y, then (F : Y) ⊆ (F : X ).

(v) If F ⊆ G, then (F : X ) ⊆ (G : X ). In particular, G⊤ ⊆ (F : G).

(vi) (F : X ) = E if and only if X ⊆ F.

(vii)
(

F :
⋃

i∈∆

Xi

)

=
⋂

i∈∆

(F : Xi).

(viii) (F : X ) =
⋂

p∈X

(F : p).

(ix)
(
⋂

i∈∆

Fi : X
)

=
⋂

i∈∆

(Fi : X ).

(x) (F : X ) = (F : X \ F).
(xi) If F ⊆ X , then X ∩ (F : X ) = F.
(xii) (F : X ) ∩ (F : (F : X )) = F.
(xiii) X ⊆ (F : (F : X )).

(xiv) (F : (F : (F : X ))) = (F : X ).

(xv) ((F : X ) : Y) = ((F : Y) : X ) = (F : X∨Y), where X∨Y = {p∨q : p ∈ X , q ∈ Y}.

P r o o f. (i) Let f ∈ F and p ∈ X . Then f 6 p ∨ f and F ∈ F(E), so p ∨ f ∈ F.
Hence, f ∈ (F : X ). Therefore, F ⊆ (F : X ).

(ii) By (i), F ⊆ (F : E). On the other hand, if α ∈ (F : E), then for all p ∈ E,
α ∨ p ∈ F. Suppose p = α, then α = α ∨ α ∈ F and so α ∈ F, i.e., (F : E) ⊆ F.
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Therefore (F : E) = F. Also, for any α ∈ E and f ∈ F, since f 6 α∨ f and F ∈ F(E)
we have α∨f ∈ F and so α ∈ (F : F). Hence, E ⊆ (F : F) ⊆ E. Therefore (F : F) = E.
(iii) By (ii), (F : (F : E)) = (F : F) = E and (F : (F : F)) = (F : E) = F.
(iv) Let X ⊆ Y and α ∈ (F : Y). Then for any q ∈ Y we have α ∨ q ∈ F. Since

X ⊆ Y, we get α ∈ (F : X ). Therefore (F : Y) ⊆ (F : X ).

(v) Let α ∈ (F : X ) and p ∈ X . Then α ∨ p ∈ F ⊆ G. Hence, (F : X ) ⊆ (G : X ).

Specially, from {1} ⊆ F we have G⊤ = ({1} : G) ⊆ (F : G).

(vi) Let (F : X ) = E and p ∈ X . Since X ⊆ E, clearly p ∈ (F : X ) and so

p = p ∨ p ∈ F. Therefore X ⊆ F. Conversely, let X ⊆ F and α ∈ E. Then for all
p ∈ X , p ∈ F and p 6 p ∨ α. Since F ∈ F(E), we get p ∨ α ∈ F and so α ∈ (F : X ).

Therefore E = (F : X ).

(vii) Since Xi ⊆
⋃

i∈∆

Xi for all i ∈ ∆ by (iv),
(

F :
⋃

i∈∆

Xi

)

⊆ (F : Xi) for all i ∈ ∆.

Hence,
(

F :
⋃

i∈∆

Xi

)

⊆
⋂

i∈∆

(F : Xi). Conversely, let α ∈
⋂

i∈∆

(F : Xi) and p ∈
⋃

i∈∆

Xi.

Then there exists j ∈ ∆ such that p ∈ Xj . Thus, p ∨ α ∈ F and so α ∈
(

F :
⋃

i∈∆

Xi

)

.

Therefore,
(

F :
⋃

i∈∆

Xi

)

=
⋂

i∈∆

(F : Xi).

(viii) This is the result of (vii).

(ix) Since for all i ∈ ∆,
⋂

i∈∆

Fi ⊆ Fi, by (v), we get
(
⋂

i∈∆

Fi : X
)

⊆ (Fi : X ) and

so
(
⋂

i∈∆

Fi : X
)

⊆
⋂

i∈∆

(Fi : X ). Conversely, let α ∈
⋂

i∈∆

(Fi : X ) and p ∈ X . Then

for all i ∈ ∆, α ∨ p ∈ Fi and so α ∨ p ∈
⋂

i∈∆

Fi. Hence, α ∈
(
⋂

i∈∆

Fi : X
)

. Therefore
(
⋂

i∈∆

Fi : X
)

=
⋂

i∈∆

(Fi : X ).

(x) We know X = (X \F)∪(X∩F). Since X∩F ⊆ F, by (vi), we get (F : X∩F) = E.
So by (vii), we have

(F : X ) = (F : (X \ F) ∪ (X ∩ F)) = (F : X \ F) ∩ (F : X ∩ F)

= (F : X \ F) ∩ E = (F : X \ F).

(xi) Let F ⊆ X . By (i), F ⊆ (F : X ) and so F ⊆ X ∩ (F : X ). Conversely, let

α ∈ X ∩ (F : X ). Then α ∈ X and for all p ∈ X , we have α ∨ p ∈ F. Suppose p = α,

then α = α ∨ α ∈ F. Hence, X ∩ (F : X ) ⊆ F. Therefore X ∩ (F : X ) = F.
(xii) By using (i) twice, F ⊆ (F : X )∩ (F : (F : X )). For the other side of inclusion,

let α ∈ (F : X ) ∩ (F : (F : X )). Then α ∈ (F : X ) and from α ∈ (F : (F : X )) we get

α ∨ γ ∈ F for all γ ∈ (F : X ). In particular, when γ := α, we have α = α ∨ α ∈ F
and so (F : X ) ∩ (F : (F : X )) ⊆ F.
(xiii) Let p ∈ X and α ∈ (F : X ). Then α ∨ p ∈ F. Hence, p ∈ (F : (F : X )).

Therefore X ⊆ (F : (F : X )).
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(xiv) Suppose R = (F : X ). Then by (xiii), R ⊆ (F : (F : R)). Conversely,

by (xiii), X ⊆ (F : (F : X )) = (F : R), and by (iv) we get (F : (F : R)) ⊆ (F : X ) = R.

Therefore (F : (F : (F : X ))) = (F : X ).

(xv) Let α ∈ ((F : X ) : Y). Then for all q ∈ Y and p ∈ X , (α ∨ b) ∨ a ∈ F. If
η ∈ X ∨ Y, then there are p ∈ X and b ∈ Y such that η = p ∨ q and so α ∨ η =

α ∨ (p ∨ q) = (α ∨ q) ∨ p ∈ F. Thus α ∈ (F : X ∨ Y). The converse is clear. Hence,

((F : X ) : Y) = (F : X ∨Y). Similarly, we get ((F : Y) : X ) = (F : X ∨ Y). Therefore

the proof is complete. �

The converse of Proposition 3.6 (i) and (xiii) is not true, in general.

E x am p l e 3.7. Let E, F = {d, 1} and X = {a, d} be as in Example 3.2. Then

F $ (F : X ) = {b, c, d, 1}. Moreover, X $ (F : (F : X )) = {a, d, 1}.

Proposition 3.8. Let X ⊆ E and F ∈ F(E). Then (F : 〈X 〉) = (F : X ).

P r o o f. Since X ⊆ 〈X〉, by Proposition 3.6 (iv), (F : 〈X 〉) ⊆ (F : X ). For

the converse, let α ∈ (F : X ) and α /∈ (F : 〈X 〉). Then there exists p ∈ 〈X〉

such that α ∨ p /∈ F. By Proposition 2.8, there are p1, . . . , pn ∈ X such that p1 →

(. . . (pn → p) . . .) = 1 for some n ∈ N. Moreover, since α∨p /∈ F, by Corollary 2.12 (i),
there is a ∨-irreducible filter P of E containing F such that α ∨ p /∈ P. Also, since
α ∈ (F : X ), we get pi ∨ α ∈ F ⊆ P for all 1 6 i 6 n. Hence, α ∈ P or pi ∈ P for all
1 6 i 6 n. If α ∈ P, then by P ∈ F(E), we have α ∨ p ∈ P, which is a contradiction.
Thus, for any 1 6 i 6 n, pi ∈ P and so by p1 → (. . . (pn → p) . . .) = 1 ∈ P and

P ∈ F(E), we get p ∈ P. Since p 6 p ∨ α and P ∈ F(E), we get p ∨ α ∈ P, which is
a contradiction. Thus, α ∈ (F : 〈X 〉). Therefore (F : 〈X 〉) = (F : X ). �

Proposition 3.9. Let F,G,H ∈ F(E). Then
(i) (F : G) ∩G ⊆ F;
(ii) G ∩H ⊆ F if and only if H ⊆ (F : G).

P r o o f. (i) It is clear.

(ii) Let G∩H ⊆ F and α ∈ H. Since for any g ∈ G, α, g 6 α∨ g and G,H ∈ F(E),
we get α ∨ g ∈ G ∩H ⊆ F. Hence, α ∨ g ∈ F and so α ∈ (F : G). Thus, H ⊆ (F : G).

Conversely, let H ⊆ (F : G). Then by (i), G ∩ H ⊆ G ∩ (F : G) ⊆ F. Therefore
G ∩H ⊆ F. �

Proposition 3.10. Let X ⊆ E and F ∈ F(E). Then (F : X ) = {α ∈ E : 〈α〉 ∩

〈X〉 ⊆ F}.
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P r o o f. Suppose B = {α ∈ E : 〈α〉∩〈X〉 ⊆ F}. Let α ∈ B. Then 〈α〉∩〈X〉 ⊆ F.
By Proposition 3.9 (ii), we get 〈α〉 ⊆ (F : 〈X 〉). Since α ∈ 〈α〉 and by Proposition 3.8,

we have α ∈ (F : X ). Hence, B ⊆ (F : X ). Conversely, let α ∈ (F : X ). Then by

Proposition 3.8, α ∈ (F : 〈X 〉) and so 〈α〉 ⊆ (F : 〈X 〉). Now, by Proposition 3.9 (ii),

we have 〈α〉 ∩ 〈X〉 ⊆ F. Hence, (F : X ) ⊆ B. Therefore (F : X ) = B. �

Proposition 3.11. Let p ∈ E and F be a positive implicative filter of E. Then
(F : p) ∩ 〈F ∪ {p}〉 = F.

P r o o f. We know F ⊆ 〈F ∪ {p}〉 and by Proposition 3.6 (i), we get F ⊆

(F : p) ∩ 〈F ∪ {p}〉. Conversely, let α ∈ (F : p) ∩ 〈F ∪ {p}〉. Then α ∨ p ∈ F
and by Proposition 2.9 (iv), p → α ∈ F. Also, by Proposition 2.2 (vii), we have
p → α = (p ∨ α) → α and since p → α, p ∨ α ∈ F and F ∈ F(E), we get α ∈ F.
Hence, (F : p) ∩ 〈F ∪ {p}〉 ⊆ F. Therefore (F : p) ∩ 〈F ∪ {p}〉 = F. �

Proposition 3.12. Let F,G ∈ F(E) and ∅ 6= G ⊆ E. If G is a chain such that
G * F, then (F : G) is a ∨-irreducible filter of E.

P r o o f. Let G be a chain and G * F. Then by Proposition 3.6 (vi), we get
(F : G) 6= E. If α ∨ γ ∈ (F : G), then (α ∨ γ) ∨ g ∈ F for all g ∈ G. On the contrary,
let α, γ /∈ (F : G). Then there are g1, g2 ∈ G such that α ∨ g1 /∈ F and γ ∨ g2 /∈ F.
Suppose g := g1 ∧ g2. Since G ∈ F(E) and it is closed under ∧-operation, we get
g ∈ G and so α∨ g, γ ∨ g ∈ G. Since G is a chain, without loss of generality, suppose
α ∨ g 6 γ ∨ g. Hence, we have

(α ∨ γ) ∨ g = (α ∨ g) ∨ γ 6 (γ ∨ g) ∨ γ = γ ∨ g 6 γ ∨ g2.

Since (α ∨ γ) ∨ g ∈ F and F ∈ F(E), we have γ ∨ g2 ∈ F, which is a contradiction.
Therefore (F : G) is a ∨-irreducible filter of E. �

Proposition 3.13. Let F ∈ F(E) and P be a ∨-irreducible filter of E such that
F ⊆ P. Then X * P implies (F : X ) ⊆ P for any ∅ 6= X ⊆ E.

P r o o f. Let X * P. Then there exists p ∈ X such that p /∈ P. Also, if
α ∈ (F : X ), then α ∨ p ∈ F ⊆ P. Since p /∈ P and P is a ∨-irreducible filter, we get
α ∈ P. Hence, (F : X ) ⊆ P. �

Corollary 3.14. Let F ∈ F(E) and P be a ∨-irreducible filter of E. Then X * P
implies (P : X ) = P for any ∅ 6= X ⊆ E.

P r o o f. By Proposition 3.6 (i), we have P ⊆ (P : X ). Then by Proposition 3.13,

the proof is complete. �
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Theorem 3.15. Let P ∈ F(E). Then P is a ∨-irreducible filter of E if and only if
(P : α) = P for any α /∈ P.

P r o o f. Let P be a ∨-irreducible filter of E and α /∈ P. By Corollary 3.14, it is
enough to set X = {α} and so the proof is clear. Conversely, let α∨γ ∈ P and α /∈ P.
By hypothesis, (P : α) = P. Moreover, since α ∨ γ ∈ P, we get γ ∈ (P : α) = P.
Therefore P is a ∨-irreducible filter of E. �

Definition 3.16 ([18]). In a lattice L with bottom element 0, an element x ∈ L

is said to have a pseudo-complement element if there exists the greatest element

x∗ ∈ L, disjoint from x, with the property that x ∧ x∗ = 0. More formally, x∗ =

max{y ∈ L : x∧y = 0}. The lattice L itself is called a pseudo-complemented lattice if

every element of L has a pseudo-complement element. A relative pseudo-complement

of a with respect to b, is a maximal element c such that a ∧ c 6 b.

Proposition 3.17. Let F,G ∈ F(E). Then (F : G) is a relative pseudo com-

plement of G with respect to F in the lattice (F(E),⊆), where F ∧ G := F ∩ G,
F ∨G := 〈F ∪G〉.

P r o o f. By Proposition 3.9 (i), (F : G)∩G ⊆ F. It is enough to show that (F : G)

is the greatest one. For this, suppose that there is H ∈ F(E) such that H ∩ G ⊆ F
and let α ∈ H. Then for all g ∈ G, α, g 6 α ∨ g and so α ∨ g ∈ H ∩ G ⊆ F. Thus,
α ∨ g ∈ F for all g ∈ G, i.e., α ∈ (F : G). Hence, H ⊆ (F : G). Therefore (F : G) is

a relative pseudo complement of G with respect to F in the lattice (F(E),⊆). �

R em a r k 3.18. Let F be a proper filter of E and H ∈ F(E/F). If we take
G := {x ∈ E : [x] ∈ H}, then it is easy to see that F ⊆ G and H = G/F. So, any
filter of quotient equality algebra E/F has the form G/F such that G ∈ F(E) and
F ⊆ G. That is

F(E/F) = {G/F : F ⊆ G ∈ F(E)}.

Proposition 3.19. Let F,G ∈ F(E) such that F ⊆ G. Then (G : X )/F ∈ F(E/F).

P r o o f. By Proposition 3.6 (i) and (v), we have F ⊆ (F : X ) ⊆ (G : X ). Then

by Remark 3.18, we get (G : X )/F ∈ F(E/F). �

Corollary 3.20. Let F,G ∈ F(E) and F ⊆ X ⊆ E such that F ⊆ G. Then
((G/F) : (X/F)) = (G : X )/F.
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P r o o f. We have
(G
F

:
X

F

)

=
{

[p] ∈
E
F
: [p] ∨ [α] ∈

G
F

∀ [α] ∈
X

F

}

=
{

[p] ∈
E
F
: [p ∨ α] ∈

G
F

∀α ∈ X
}

=
{

[p] ∈
E
F
: p ∨ α ∈ G ∀α ∈ X

}

=
{

[p] ∈
E
F
: p ∈ (G : X )

}

=
(G : X )

F
.

�

Proposition 3.21. Let F ∈ F(E) and ∅ 6= X ⊆ E. Then
(i) (X/F)⊤ = (F : X )/F, particularly, [α]⊤ = (F : α)/F for any [α] ∈ E/F,
(ii) (X/F)⊤⊤ = (F : (F : X ))/F.

P r o o f. (i)

(X

F

)⊤

=
{

[α] ∈
E
F
: [α] ∨ [p] = [1] ∀ [p] ∈

X

F

}

=
{

[α] ∈
E
F
: [α ∨ p] = F ∀ p ∈ X

}

=
{

[α] ∈
E
F
: α ∨ p ∈ F ∀ p ∈ X

}

=
{

[α] ∈
E
F
: α ∈ (F : X )

}

=
(F : X )

F
.

Specially, suppose X = {x}, then [α]⊤ = (F : α)/F.
(ii) By (i), we have (X/F)⊤⊤ = ((X/F)⊤)⊤ = ((F : X )/F)⊤ = (F : (F : X ))/F. �

Definition 3.22. Let F,G ∈ F(E). Then G is called F-involutive if G =

(F : (F : G)). Also, if any G ∈ F(E) is F-involutive, then E is called an involuntary
equality algebra relative to F. The set of all F-involutive filters of E is denoted by
SF(E). Indeed, SF(E) = {G ∈ F(E) : G = (F : (F : G))}.

E x am p l e 3.23. Let E be the equality algebra as in Example 3.2, F = {s, 1}

and G = {p, s, 1}. Obviously, F,G ∈ F(E) and (F : (F : G)) = G. Thus, G is an
F-involutive filter of E.

Proposition 3.24. Let F,G ∈ F(E). If F ⊆ G and G⊤⊤ = G, then G ∈ SF(E).

P r o o f. By Proposition 3.6 (xiii), we have G ⊆ (F : (F : G)). For the converse,

let g /∈ G so g /∈ G⊤⊤. Thus, there exists α ∈ G⊤ such that g∨α 6= 1. Since α 6 α∨g

and α ∈ G⊤ ∈ F(E), then α ∨ g ∈ G⊤. By Proposition 3.6 (v), G⊤ ⊆ (F : G) and

so α ∨ g ∈ (F : G). Moreover, 1 6= α ∨ g ∈ G⊤ and from G ∩ G⊤ = {1} we have

α ∨ g /∈ G. Since F ⊆ G, we get α ∨ g /∈ F. Hence, α ∨ g ∈ (F : G) and α ∨ g /∈ F =

(F : G) ∩ (F : (F : G)), by Proposition 3.6 (xii). Thus, α ∨ g /∈ (F : (F : G)) and since

(F : (F : G)) ∈ F(E), we have g /∈ (F : (F : G)). Indeed, from g /∈ G we conclude
g /∈ (F : (F : G)), which yields (F : (F : G)) ⊆ G. Therefore G = (F : (F : G)). �

Corollary 3.25. If F = {1}, then G is F-involutive if and only if G = G⊤⊤.

P r o o f. By Proposition 3.24, the proof is straightforward. �
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Proposition 3.26. If G ∈ SF(E), then G/F ∈ SF(E/F).

P r o o f. By Proposition 3.21 (ii), we get (G/F)⊤⊤ = (F : (F : G))/F = G/F.
Thus, by Proposition 3.24, G/F is an F-involutive filter of E/F. �

Proposition 3.27.

(i) SF(E) = {(F : G) : F ⊆ G ∈ F(E)}.
(ii) SF(E) = {(F : X ) : F ⊆ X ⊆ E}.
(iii) If G,H ∈ SF(E) such that G ⊆ H, then G ∩ (F : H) = F.

P r o o f. (i) Take B := {(F : G) : F ⊆ G, G ∈ F(E)}. Then for any G ∈ SF(E),
we have G = (F : (F : G)). Now, suppose H := (F : G). Thus, by Propositions 3.5

and 3.6 (i), we get H ∈ F(E) such that F ⊆ H. Hence, G = (F : H) ∈ B and

so SF(E) ⊆ B. Conversely, if (F : G) ∈ B, then by Proposition 3.6 (xiv), we get

(F : G) = (F : (F : (F : G))). Thus, (F : G) is an F-involutive filter of E, i.e.,
(F : G) ∈ SF(E). Therefore SF(E) = B.

(ii) Suppose C := {(F : X ) : F ⊆ X ⊆ E}. By (i), it is obvious that SF(E) ⊆ C.

Now, let (F : X ) ∈ C such that F ⊆ X ⊆ E. For any ∅ 6= X ⊆ E, by Proposition 3.8,
we have (F : X ) = (F : 〈X 〉) such that F ⊆ X ⊆ 〈X〉 ∈ F(E) and so, C ⊆ SF(E).
Therefore C = SF(E).
(iii) Since G ⊆ H, by Proposition 3.6 (iv), (F : H) ⊆ (F : G). By G ∈ SF(E),

Proposition 3.6 (i) and (xi), we get F ⊆ G ∩ (F : H) ⊆ G ∩ (F : G) = F. Therefore
G ∩ (F : H) = F. �

Proposition 3.28. Let F,G,H ∈ F(E). Then (F : (F : G ∩H)) = (F : (F : G)) ∩

(F : (F : H)).

P r o o f. Since G ∩ H ⊆ G,H, by Proposition 3.6 (iv), (F : G), (F : H) ⊆

(F : G ∩H). Again by Proposition 3.6 (iv), we get (F : (F : G ∩H)) ⊆ (F : (F : G)) ∩

(F : (F : H)). Conversely, let α ∈ (F : (F : G)) ∩ (F : (F : H)) and γ ∈ (F : G ∩ H).

Then for all g ∈ G and h ∈ H, we have g, h 6 g∨h and by G,H ∈ F(E), g∨h ∈ G∩H.
Thus, γ ∨ (g ∨ h) ∈ F. Since γ ∨ (g ∨ h) 6 (α ∨ γ) ∨ (g ∨ h) and F ∈ F(E), we have
(α ∨ γ ∨ g) ∨ h ∈ F for all h ∈ H and so

(3.1) (α ∨ γ) ∨ g ∈ (F : H).

Also, α 6 (α ∨ γ) ∨ g and α ∈ (F : (F : H)) ∈ F(E). Thus, by Proposition 3.6 (xii),

(3.2) (α ∨ γ) ∨ g ∈ (F : (F : H)) ∩ (F : H) = F.

Hence, for all g ∈ G, (α ∨ γ) ∨ g ∈ F, and so α ∨ γ ∈ (F : G). Moreover, by

α ∈ (F : (F : G)) ∈ F(E) and α 6 α ∨ γ, we have α ∨ γ ∈ (F : (F : G)). So by
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Proposition 3.6 (xii),

(3.3) α ∨ γ ∈ (F : (F : G)) ∩ (F : G) = F

for any γ ∈ (F : G ∩ H). Thus, α ∈ (F : (F : G ∩ H)) and so (F : (F : G)) ∩

(F : (F : H)) ⊆ (F : (F : G ∩H)). Therefore the proof is complete. �

Lemma 3.29. The algebraic structure (SF(E),∨,∧,F,E) is a complete bounded
lattice, where, for any subfamily {Gi}i∈I in SF(E), the operations “∧” and “∨” on
SF(E) are defined as follows:

∧

i∈I

Gi =
⋂

i∈I

Gi, and
∨

i∈I

Gi =
(

F :
(

F :
⋃

i ∈ IGi

))

.

P r o o f. By Proposition 3.6 (iii), F and E are the least and the greatest elements
of SF(E), respectively. Let {Gi}i∈I ∈ SF(E). Then by Proposition 3.28, we get(

F :
(

F :
⋂

i∈I

Gi

))

=
⋂

i∈I

(F : (F : Gi)) =
⋂

i∈I

Gi. Thus,
∧

i∈I

Gi ∈ SF(E). Moreover, by

Proposition 3.6 (xiv), we have
(

F :
(

F :
∨

i∈I

Gi

))

=
(

F :
(

F :
(

F :
(

F :
⋃

i∈I

Gi

)))

︸ ︷︷ ︸

)

=
(

F :
(

F :
⋃

i∈I

Gi

))

=
∨

i∈I

Gi.

Hence,
∨

i∈I

Gi ∈ SF(E). Therefore (SF(E),∨,∧,F,E) is a complete bounded lattice.
�

Proposition 3.30. The algebraic structure (SF(E),∨,∧,F,E) is a complemented
lattice.

P r o o f. Let G ∈ SF(E). Then F ⊆ G and by Proposition 3.6 (xi), we get
(F : G) ∩G = F. Also,

(F : G) ∨G = (F : (F : [(F : G) ∪G])
︸ ︷︷ ︸

) by definition of ∨-operation

= (F : ((F : (F : G))
︸ ︷︷ ︸

∩(F : G))) by Proposition 3.6 (vii)

= (F : (G ∩ (F : G))) since G ∈ SF(E)

= (F : F) by Proposition 3.6 (xi)

= E Proposition 3.6 (ii).

Hence, (F : G) is a complemented lattice of G relative to F. Therefore

(SF(E),∨,∧,F,E)

is a complemented lattice. �
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Theorem 3.31. The algebraic structure (SF(E),∨,∧,F,E) is a complete Boolean
lattice.

P r o o f. By Lemma 3.29 and Proposition 3.30, we have that (SF(E),∨,∧,F,E)
is a complete and complemented lattice. So, it is enough to show the distribution:

For this, let G,H,K ∈ SF(E). Since H ∩K ⊆ H,K, then it is easy to see that

(3.4) G ∨ (H ∩K) ⊆ (G ∨H) ∩ (G ∨K).

For the converse, we know that

(3.5) H ∩K ⊆ G ∨ (H ∩K), G ∩K ⊆ G ⊆ G ∨ (H ∩K).

So, by Proposition 3.27 (iii), we get

(3.6) (H ∩K) ∩ (F : G ∨ (H ∩K))
︸ ︷︷ ︸

B

= F, (G ∩K) ∩ (F : G ∨ (H ∩K))
︸ ︷︷ ︸

B

= F.

Hence, H ∩ (K ∩ B) = F = G ∩ (K ∩ B). Since by Proposition 3.17, (F : H) and

(F : G) are relative pseudo complements of H and G with respect to F, respectively,
we get (K ∩B) ⊆ (F : H) ∩ (F : G). Now, by Proposition 3.27,

(3.7) (K ∩B) ∩ (F : ((F : H) ∩ (F : G)))
︸ ︷︷ ︸

C

= F.

Thus, (K ∩ B) ∩ C = F and so (C ∩ K) ∩ B = F. By Proposition 3.17, (F : B) is

a relative pseudo complement of B with respect to F and so

(3.8) (C ∩K) ⊆ (F : B) = (F : (F : G ∨ (H ∩K))) = G ∨ (H ∩K).

Moreover, from Propositions 3.6 (vii) and 3.8, we get

(3.9) C = (F : ((F : H)∩(F : G))) = (F : (F : (H∪G))) = (F : (F : 〈H∪G〉)) = H∨G.

Therefore, by (3.8) and (3.9), we get for all G,H,K ∈ SF(E),

(3.10) (G ∨H) ∩K ⊆ G ∨ (H ∩K).

Now, we have

(G ∨H) ∩ (G ∨K)
︸ ︷︷ ︸

⊆ G ∨ (H ∩ (G ∨K)) by (3.10)

⊆ G ∨ (G ∨ (H ∩K)) by (3.10)

= G ∨ (H ∩K).

Hence, by (3.4), (G ∨ H) ∩ (G ∨ K) = G ∨ (H ∩ K). Therefore (SF(E),∨,∧,F,E) is
a complete Boolean lattice. �
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Theorem 3.32. The algebraic structure (SF(E),⊆,→,⊙,F,E) is a BL-algebra,
where operations “→” and “⊙”, for any G,H ∈ SF(E), are defined as follows:

G → H := H ∨ (F : G), G⊙H := G ∩H.

P r o o f. (BL1) By Lemma 3.29, (SF(E),∧,∨,F,E) is a bounded lattice.

(BL2) According to the definition of “⊙”, clearly (SF(E),⊙,E) is a commutative
monoid.

(BL3) Let G,H,K ∈ SF(E). If G ⊆ H → K, then by definition of “∨”, we get
G ⊆ K ∨ (F : H). Moreover,

G⊙H = G ∩H ⊆ (K ∨ (F : H)) ∩H

= (K ∩H) ∨ ((F : H) ∩H
︸ ︷︷ ︸

) by Theorem 3.31

= (K ∩H) ∨ F by Proposition 3.27 (iii)

= K ∩H ⊆ K by Lemma 3.29.

So, G ⊆ H → K implies G ⊙ H ⊆ K. Conversely, let G ⊙ H ⊆ K. Then by the
definition of “⊙”, we have G ∩H ⊆ K and so

G = G ∩ E = G ∩ [H ∨ (F : H)] by Proposition 3.30

= (G ∩H) ∨ [G ∩ (F : H)] by Theorem 3.31

⊆ K ∨ [G ∩ (F : H)] ⊆ K ∨ (F : H)

= H → K by definition of “→” operation.

Thus, G ⊙ H ⊆ K implies G ⊆ H → K. Therefore (BL3) is satisfied. Moreover,
we have

G⊙ (G → H) = G ∩ (G → H)

= G ∩ (H ∨ (F : G))

= (G ∩H) ∨ [G ∩ (F : G)
︸ ︷︷ ︸

] by Theorem 3.31

= (G ∩H) ∨ F by Proposition 3.27 (iii)

= G ∩H by Lemma 3.29

= G⊙H.
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Hence, (BL4) is satisfied. Also,

(G → H) ∨ (H → G) = [H ∨ (F : G)] ∨ [G ∨ (F : H)]

= [H ∨ (F : H)] ∨ [G ∨ (F : G)] by associativity of “∨”

= E ∨ E = E by Proposition 3.30.

So, (BL5) is satisfied. Therefore (SF(E),⊆,→,⊙,F,E) is a BL-algebra. �

4. Conclusions and future works

In this paper, the notion of relative co-annihilator in lattice equality algebras

was introduced. Many properties of relative co-annihilators were investigated, the

set of all F-involutive filters of E was defined and showed that it can be made as
a BL-algebra.

In our future work, we will continue our study of algebraic properties of this special

sets and we will investigate the relation between relative co-annihilators and some

special filters in equality algebras.
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