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Abstract. Following G.Grätzer and E.Knapp (2007), a slim planar semimodular lattice,
SPS lattice for short, is a finite planar semimodular lattice having no M3 as a sublattice.
An SPS lattice is a slim rectangular lattice if it has exactly two doubly irreducible elements
and these two elements are complements of each other. A finite poset P is said to be
JConSPS-representable if there is an SPS lattice L such that P is isomorphic to the poset
J(ConL) of join-irreducible congruences of L. We prove that if 1 < n ∈ N and P is an
n-element JConSPS-representable poset, then there exists a slim rectangular lattice L such
that J(ConL) ∼= P , the length of L is at most 2n2, and |L| 6 4n4. This offers an algorithm
to decide whether a finite poset P is JConSPS-representable (or a finite distributive lattice is
“ConSPS-representable”). This algorithm is slow as G. Czédli, T. Dékány, G.Gyenizse, and
J. Kulin proved in 2016 that there are asymptotically 12 (k − 2)! e2 slim rectangular lattices
of a given length k, where e is the famous constant ≈ 2.71828. The known properties and
constructions of JConSPS-representable posets can accelerate the algorithm; we present a
new construction.

Keywords: slim rectangular lattice; slim semimodular lattice; planar semimodular lattice;
congruence lattice; lattice congruence; lamp; C1-diagram

MSC 2020 : 06C10

1. Introduction

Following Grätzer and Knapp (see [20]), a slim planar semimodular lattice, SPS

lattice for short, is a finite planar (upper) semimodular lattice having no M3 as
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a sublattice. By Grätzer and Knapp (see [21]), an SPS lattice L is a slim rectangular

lattice if it has exactly two doubly irreducible elements (denoted by lc(L) and rc(L)

and called the left corner and the right corner of L) and these two elements are

complements of each other. As usual, J(L), the set of join-irreducible elements, is

{x ∈ L : x has exactly one lower cover}; M(L) is defined dually. As in Czédli and

Schmidt (see [16]), a lattice L is slim if it is finite and J(L) is the union of two chains.

We know from Czédli and Schmidt (see [16], Lemma 2.3) that for a lattice L,

(1.1) L is an SPS lattice ⇔ L is a slim semimodular lattice.

In the paper as in many earlier ones, “slim semimodular” means the same as “slim

planar semimodular”, that is, “SPS”. A finite lattice D is ConSPS-representable if it

is isomorphic to the congruence lattice ConL of an SPS lattice L. Similarly, a finite

poset P is JConSPS-representable if P ∼= J(ConL) for an SPS lattice L.

Due to (historical) Section 2 in Czédli and Kurusa (see [14]), the surveying part of

this section is reduced to a few comments. The four dozen element list1 in Appendix

of Czédli (see https://arxiv.org/abs/2107.10202) shows that since 2007, SPS lat-

tices form an intensively investigated class of lattices. In addition to their impact on

and connection with geometry, group theory, and combinatorics as explained in [14],

SPS lattices have connections with finite model theory, see Czédli [9]. SPS lattices

(or their duals) are particular cases of some other classes of lattices and combinatorial

structures; indeed, they are also join-distributive lattices, meet-semidistributive lat-

tices, and subspace lattices of antimatroids (or convex geometries); see, for example,

Czédli [4]. Thus, benefiting from the fact that SPS lattices are well understood by

means of several structure theorems and representation theorems, the study of these

lattices can lead to discoveries for larger classes of lattices and related structures;

for example, see Adaricheva and Czédli [1]. Actually, even purely geometric papers

are in connection with SPS lattices; see, for example, Czédli and Kurusa [14]. By

Grätzer and Knapp (see [20], Section 3), the theory of planar semimodular lattices is

satisfactorily reduced to that of SPS lattices. So last (and least) we note that there

are some problems where it could be possible or it was possible to prove more for

planar semimodular or SPS lattice than for all finite lattices; see, e.g., Ahmed and

Horváth [2], and Czédli and Schmidt [15].

Within lattice theory, the interest in SPS lattices is mainly fueled by (see Grätzer

[18], Problem 1) asking for a characterization of ConSPS-representable distributive

lattices. Note that Problem 1 of [18] is motivated by the fact that M3 sublattices

played a key role in Grätzer, Lakser, and Schmidt [22] representing all finite distribu-

1 See http://www.math.u-szeged.hu/~czedli/m/listak/publ-psml.pdf for an update.
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tive lattices by congruence lattices of planar semimodular lattices, whereby it was

natural to ask what happens when M3 sublattices are not permitted, that is, when

SPS rather than planar semimodular lattices are used.

Since ConSPS-representability implies distributivity and a finite distributive lat-

tice D is perfectly described by J(D), a satisfactory characterization of JConSPS-

representable posets would yield a characterization of ConSPS-representable lattices.

However, the two representability problems are not the same in the aspect of axiom-

atizability. Indeed, Czédli in [9] proves that JConSPS-representable posets cannot

be described by finitely many axioms in the first-order language of finite posets but

it is still unknown whether ConSPS-representable lattices have a finite first-order

axiomatization in the class of finite lattices. Note that the class of JConSPS repre-

sentable posets has many known properties and is closed under some constructions;

see Remark 6.3 for bibliographic details. However, we do not know whether these

properties and constructions themselves offer an algorithm to decide whether a poset

is JConSPS-representable or not. Indeed, since we do not know whether the collec-

tion of the above-mentioned known properties and constructions is sound and even

a very large SPS lattice can JConSPS-represent a small poset2 P , it is not clear at

first sight whether it suffices to check J(ConL) for finitely many L.

2. Goal

In Theorem 5.1, we give an upper bound on the length of the shortest slim rect-

angular lattices L that JConSPS-represents a given JConSPS-representable finite

poset P . Therefore, there exists an algorithm to decide if a finite poset P is JConSPS-

representable; indeed, we know from Czédli, Dékány, Gyenizse, and Kulin (see [12])

that, up to isomorphism,

(2.1)

{
the number of slim rectangular lattices of a given length k

is asymptotically 1
2 (k − 2)! e2, where e = lim

n→∞

(1 + 1/n)n ≈ 2.71828.

By (2.1), there are only finitely many slim rectangular lattices up to a given length.

Thus, Theorem 5.1 implies the existence of an algorithm that for each finite poset P

decides whether P is JConSPS-representable. Moreover, if P is such and |P | > 1,

then the algorithm constructs a slim rectangular lattice L such that P ∼= J(ConL).

Remark 6.3 points out that known properties and constructions, including the mul-

tifork extension construction, make the algorithm faster. Proposition 6.1 presents

a new construction that extends a JConSPS-representable poset to a larger one.

2 E.g., with S
(1)
7 ,S

(2)
7 , . . . in Figure 2, we have that |J(Con S

(k)
7 )| = 5 for all (large) k.
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3. Concepts, terminology, and tools from earlier papers

As in Czédli [7] and thereafter, to avoid subscripts of subscripts, the bottom 0I
and the top 1I of an interval I are denoted by Foot(I) and Peak(I), respectively.

For u in a lattice L, ↓u = ↓Lu := {x ∈ L : x 6 u} and ↑u = ↑Lu := {x ∈ L : x > u}.

Edges in a planar diagram are straight line segments denoting prime intervals p =

[Foot(p),Peak(p)]. A usual coordinate system of the plane is always fixed. Edges

(or lines) parallel to (1, 1) or (1,−1) are of normal slopes. Edges parallel to (1, t) for

some t ∈ R with |t| > 1 and vertical edges are said to be precipitous.

Going after Grätzer and Knapp (see [20] and [21]), let L♯ be a planar diagram of

a slim rectangular lattice L. The left boundary chain and the right boundary chain

of L♯ are denoted by LBnd(L) and RBnd(L), respectively. (Actually, LBnd(L♯)

and RBnd(L♯) would be more precise but we always fix L♯ in a way to be defined

soon. This comment applies for several other concepts we are going to define.)

The boundary of L is Bnd(L) = LBnd(L) ∪ RBnd(L). The elements of Bnd(L)

and those of L \ Bnd(L) are called boundary elements and internal elements. For

example, the already mentioned corners are boundary elements: lc(L) ∈ LBnd(L)

and rc(L) ∈ RBnd(L). For x ∈ L, the left support and the right support of x are3

(3.1)







lsupp(x) := x ∧ lc(L) and rsupp(x) := x ∧ rc(L).

Note that x = lsupp(x) ∨ rsupp(x),

lsupp(x) is on the lower left boundary ↓L lc(L), ↓L lc(L) ⊆ LBnd(L),

rsupp(x) is on the lower right boundary ↓Lrc(L), ↓Lrc(L) ⊆ RBnd(L).

The upper left boundary and the upper right boundary of L are the principal filters

↑L lc(L) and ↑Lrc(L); note that ↑L lc(L) ⊆ LBnd(L) and ↑Lrc(L) ⊆ RBnd(L).

Recall from Czédli [7], Definition 2.1 (as Czédli [6] would be too general here)

that the diagram L♯ of L is a C1-diagram if for every edge p = [Foot(p),Peak(p)] of

the diagram, p is either precipitous or it is of a normal slope and, furthermore, p is

precipitous ⇔ Foot(p) is an internal meet-irreducible element of L.

C o n v e n t i o n 3.1. Together with each slim rectangular lattice occurring in the

paper, a C1-diagram of our lattice is fixed. Moreover, even if we do not say it all

the time, whenever we construct a lattice (like a sublattice or a larger lattice), then

we always construct its fixed C1-diagram as well. In notation, we rarely distinguish

a slim rectangular lattice from its C1-diagram.

3 The third equality in (3.1) follows from (1.1) and Grätzer and Knapp, see [21], Lemma 3
and Lemma 4.
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Complying with Convention 3.1, all lattice diagrams in this paper are C1-diagrams.

Let L denote a slim rectangular lattice. Note in advance that quite often,

(3.2) we do not distinguish between lattice theoretic and geometric objects.

If a < b ∈ L and C1, C2 are maximal chains of the interval [a, b] such that C1 ∩C2 =

{a, b} and all elements x of C1 are on the left of C2 (including the possibility of

x ∈ C2), then the elements [a, b] that are simultaneously on the right of C1 and on

the left of C2 form a so-called lattice region; see Kelly and Rival [23] for a more exact

definition. The corresponding geometric area, which is bordered by C1 and C2, is a

geometric region. Note that whenever we define a geometric area (like a geometric

region) or a line segment, then (unless otherwise explicitly stated) it contains its

boundaries, that is, it is topologically closed. Minimal non-chain regions are cells.

If a cell contains exactly four lattice elements, then it is a 4-cell. Note that 4-cells

are cover-preserving boolean sublattices with 4 elements but, as M3 exemplifies, not

conversely. A 4-cell lattice is a planar lattice in which all cells are 4-cells (in a fixed

planar diagram). Grätzer and Knapp in [20], Lemmas 4–5, and in [21] proved that

for a planar lattice L (which is finite by definition),

(3.3)







if L is a 4-cell lattice, no two distinct 4-cells have the same bottom,

L has exactly two doubly irreducible elements, and these two elements

are complementary, then L is a slim rectangular lattice. Conversely,

every slim rectangular lattice is a 4-cell lattice with these properties.

top edge

Figure 1. A trajectory.

On the set of prime intervals (i.e., edges) of a slim rectangular lattice L, let τ be

the smallest equivalence relation that collapses the opposite sides of every 4-cell. As

in Czédli and Schmidt [16], the blocks of τ are called trajectories ; e.g., the double-

lined edges form a trajectory in Figure 1. Going from left to right, a trajectory does

not branch out and neither it does so backwards. The unique edge p of a trajectory

such that Foot(p) ∈ M(L) is the top edge of the trajectory. The ascending part of

a trajectory consists of the top edge and all of its edges left to the top edge; the
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descending part is defined left-right symmetrically. Any two consecutive edges of

a trajectory form a 4-cell of a the trajectory; they are orange-filled in the figure.

Given a 4-cell H of L and a positive integer k ∈ N+, we obtain the k-fold mul-

tifork extension of L at H by changing H to a copy of S
(k)
7 and proceeding to the

southeast and to the southwest to preserve semimodularity. For the exact definition,

see Czédli [5], where this construction was introduced, or see Figure 2, where the

construction is illustrated by performing a 1-fold multifork extension at H1 of L0

to obtain L1 and performing a 3-fold multifork extension at H2 of L1 to obtain L2.

(To save space, our figures are multi-purpose figures; some ingredients of Figure 2

are explained later.) Note in advance that the thick edges of our lattice diagrams are

called neon tubes. Note also that 1-fold multifork extensions are also called fork ex-

tensions ; see Czédli and Schmidt [17]; in this case the new elements form a so-called

fork in the new lattice; see (4.1) later.

A grid is (the fixed C1-diagram of) the direct product of two non-singleton finite

chains. A 4-cell H of L is a distributive 4-cell if the principal ideal ↓LPeak(H) is

a distributive lattice. By Czédli and Schmidt [17] and the following lemma,

(3.4) if H is a distributive 4-cell of L, then ↓LPeak(H) is a grid.

The most useful structure theorem of slim rectangular lattices is the following.

Lemma 3.2 (Multifork Sequence Lemma [5], Theorem 3.7). For each slim rectan-

gular lattice L, there exist positive integersm1, . . . ,mk, a sequence L0, L1, . . . , Lk of

slim rectangular lattices, and a distributive 4-cell Hi of Li−1 for i ∈ {1, . . . , k} such

that L0 is a grid, Lk = L, and Li is obtained from Li−1 by performing an mi-fold

multifork extension at Hi for i ∈ {1, . . . , k}. Furthermore, any lattice obtained in

this way from a grid is a slim rectangular lattice.

The system (L0, H1,m1, L1, H2,m2, . . . , Lk−1, Hk,mk, L = Lk) with components

as above is the multifork sequence of L; it is not necessarily unique but we always

fix one. (Note, however, that k is unique.)

Definition 3.3 (Czédli [10]). Let n be an edge on the upper boundary of the

initial grid L0. The union of the 4-cells of the trajectory containing n is the original

territory of n; it is denoted by OT(n). When we obtain Li from Li−1, then we

add several new edges and exactly mi of these new edges have the same peak as H .

Let n be one of these new edges. In Li, the union of the 4-cells of the trajectory

containing n is a geometric area; we call it the original territory OT(n) of n in L.

Note that we have defined OT(n) if and only if n is an edge of the upper boundary

or n is a precipitous edge. If n is an edge of the upper left boundary chain, then the
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essential part of the original territory, denoted by EOT(n), and the right essential

part of the original territory, denoted by REOT(n), of n are OT(n) while the left

essential part of the original territory, denoted by LEOT(n), of n is the empty set.

Similarly, for n on the right upper boundary, EOT(n) = LEOT(n) := OT(n) and

REOT(n) = ∅. Next, let n be a precipitous new edge of Li and denote by T the

trajectory of Li that contains n. The union of the 4-cells of T that do not contain n

as an edge is the essential part EOT(n) of the original territory of n; it is a geometric

area and the union of two (geometrically) connected subsets that are, in a self-

explanatory manner, called the left essential part LEOT(n) and the right essential

part REOT(n) of the original territory of n.

For examples of OT(n), . . . ,REOT(n), see Figures 2, 3, and 4. Even though their

definition relies on L0 or Li, we also use these concepts in L, where OT(n), . . . ,

REOT(n) have no connection with the trajectory containing n in general; this is

exemplified by n1 and n2 in L
′ (but not in L) of Figure 3. Statement (3.4) implies that

(3.5)







if OT(n) is defined, then it is bordered by edges of L and all of these

edges with peaks different from Peak(n) are of normal slopes.

Furthermore, each of LEOT(n) and REOT(n) is either the empty set

or a rectangle bordered by edges of normal slopes. See also (3.6) later.

Definition 3.4 (Czédli [7]). Let L be a slim rectangular lattice.

(A) The prime intervals p of L with Foot(p) ∈ M(L) are called neon tubes. If

Foot(p) ∈ Bnd(L), then p is a boundary neon tube and it is of a normal slope.

Otherwise, p is an internal neon tube and it is precipitous. (Convention 3.1 applies.)

(B) Boundary lamps are the same as boundary neon tubes. (However, if I = p is

a boundary lamp, then we sometimes say that p is the neon tube of I.) An interval I

is an internal lamp if Peak(I) is the peak of an internal neon tube and Foot(I) is

the meet of the feet of all internal neon tubes with the peak Peak(I). (These neon

tubes are called the neon tubes of I.)

(C) In our lattice diagrams (which are C1-diagrams), the neon tubes are exactly

the thick edges and the feet of the lamps are black-filled. We know from Czédli [7],

Lemma 3.1 that a lamp is uniquely determined by its foot. Thus, for a lamp I, we

label the black-filled vertex Foot(I) in our figures by I rather than by Foot(I).

Lamps have been the fundamental tool to study JConSPS-representability in

Czédli [7], [9], [11], [10], and Czédli and Grätzer [13]. Lamps are particular in-

tervals I. Sometimes, we need to consider them pairs (Foot(I),Peak(I)). The (geo-

metric) rectangle bordered by LBnd(L) and RBnd(L) is the full geometric rectangle

FullRect(L) of L. Combining Definition 3.3 with Czédli [7], recall the following.
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3 45

Figure 2. Multifork extensions and some geometric objects.

Definition 3.5 (Some geometric areas and polygons; Czédli [7]). For a slim

rectangular lattice (diagram) L, let K be an interval, I and J be lamps, and p be

a neon tube of L.

(A) The illuminated area Lit(I) of I is the union of the original territories of the

neon tubes of I.

(B) The left roof and the left floor of the interval K of L are the line segments

of slope (1, 1) with lower endpoints on the left boundary chain and upper end-

points Peak(K) and Foot(K), respectively. They are denoted by LRoof(K) and

LFloor(K), respectively. With slope (1,−1), the right roof RRoof(K) and the right

floor RFloor(K) are defined analogously. The roof Roof(K) and the floor Floor(K)

of K are LRoof(K) ∪ RRoof(K) and LFloor(K) ∪RFloor(K), respectively.

(C) For a set X of planar points, GInt(X) stands for the geometric (i.e., topo-

logical) interior of X . Let h be a (geometric) polygon with endpoints a and b such

that h \ {a, b} ⊆ TopInt(FullRect(L)), a ∈ LBnd(L), and b ∈ RBnd(L). Then h cuts

FullRect(L) into an upper half ↑gh and a lower half ↓gh; by convention, h = ↑gh∩↓gh.

Note that Lit(I) = ↑gFloor(I) ∩ ↓gRoof(I), and similarly for Lit(p).
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(D) The body Body(I) of I is the geometric region determined by I; if I has

only one neon tube, then Body(I) is a line segment. For example, in Figure 2,

C2 ∈ Lamp(L2) and Body(C2) is yellow-filled.

(E) If I is an internal lamp, then the circumscribed rectangle CircR(I) is the

region determined by the interval [x,Peak(I)] where x is the meet of the leftmost

lower cover and the rightmost lower cover of Peak(I). (Equivalently, x is the meet

of all lower covers of Peak(I).)

Since the edges occurring in Definition 3.3 are the same as the neon tubes of L,

the following lemma in the present setting is not surprising.

Lemma 3.6 (Czédli [7], (2.10)). For the fixed multifork sequence of L, see

Lemma 3.2, the set of internal lamps of L is {Ij : 1 6 j 6 k} where, for j ∈ {1, . . . , k},

the lamp (Foot(Ij),Peak(Ij)) comes into existence by the jth multifork extension,

CircR(Ij) in L = Lk is the geometric region determined by Hj in Lj−1, and

Foot(Ij) ∈ Lj \ Lj−1.

Since the multifork extensions in Lemma 3.2 are performed at distributive 4-cells,

it follows easily that, using the notations of Lemma 3.6, for any j ∈ {1, . . . , k},

(3.6)







the lower covers of Peak(Ij) are the same in Lj as in L = Lk.

In particular, Ij has the same neon tubes in Lj as in L.

Furthermore, if a neon tube n comes into existence in Lj ,

then EOT(n), LEOT(n), and REOT(n) are the same in Lj as in L.

Definition 3.7. With the notation used in Lemma 3.6, let Ii and Ij be lamps

of L. If i < j, then we say that Ij is younger than Ii and Ii is older than Ij . (This

concept depends on the multifork sequence, but this sequence is always fixed.)

By an edge segment we mean a geometric line segment g of positive length with

endpoints lying on the same edge e of (the fixed C1-diagram of) L. In this case,

we say that g is an edge segment of e. Based on the fact that the neon tubes of L

are exactly the prime intervals occurring in Definition 3.3, we can recall a part of

Czédli [7], Definition 2.9 and extend it as follows.

Definition 3.8. Let I and J be lamps of a slim rectangular lattice L.

(A) Let (I, J) ∈ ̺foot mean that I 6= J , Foot(I) ∈ Lit(J), and I is an internal lamp.

(B) Let (I, J) ∈ ̺OTfoot mean that I 6= J , I is an internal lamp, and J has a neon

tube n such that Foot(I) ∈ GInt(LEOT(n)) or Foot(I) ∈ GInt(REOT(n)).

(C) Let (I, J) ∈ ̺OTCR mean that I 6= J , I is an internal lamp, and J has a neon

tube n such that CircR(I) ⊆ LEOT(n) or CircR(I) ⊆ REOT(n).
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(D) Let (I, J) ∈ ̺CircR mean that I 6= J , I is an internal lamp, and

CircR(I) ⊆ Lit(J).

(E) Let Lamp(L) be the set of lamps of L, and let “6” be the reflexive and

transitive closure of the relation ̺foot. The relational structure (Lamp(L);6) is also

denoted by Lamp(L).

The congruence generated by a pair (x, y) of elements is denoted by con(x, y).

Lemma 3.9 (Mostly Czédli [7], Lemma 2.11). If L is a slim rectangular lattice,

then ̺foot = ̺CircR = ̺OTfoot = ̺OTCR, Lamp(L) = (Lamp(L);6) is a poset,

and whenever I ≺ J in Lamp(L), then (I, J) ∈ ̺foot. Furthermore, we have that

(Lamp(L);6) ∼= (J(ConL);6) and the map

(3.7) ϕ : (Lamp(L);6) → (J(ConL);6) defined by I 7→ con(Foot(I),Peak(I))

is an order isomorphism.

The advantage of this lemma over its precursor, [7], Lemma 2.11, is that (I, J) ∈

̺foot is a mild condition, which is easy to verify, while (I, J) ∈ ̺OTCR is a strong

condition, which gives more chance to draw conclusion from.

P r o o f. With the exception of “̺foot = ̺OTfoot = ̺OTCR”, the lemma is al-

ready known; see Czédli [7], Lemma 2.11. So we need only to show the just-mentioned

equalities. Clearly, ̺OTCR ⊆ ̺OTfoot ⊆ ̺foot. Assume that Ii, Ij ∈ Lamp(L) such

that (Ii, Ij) ∈ ̺foot. Since S
(mi)
7 is not distributive, it follows from (3.4), and Lem-

mas 3.2 and 3.6 that Ii is younger than Ij , that is, i > j. In particular, Ii is an internal

lamp. With m := mj , let n1, . . . , nm be the neon tubes of Ij . As i > j, these neon

tubes are present in Li−1, and so are their original territories OT(n1), . . . ,OT(nm)

as well as their essential original territories; see (3.6). By (3.5) applied to Li−1,

these territories are separated by polygons consisting of lattice edges. By planarity,

these “separating polygons” cannot cross the 4-cell Hi of Li−1; this 4-cell becomes

CircR(Ii) in Li and in L. So CircR(Ii) ⊆ OT(nt) for some t ∈ {1, . . . ,m}. But the

4-cell Hi in question cannot have the same top as Ij since the opposite case would

contradict the distributivity of Hi in Li−1. (Alternatively, [10], Lemma 6.2 would

also lead to a contradiction.) Hence, CircR(Ii) = Hi ⊆ EOT(nt). Since EOT(nt) is

the union of its two connected “components”, LEOT(nt) and REOT(nt), and these

components are in a positive geometric distance from each other (provided none of

them is the empty set), the planarity of the diagram yields that CircR(Ii) = Hi ⊆

LEOT(nt) or CircR(Ii) = Hi ⊆ REOT(nt). Hence, (Ii, Ij) ∈ ̺OTCR, implying that

̺OTCR ⊆ ̺foot and completing the proof of Lemma 3.9. �
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Since we work with the C1-diagram of our slim rectangular lattice L, the illumi-

nated sets Lit(I) and Foot(I), and so the relation ̺foot are perfectly described by

the geometric structure

Str(L) := (FullRect(L), {(Foot(I),Peak(I)) : I ∈ Lamp(L)}).(3.8)






In particular, if L and L′ are slim rectangular lattices

such that Str(L) = Str(L′), then Lamp(L) ∼= Lamp(L′)

and so ConL ∼= ConL′.

(3.9)

4. Auxiliary statements

The following definition is motivated by ̺OTCR; see Definition 3.8 and Lemma 3.9.

Definition 4.1. For a slim rectangular lattice L and J ∈ Lamp(L), let p be

a neon tube of J . We say that the original territory of p is used if there is a lamp

I ∈ Lamp(L) such that I 6= J and CircR(I) ⊆ LEOT(p) or CircR(I) ⊆ REOT(p).

If I is such, then we say that I uses the original territory of p. If there is no such I,

then the original territory of p is not used.

R em a r k 4.2. Lemma 3.9 implies that in Definition 4.1, “I 6= J” is equivalent

to “I < J”. Furthermore, I 6= J occurs in Definition 4.1 only for emphasis, so it

could be omitted; analogous comments would apply to Lemma 4.3 below.

Lemma 4.3. For p and J as in Definition 4.1, the following four conditions are

equivalent.

(a) The original territory of p is used, that is, there is a lamp I such that p is not

a neon tube of I and CircR(I) ⊆ LEOT(p) or CircR(I) ⊆ REOT(p).

(b) There is a lamp I ∈ Lamp(L) \ {J} such that Foot(I) is in GInt(LEOT(p)) or

it is in GInt(REOT(p)).

(c) There is a lamp I ∈ Lamp(L) \ {J} such that Foot(I) is in EOT(p).

(d) There is a precipitous edge segment in EOT(p).

Furthermore, if a lamp I satisfies one of (a), (b), and (c), then it satisfies all the three.

P r o o f. Since we never change I to another lamp, the last sentence of the lemma

will automatically follow when the equivalence of (a), (b), and (c) has been proved.

Since Foot(I) ∈ GInt(CircR(I)), (a) implies (b). By the equality EOT(p) =

LEOT(p) ∪ REOT(p), we obtain that (b) implies (c).

Next, assume that (c) holds. Then Foot(I) ∈ EOT(p) ⊆ Lit(J) and so (I, J) ∈

̺foot. By Lemma 3.9, (I, J) ∈ ̺OTCR and so Body(I) ⊆ CircR(I) ⊆ Lit(I). Thus,

It := I is younger than Ik := J in the sense of Definition 3.7, that is, t > k; indeed, if

I = It was older than J = Ik, then the 4-cell Hk would not be distributive in Lk−1.
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In Lk, each of LEOT(p), REOT(p), and FullRect(Lk) \ EOT(p) were unions of 4-

cells. Some of these 4-cells could have been divided into smaller ones later, but even

in Lt−1, each of LEOT(p), REOT(p), and FullRect(Lt−1) \ EOT(p) were unions of

4-cells. Hence, Ht ⊆ LEOT(p), Ht ⊆ REOT(p), or Ht is outside EOT(p). Since

Foot(I) = Foot(It) ∈ GInt(Ht) and Foot(I) ∈ EOT(p), Ht was not outside EOT(p).

Hence, CircR(I) = CircR(It) = Ht ⊆ LEOT(p) or CircR(I) ⊆ REOT(p), whereby

the original territory of p is used. Thus, (c) implies (a), and we have proved that

(a), (b), and (c) are equivalent conditions.

By Remark 4.2, the implication (a) ⇒ (d) is trivial.

Finally, assume that (d) holds. Then we have a precipitous edge segment in

LEOT(p) or in REOT(p), say, in LEOT(p). By the second half of (3.5), we can as-

sume that a precipitous edge segment lies in GInt(LEOT(p)). This edge segment lies

on a neon tube q of a lamp I. By planarity and (3.5), q cannot cross the four sides bor-

dering (the geometric rectangle) LEOT(p), so q lies fully in LEOT(p). In particular,

Peak(I) = Peak(q) ∈ LEOT(p) and Foot(q) ∈ LEOT(p). Observe that Peak(I) can-

not lie on the lower boundary of LEOT(p) since otherwise q, going down from Peak(I)

with a precipitous slope, could not include an edge segment lying in LEOT(p).

Next, let r be an arbitrary neon tube of I. It goes down from Peak(r) = Peak(I)

with a precipitous slope. Thus, since Peak(r) is not on the lower boundary, (3.5)

yields that an edge segment lying on r lies also in GInt(LEOT(p)). So r satisfies the

same condition as q above, and it follows that Foot(r) ∈ LEOT(p).

Now let r′ and r′′ be the leftmost neon tube and the rightmost neon tube of I. If

r′ = r′′, then q is the only neon tube of I, and the required Foot(I) ∈ LEOT(p)

follows from Foot(I) = Foot(q) ∈ LEOT(p). So we can assume that r′ 6= r′′.

Then Foot(r′) and Foot(r′′), as distinct lower covers of Peak(I), are incompara-

ble; see (3.6). By a result of Czédli (see [8]) and Foot(I) = Foot(r′) ∧ Foot(r′′), the

interval [Foot(I),Foot(r′)] is a chain (and so a line segment) of slope (1,−1) while

[Foot(I),Foot(r′′)] is a line segment of slope (1, 1). The top endpoints Foot(r′) and

Foot(r′′) of these line segments are in LEOT(p), whereby so is their common bottom

Foot(I) by the second half of (3.5). Hence, Foot(I) ∈ LEOT(p), that is, (a) holds.

This completes the proof of Lemma 4.3. �

Let p be an internal neon tube of a slim rectangular lattice L. As in Czédli and

Schmidt, see [17] (but with different terminology), the fork determined by p is

(4.1)

{

F (p) := [lsupp(Foot(p)),Foot(p)] ∪ [rsupp(Foot(p)),Foot(p)]

together with the edges of these two intervals and the edge p.

For the particular case when ↓L′Peak(p) is distributive, the following lemma occurs

implicitly in [17].
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Lemma 4.4. If p is a neon tube of a slim rectangular lattice L and L′ := L\F (p),

see (4.1), then L′ is meet-subsemilattice of L.

P r o o f. First, we prove that

(4.2) [lsupp(Foot(p)),Foot(p)] = {x ∈ L : lsupp(x) = lsupp(Foot(p))}.

Denote Foot(p) by w and lsupp(Foot(p)) by u; so u = lsupp(w) and we need to show

that [u,w] = {x ∈ L : lsupp(x) = u}. For y ∈ [u,w], we have that u = lsupp(u) 6

lsupp(y) 6 lsupp(w) = u. Hence, y ∈ {x ∈ L : lsupp(x) = u} and we obtain

that [u,w] ⊆ {x ∈ L : lsupp(x) = u}. To exclude that “⊂” holds here, suppose

for contradiction that there is z ∈ {x ∈ L : lsupp(x) = u} such that z /∈ [u,w].

Then z = lsupp(z) ∨ rsupp(z) = u ∨ rsupp(z) implies that u 6 z, and if rsupp(z) 6

rsupp(w), then z 6 u∨ rsupp(w) 6 w would contradict that z /∈ [u,w]. But rsupp(z)

and rsupp(w) belong to the same chain, RBnd(L), so they are comparable, and we

obtain that rsupp(w) < rsupp(z). Hence, w = lsupp(w)∨rsupp(w) = u∨rsupp(w) 6

u∨rsupp(z) = lsupp(z)∨rsupp(z) = z. Now the inequality w 6 z and z /∈ [u,w] imply

that Foot(p) = w < z. Taking the meet-irreducibility of Foot(p) into account, we

have that Peak(p) 6 z. Thus, lsupp(Peak(p)) 6 lsupp(z). With the notation used in

Lemmas 3.2 and 3.6, let Ii be the lamp to which p belongs. Then Peak(p) = Peak(Ii),

and it is clear in Li that u = lsupp(Foot(p)) < lsupp(Peak(I)) = lsupp(Peak(p)).

Since Li is a sublattice of L, the inequality u < lsupp(Peak(p)) also holds in L.

Combining this with the already established lsupp(Peak(p)) 6 lsupp(z), we obtain

that u < lsupp(z). This contradicts the assumption z ∈ {x ∈ L : lsupp(x) = u} and

proves (4.2).

Next, for the sake of contradiction, suppose that L′ is not meet-closed. Pick

elements s, c, d ∈ L such that s = c ∧ d, s ∈ F (p) = L \ L′ but c, d /∈ F (p).

By (4.1), (4.2), and symmetry, we can assume that lsupp(s) = lsupp(Foot(p)). Since

the function L → LBnd(L) defined by t 7→ lsupp(t) is clearly an idempotent meet-

endomorphism by (3.1), lsupp(s) = lsupp(c) ∧ lsupp(d). As LBnd(L) is a chain,

lsupp(s) ∈ {lsupp(c), lsupp(d)}. Let, say, lsupp(s) = lsupp(c). Then lsupp(c) =

lsupp(Foot(p)), so (4.1) and (4.2) give that c ∈ F (p), a contradiction. �

For I ∈ Lamp(L), let NumTube(I) = NumTubeL(I) denote the number of neon

tubes of I. The total number of neon tubes of L is denoted by NumTubeall(L), so

NumTubeall(L) :=
∑

I∈Lamp(L)

NumTube(I).

Lemma 4.5 (Sandwiched Neon Tube Lemma). For a slim rectangular lattice L,

let n1, p, and n2 be three consecutive neon tubes of an internal lamp I ∈ Lamp(L)

such that the original territory of p is used but those of n1 and n2 are not used.
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Then there is a slim rectangular lattice L′ such that Lamp(L′) ∼= Lamp(L) but

|L′| < |L| and NumTubeall(L
′) = NumTubeall(L) − 1; in fact, there is an isomor-

phism ϕ : Lamp(L) → Lamp(L′) such that NumTube(ϕ(I)) = NumTube(I)− 1 and

NumTube(ϕ(J)) = NumTube(J) for all J ∈ Lamp(L) \ {I}.

P r o o f. With reference to (4.1), denote by L′ the subposet of L that we obtain

from L by removing the fork F (p) determined by p; see Figure 3 for an illustration.

We are going to show that L′ does the job. By left-right symmetry, we can assume

that n1 is to the left of p and p is to the left of n2.

Figure 3. Illustrating the proof of Lemma 4.5 by Lamp(L) ∼= P ∼= Lamp(L′).

First, we prove that L′ is a sublattice. By a result of Czédli (see [8]),

(4.3)

{

both intervals occurring in (4.1) are chains of normal slopes.

Hence, by (3.2), F (p) = Floor(p).

In Figure 3, these chains are [u6, u6 ∨ v6] and [v6, u6 ∨ v6]. Since none of the original

territories of n1 and n2 are used, we obtain from Lemma 4.3 that

(4.4) none of REOT(n1) and LEOT(n2) contains a precipitous line segment.

These two areas border F (p) = Floor(p) from below. Thus, for any edge r of L,

(4.5) if Peak(r) ∈ F (p), then r is of a normal slope.

For the sake of contradiction, suppose that L′ is not join-closed. Then we can pick

x′, y′ ∈ L′ such that z := x′ ∨ y′ /∈ L′, that is, z ∈ F (p). (The join is taken in L.)
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By (4.1) and left-right symmetry, we can assume that z ∈ [lsupp(Foot(p)),Foot(p)].

In Figure 3, the situation is illustrated with z as the (unique) element drawn by

a lying oval. Let T := [lsupp(Foot(n2)),Foot(p)] in L; it is [u5, u6 ∨ v6] in Figure 3.

(The area determined by) T is LEOT(n2) ⊆ EOT(n2). Hence, by (4.4), T contains

no precipitous line segment. Furthermore, as a lattice interval,

(4.6) T is the direct product of a chain and the two-element chain.

Hence, z has only two lower covers, x and y (the standing ovals in the figure),

and the edges [x, z] and [y, z] are of normal slopes. Let, say, x be to the left of y.

Now x′, y′ ∈ ↓Lz \ {z}, but {x′, y′} * ↓Ly since otherwise z = x′ ∨ y′ 6 y ≺ z

would be a contradiction. Hence, at least one of x′ and y′ is in ↓Lz \ ↓Ly ⊆

[lsupp(Foot(p)),Foot(p)] ⊆ F (p), contradicting that x′, y′ ∈ L′ = L \ F (p). There-

fore, L′ is closed with respect to joins. Since it is also closed with respect to meets

by Lemma 4.4, we have proved that L′ is a sublattice of L.

Let e be an edge in the interval [lsupp(Foot(p)),Foot(p)] distinct from the top edge

of this interval. Using (4.6), it is clear that if we merge the two 4-cells that share e

as a common side, we obtain a 4-cell of L′. The situation is similarly for the non-top

edges of [rsupp(Foot(p)),Foot(p)]. The top edges of these two intervals disappear

when Foot(p) and its two lower covers are omitted, and three “old” 4-cells merge

into a “new” 4-cell of L′. Now that we have described the new 4-cells, it follows

from (3.3) that L′ is a slim rectangular lattice.

It is clear by the paragraph above that with the exception of p, only some edges

of normal slopes are removed when passing from L to L′. The removal of p does

not influence the pair (Foot(I),Peak(I)) since Foot(I) is the meet of the feet of

the leftmost neon tube and the rightmost neon tube of I but p is a “middle”

neon tube of I. Therefore, Str(L′) = Str(L), see (3.8), and so (3.9) implies that

Lamp(L′) ∼= Lamp(L). Finally, since only one neon tube, p, has been removed,

NumTubeall(L
′) = NumTubeall(L)−1. The existence of ϕ is clear: for J ∈ Lamp(L),

ϕ(J) is defined by the property (Foot(ϕ(J)),Peak(ϕ(J))) = (Foot(J),Peak(J)). The

proof of Lemma 4.5 is complete. �

Lemma 4.6 (No Neighboring Neon Tubes Lemma). Let L be a slim rectangular

lattice. Assume that n1 and n2 are two neighboring neon tubes of an internal lamp

I ∈ Lamp(L) such that their original territories are not used. Then there exists

a slim rectangular lattice L′ such that |L′| < |L| and (Lamp(L′);6) ∼= (Lamp(L);6)

but |NumTubeall(L
′)| = |NumTubeall(L)| − 1; in fact, there is an order isomorphism

ϕ : (Lamp(L);6) → (Lamp(L′);6) such that |NumTube(ϕ(I))| = |NumTube(I)|−1

but |NumTube(ϕ(K))| = |NumTube(K)| for any K ∈ Lamp(L) \ {I}.
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P r o o f. The proof borrows some ideas from Czédli [10]. Note, however, that

the present situation is different from that in [10] since now L′, to be defined below,

is not a quotient lattice of L in general.

Figure 4. Illustrating the proof of Lemma 4.6 by Lamp(L) ∼= P ∼= Lamp(L′).

Let, say, n2 be to the right of n1; see Figure 4 for an illustration. Observe that,

by Lemma 4.3 (or see the figure) and the fact that REOT(n1) is not used,

(4.7)

{

the peak of no precipitous edge of L belongs to RFloor(n2) and,

in particular, Foot(n2) cannot be the peak of a precipitous edge of L.

Keeping Convention 3.1 in mind, we define L′ by describing its C1-diagram. From

(the diagram of) L, we remove the fork F (n2) together with all edges that have one

or two endpoints in F (n2). Writing this formally, L
′ = L \ F (n2). On the left of

Figure 4, the vertices to be omitted are drawn in blue while the edges to be omitted

are the blue dashed edges. Let L′ be the set of the remaining vertices (drawn in

black). (Note that L′ in Figure 4 is not a sublattice of L since u4, v6 ∈ L′ but

u4 ∨L v6 /∈ L′.) At this stage, L′ with the remaining (black solid) edges is not even

a lattice diagram.

Next, let q denote the right neighbor of n2 among the neon tubes of I or, if n2
is the rightmost neon tube of I, then let q be the upper right edge of CircR(I).

Actually, it is only Foot(q) that we will need, and it is the right neighbor of Foot(n2)

among the lower covers of Peak(n2) = Peak(I). For each edge r of L, we define or
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not define an edge r′ of L′ as follows.
{

If Foot(r) ∈ Floor(n2),

then r′ is undefined and r is called an omitted old edge.
(4.8)

{

If Foot(r) /∈ Floor(n2) and Peak(r) /∈ Floor(n2),

then r′ := r and r is called a remaining old edge of L′.
(4.9)

{

If Foot(r) /∈ Floor(n2) and Peak(r) ∈ LFloor(n2),

then let Foot(r′) := Foot(r) and Peak(r′) := Peak(r) ∨L lsupp(Foot(n1)).
(4.10)

{

If Foot(r) /∈ Floor(n2) and Peak(r) ∈ RFloor(n2),

then let Foot(r′) := Foot(r) and Peak(r′) := Peak(r) ∨L rsupp(Foot(q)).
(4.11)

If r is in the scope of (4.10) or (4.11), then r′ and r are called a new edge and

a changing old edge, respectively. In Figure 4, lsupp(Foot(n1)) = u7, rsupp(q) = v9,

and the new edges are the red dashed ones. It follows from (4.7) that each edge r

of L belongs to the scope of exactly one of (4.8)–(4.11). With its new edges and the

remaining old ones, L′ turns into a Hasse diagram of a poset L′ = (L;6), which is

a subposet of L = (L;6). Actually, we need to verify that the diagram is a poset

diagram. We need to show that no two edges of the new diagram overlap; this will

be done a bit later. We also need to show that for every edge [x, y] of the new

diagram L′, there are no edges [x, z1], [z1, z2], . . . , [zk−1, y] of L
′ for some k > 2.

This is clear if [x, y] is a new edge, as the only possible z1 ∈ L is not in L′; the case

when [x, y] is a remaining old edge is even more obvious. To exclude overlapping

edges and to show that the poset L′ is actually (the diagram of) a slim rectangular

lattice, we have to work more. Since none of the original territories OT(n1) and

OT(n2) is used, Lemmas 3.2 and 3.6 imply the following.

(4.12)







Let i ∈ {1, 2}. Then every edge r in LEOT(ni) is either

of (normal) slope (1, 1) and lies on the boundary of LEOT(ni)

or r is of (normal) slope (1,−1).

Similarly, every edge r in REOT(ni) is either of (normal) slope (1,−1)

and lies on the boundary of REOT(ni) or r is of (normal) slope (1, 1).

Hence, even though L can be more complicated in general than in Figure 4, the

original territories indicated by appropriate fill patterns in the figure reflect the

general case well. The new edges of L′, which originate from changing old edges

of L, belong to three categories, which will be discussed separately.

Category 1: We assume that r is a precipitous edge in the scope of (4.10). Then r is

a neon tube of a lamp J ∈ Lamp(L) such that Peak(J) = Peak(r) lies on LFloor(n2).

In Figure 4, J can be J1 or J2. It follows from (4.12) that we obtain r′ from r by
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moving the peak of r to the northwest along an edge of slope (1,−1). Thus, using

that r is precipitous, it follows trivially that r′ is also precipitous; for more details,

the reader can (but need not) see (6.8) in [10]. Since no precipitous edge will occur

in other categories for changing edges, let us summarize for later references that

(4.13)

{

if a precipitous old edge h of L is a changing edge, then it changes to

a precipitous new edge h′ and Foot(h′) = Foot(h).

A line or an edge is of a slight slope if it is parallel to the vector (1, t) for some

t ∈ R such that |t| < 1. That is, a line or edge is of a slight slope if and only if it is

neither of a normal slope nor precipitous. We know from (6.9) of [10] (and it is easy

to see) that

(4.14)

{

if l is a (geometric) line through two distinct lower covers of Peak(J),

then l is of a slight slope.

Next, let UHCircR(J) stand for the union of the 4-cells whose peaks are Peak(J);

it is a geometric area. (The acronym, taken from [10], comes from “upper half of

the circumscribed rectangle”.) For J ∈ {J1, J2} in Figure 4, UHCircR(J) in L is

curl-filled. Note that on the right of the figure, the curl-filled areas are UHCircR(J1)

and UHCircR(J2) understood in L but not in L
′. It follows from Lemmas 3.2 and 3.6

(and, in a different terminology, it is explicitly stated in (6.3) of [10]) that

(4.15)

{

GInt(UHCircR(J)) contains no edge segment

that is not a part of a neon tube of J .

Practically, (4.15) means that the curl-filled areas in the figure reflect generality

well. Let h′ be an edge of L′ such that h′ 6= r′. Since neither the curl-filled area

GInt(UHCircR(J)) nor the 4-cell of LEOT(n2) that is the upper left neighbor of

CircR(J) contains an edge of L not mentioned in (4.15), r′ neither crosses nor overlaps

h′ if h is of a normal slope. Next, assume that h is precipitous and so it is a neon tube

and h belongs to J , that is, to the same lamp to which r belongs. As Peak(h′) =

Peak(r′), the edges h′ and r′ do not cross. It follows from (4.14) (applied to the

common geometric line that contains both h′ and r′) that h′ and r′ do not overlap.

In the remaining case when h is precipitous but not a neon tube of J and Peak(h) ∈

LFloor(n2), then let K denote the lamp having h as a neon tube. Then K is an

internal lamp and K 6= J . Since an internal lamp is clearly determined by its peak,

Peak(J) 6= Peak(K), and they are comparable since LFloor(n2) where they belong is

a chain by (4.3). The role of J and K is interchangeable, so let Peak(K) < Peak(J).
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Then (the line determined by) RRoof(K) separates J and K, and we obtain easily

again that r′ and h′ neither cross nor overlap. We have seen that

(4.16)

{

if r′ originates from a precipitous edge r of L, then r′ neither crosses

nor overlaps any other edge of L′.

Category 2. We assume that r is of a normal slope and r′ is defined in (4.10). Then

b := Peak(r′) ∈ L even though r′ is not an edge of L. It is clear either by Lemmas 3.2

and 3.6 or by comparing the present situation to (4.6) that Peak(r) ≺L b. Hence,

d := [Peak(r), b] is an edge. This edge lies in LEOT(n2), and we obtain from (4.12)

that d is of slope (1,−1). So is r since it is of normal slope but does not lie on

LFloor(Foot(n2)). This means that r
′ comes into existence by merging r and d,

which are adjacent edges lying on the same line of slope (1,−1). Hence, r′ is also of

slope (1,−1). Therefore, since Category 3 will be analogous to the current one by

left-right symmetry and we are armed with (4.13), we can conclude even now that

(4.17)







if g is a changing old edge of a normal slope, then the edge g′ of L′

is of the same (normal) slope and, furthermore, g′ is obtained

by merging two collinear adjacent edges of L.

It follows from (4.16) and (4.17) that if r′ crossed or overlapped an edge g′ of L′,

then g′ would be of the other normal slope, (1, 1), and it would come into existence

by merging g to a collinear other edge of L at b. But then g would lie on RFloor(n2)

and instead of merging it to a collinear edge to obtain g′, g would have been omitted.

Thus,

(4.18)

{

if r belongs to Category 2, then r′ neither crosses

nor overlaps any other edge of L′.

Category 3. We assume that r is in the scope of (4.11). By (4.7), r is of (a normal)

slope (1, 1). Hence, the situation is basically the left-right symmetric counterpart of

the one discussed in Category 2, whereby no details will be given.

Now that the three categories have been investigated, (4.16), (4.18), and the left-

right symmetric counterpart of (4.18) for Category 3 imply that L′ is a planar Hasse

diagram. We know from Kelly and Rival (see [23], Corollary 2.4) that planar posets

with 0 and 1 are lattices. Hence, L′ is a planar lattice. By construction, the number

of upper covers of an element x ∈ L′ is the same in L′ as in L. Furthermore, an

element of L′ belongs to the boundary of L′ if and only if it belongs to the boundary

of L. Therefore, (3.3) and the construction of L′ yield in a straightforward but a bit

tedious way that L′ is a slim rectangular lattice.
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Since x ∈ L′ has the same number of covers in L′ as in L, we obtain that

M(L′) = L′ ∩ M(L). Moreover, we already have (4.13) and (4.17), and it is clear

that an edge r′ of L′ lies on Bnd(L′) if and only if it lies on Bnd(L). Clearly,

lc(L), rc(L) ∈ L′. Therefore, taking the just mentioned facts of the present para-

graph and Convention 3.1 (for L) into account, we conclude that L′ is (given by)

a C1-diagram.

Since OT(n2) is not used, it follows from (4.3) and Lemma 4.3 that

(4.19) if h is a neon tube of L and h 6= n2, then Foot(h) /∈ F (n2) = Floor(n2).

It follows from (4.13), (4.17), and the construction of L′ that

(4.20)






the neon tubes of L′ are exactly those r′ where r is a neon tube of L and r 6= n2.

Furthermore, for neon tubes r and h of L such that r 6= n2 6= h,

Peak(r′) = Peak(h′) if and only if Peak(r) = Peak(h) and Foot(r′) = Foot(r).

Hence, for a lamp K ∈ Lamp(L) \ {I}, {r′ : r is a neon tube of K} is exactly the

collection of neon tubes of a lamp K ′ of L′. Furthermore, {h : h is a neon tube of

I and h 6= n2} is the set of neon tubes of an internal lamp I ′ of L′—this is the

definition of I ′. Note that Lemma 4.4 and (4.20) give that Foot(K ′) = Foot(K)

for K ∈ Lamp(L) \ {I}. Now (4.20) and the facts mentioned thereafter allow us to

conclude that the function ϕ : Lamp(L) → Lamp(L′) defined by

(4.21) K 7→

{

K ′ if K ′ ∈ Lamp(L′) such that Foot(K ′) = Foot(K),

I ′ if K = I

is bijective. (Remark that if n2 is not the rightmost neon tube of I, then I belongs

to the scope of both lines of (4.21).) Note the rule, which follows from (4.20): for

any K ∈ Lamp(L), we have that Peak(ϕ(K)) = Peak(K).

We know from Lemma 3.9 that, in order to see that ϕ is an order isomorphism, it

suffices to show that, for J,K ∈ Lamp(K),

(4.22) (J,K) ∈ ̺foot ⇔ (J ′,K ′) ∈ ̺foot.

Assume that (J,K) ∈ ̺foot and J 6= I. Since Peak(K ′) is to the northwest

(that is, to the (−1, 1) direction) of Peak(K) or Peak(K ′) = Peak(K), we have that

Lit(K) ⊆ Lit(K ′). Hence, Foot(J ′) = Foot(J) ∈ Lit(K) ⊆ Lit(K ′) gives the required

(J ′,K ′) ∈ ̺foot. If (I,K) ∈ ̺foot, then CircR(I ′) = CircR(I) ⊆ Lit(K) ⊆ Lit(K ′)

by Lemma 3.9, whereby (I ′,K ′) ∈ ̺CircR = ̺foot, as required. This proves the “⇒”

part of (4.22).
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Next, assume that (J ′,K ′) ∈ ̺foot and I /∈ {J,K}. We know that Foot(K ′) =

Foot(K) and Foot(J ′) = Foot(J). If Peak(K ′) = Peak(K), then Foot(J) =

Foot(J ′) ∈ Lit(K ′) = Lit(K) gives the required (J,K) ∈ ̺foot. So assume that

Peak(K ′) 6= Peak(K). By construction, Lit(K ′) ⊆ Lit(K) ∪ LEOT(n2); see Fig-

ure 4. Hence, Foot(J) = Foot(J ′) ∈ Lit(K ′) gives that Foot(J) ∈ Lit(K) or

Foot(J) ∈ LEOT(n2). If the second alternative, Foot(J) ∈ LEOT(n2), holds, then

Foot(J) ⊆ EOT(n2), which contradicts Lemma 4.3 as OT(n2) is not used. Hence,

Foot(J) ∈ Lit(K), which gives that (J,K) ∈ ̺foot, as required.

We are left with the case when one of J and K is I.

Assume that (J ′, I ′) ∈ ̺foot. Then Foot(J) = Foot(J ′) ∈ Lit(I ′) ⊆ Lit(I) gives

the required (J, I) ∈ ̺foot. (Note that Lit(I
′) ⊂ Lit(I) if n2 is the rightmost neon

tube of I, and Lit(I ′) = Lit(I) otherwise.)

Finally, assume that (I ′,K ′) ∈ ̺foot. Then (I ′,K ′) ∈ ̺CircR by Lemma 3.9. This

fact and CircR(I) = CircR(I ′) give that

Peak(I) = Peak(CircR(I)) = Peak(CircR(I ′)) ∈ CircR(I ′) ⊆ Lit(K ′).

Hence, (Foot(K ′),Peak(K ′)) = (Foot(K),Peak(K)), and so Lit(K ′) = Lit(K).

These facts lead to CircR(I) = CircR(I ′) ⊆ Lit(K ′) = Lit(K). Thus, (I,K) ∈

̺CircR = ̺foot, as required. The proof of Lemma 4.6 is complete. �

5. An estimate

The length of a lattice K is denoted by len(K). Our goal is to prove the following

statement.

Theorem 5.1. Let D be a ConSPS-representable distributive lattice with n :=

|J(D)| join-irreducible elements. If n ∈ {0, 1}, then D is the (n + 1)-element chain

and K ∼= D. If n = 2, then D is the four-element boolean lattice and either K ∼= D

or K is the three-element chain. If n > 3, then the following two assertions hold.

(A) There is a slim rectangular lattice L such that ConL ∼= D and

(5.1) len(L) 6 2n2 − 10n+ 15, and so len(L) < 2n2.

(B) For any slim semimodular lattice L′, if ConL′ ∼= D, then len(L′) > n.
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P r o o f. The case n 6 2 is trivial. In the rest of the proof, let n > 3. Let L be

a slim rectangular lattice. A trivial induction by Lemmas 3.2 and 3.6 shows that

(5.2) len(L) = NumTubeall(L) = |M(L)|.

Now if ConL ∼= D, then Lamp(L) ∼= J(D) by Lemma 3.9, so (5.2) gives that len(L) =
∑

I∈Lamp(L)

NumTube(I) >
∑

I∈Lamp(L)

1 = |Lamp(L)| = n. Hence, Part (B) holds for

the particular case of rectangular SPS lattices.

We know from Grätzer and Knapp (see [21], Theorem 7) and its proof that

(5.3)
{

each slim semimodular lattice L′ with at least three elements is a sublattice

of a slim rectangular lattice L such that ConL ∼= ConL′ and len(L) = len(L′).

This statement also follows from Lemma 21 in [17] (applied in the reverse directions)

and (Corner) Lemma 5.4 proved in [3]. Therefore, Part (B) follows from its particular

case mentioned above.

Next, we turn our attention to Part (A). We can assume that J(D) is not an

antichain since otherwise with any grid G of length n and L := G, we have that

ConG ∼= D and len(G) = n 6 2n2. Take a slim rectangular lattice L of minimal

length such that ConL ∼= D. We know from Lemma 3.9 that Lamp(L) ∼= J(D),

and so |Lamp(L)| = n. Let J ∈ Lamp(L) be an internal lamp. Let t+J denote the

number of neon tubes of J whose original territories are used. Similarly, t−J stands

for the number of neon tubes of J whose original territories are not used; note that

t+J +t−j = NumTube(J). Listing the neon tubes from left to right, let us write a letter

u for a used neon tube and a zero for an unused neon tube. Then we obtain a sequence

~s of length NumTube(J) consisting of t+J u’s and t−J zeros. Subsequences 0 u 0 and 0 0

are forbidden by (5.2) and Lemmas 4.5 and 4.6 since len(L) is minimal. For another

look at ~s, take the sequence ~w := ⋆u ⋆ u ⋆ u . . . ⋆ u ⋆ u ⋆ u⋆ of t+J u’s and t+J + 1 stars

that alternate. We can obtain ~s from ~w by removing some stars and replacing the

remaining stars by zeros. Observe that only one zero can replace a star since 0 0 is

a forbidden subsequence. Furthermore, for any two consecutive stars (which occur

in a subsequence ⋆ u ⋆), at most one of the two stars can change to 0 and so the

other one should be removed since 0 u 0 cannot be a subsequence. Hence, at most

every second star can turn to 0 and the rest of the stars are removed. Therefore,

the number t−J of zeros is at most
4 ⌈ 1

2 (t
+
J + 1)⌉, the upper integer part of 1

2 (t
+
J + 1).

Since ⌈ 1
2 (t

+
J + 1)⌉ 6 t+J , we obtain that, for any J ∈ Lamp(L),

(5.4) NumTube(J) = t+J + t−j 6 2 · t+J .

4 Provided that t+J > 0; this correction will be taken into account about seven lines af-
ter (5.5).
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Let m denote the number of boundary lamps, that is, the number of maximal ele-

ments of Lamp(L) (or, equivalently, those of J(D)). Each of LBnd(L) and RBnd(L)

contains at least one boundary lamp, whence m > 2. Since Lamp(L) ∼= J(D) is

not an antichain, m < n. So k := n − m, the number of internal lamps of L,

is at least 1. If p is a neon tube of an internal lamp J and I uses the original

territory of J , then I < J and, in particular, I is also an internal lamp. Further-

more, if p1, . . . , pt+
J

denote the neon tubes of J whose original territories are used,

then the GInt(LEOT(p1)), . . . ,GInt(LEOT(pt+
J

)) are pairwise disjoint, and so are

GInt(REOT(p1)), . . . ,GInt(REOT(pt+
J

)). Therefore, using Lemma 4.3 (b), it follows

that the lamp I can use the original territories of at most two of the neon tubes of J .

The number of lamps I that use the original territory of a neon tube of J is at most

|↓J \{J}|, whereby J has at most 2 · |↓J \{J}| neon tubes5 whose original territories

are used. By (5.4), it has at most twice as many neon tubes all together. Hence, the

total number of neon tubes of the internal lamps is at most6

(5.5)
∑

internal J∈Lamp(L)

2 · 2 · |↓J \ {J}| = 4 ·
∑

internal J∈Lamp(L)

|↓J \ {J}|.

Observe that |↓J \ {J}| is the number of pairs (I, I ′) of internal lamps subject to

I < I ′ and I ′ = J . Therefore, the second sum in (5.5) is the number of pairs (I, J)

of internal lamps such that I < J . This sum reaches its maximum when the internal

lamps form a chain. Then there are
(
k
2

)
= 1

2k(k−1) such pairs, and so the maximum

that (5.5) can take is 2k(k− 1); it might seem to be an upper bound on the number

NumTubeinternal(L) of the neon tubes of the internal lamps of L.

There are two imperfections with the argument above. First, any two minimal

internal lamps are incomparable. Hence, letting s denote the number of minimal

internal lamps,
(
k
2

)
= 1

2k(k − 1) has to be reduced by
(
s
2

)
= 1

2s(s − 1). Second,

instead of 2 · |↓J \ {J}| = 0, a minimal lamp J has exactly one neon tube (trivially

or by Lemma 4.5), whereby s · 1 = s has to be added. So we obtain that

(5.6) NumTubeinternal(L) 6 4 · (k(k − 1)/2− s(s− 1)/2) + s

= 2k2 − 2k + 3s− 2s2 6′ 2k2 − 2k + 1,

where “6′” holds since 3s− 2s2 is negative for s > 2 and so we substituted 1 for s.

Next, taking the m boundary lamps, k = n−m, and (5.6) into account,

(5.7)

NumTubeall(L) = m+NumTubeinternal(L) 6 m+ 2(n−m)2 − 2(n−m) + 1

= 2n2 − 2n+ 1 + 2 · (m2 − (2n− 3/2)m)
︸ ︷︷ ︸

.

5 For minimal lamps, this will be corrected soon.
6 To be improved soon by taking the minimal internal lamps of L into account.
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Let f(m) = m2 − (2n − 3
2 )m denote the under-braced term. By the elementary

theory of quadratic univariate real functions, f(m) decreases in the closed interval

[0, n − 3
4 ]. This fact and 2 6 m 6 n − 1 imply that the largest value of f(m) is

f(2) = 7− 4n. Substituting this value into (5.7), we obtain that

(5.8) NumTubeall(L) 6 2n2 − 10n+ 15 < 2n2.

Finally, (5.2) and (5.8) complete the proof of Theorem 5.1. �

R em a r k 5.2. The inequality (5.1) is not sharp. Indeed, no matter which 4-

element poset J(D) is, there is a slim rectangular lattice L such that |J(ConL)| ∼= D

and len(L) 6 5 while 2n2 − 10n+ 15 for n := 4 is 7. Note that “6 5” is sharp for

n = 4; to see this, let J(D) be the 4-element poset with the “Y-shaped diagram”.

Corollary 5.3. For L in Part (A) of Theorem 5.1, |L| 6 (2n2−10n+15)2 < 4n4.

P r o o f. By (5.3) and Theorem 5.1, it suffices to show that if L is a slim rectan-

gular lattice of length k, then |L| 6 k2. By (1.1), there are chains C,U ⊆ J(L) such

that J(L) = C∪U . Since 0 /∈ C and, by rectangularity, 1 /∈ C, |C| 6 k−1. Similarly,

|U | 6 k− 1. Since any element of L \ {0} is of the form c∨ u with c ∈ C and u ∈ U ,

L has at most 1 + |C| · |U | = 1 + (k − 1)2 6 k2 elements, completing the proof. �

6. Odds and ends

Let P be a poset, and let j ∈ P . We define a new poset P ′ as follows. The base

set of P ′ is (P \ {j})∪ {j′, j′′} where P ∩ {j′, j′′} = ∅. The ordering in P ′ is defined

as follows: for a, b ∈ P ′ \ {j′, j′′} = P \ {j}, a 6P ′ b ⇔ a 6P b, a 6P ′ j′ ⇔ a 6P ′

j′′ ⇔ a 6P j, j′ 6P ′ b ⇔ j′′ 6P ′ b ⇔ j 6P b, and j′′ ≺P ′ j′. We say that P ′ is

obtained from P by doubling the element j of P . For an example, see P and P ′ in

the middle of Figure 5.

Proposition 6.1. Let P ′ be a poset obtained from a JConSPS-representable

poset P by doubling a non-maximal element j ∈ P . Then P ′ is also JConSPS-

representable. Furthermore, if L is a slim rectangular lattice such that P ∼= J(ConL),

then there is a slim rectangular lattice L′ such that P ′ ∼= J(ConL′) and len(L′) =

len(L) + 2.

Czédli in [7], Corollary 3.5 shows that if we double a maximal element of

a JConSPS-representable poset P , then the new poset P ′ is never JConSPS-

representable.
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Figure 5. The construction for Proposition 6.1 with a “magnifying glass” at the bot-
tom right.

Figure 6. The construction for Proposition 6.1, rescaled.

P r o o f of Proposition 6.1. By Grätzer and Knapp’s result, see (5.3), it suffices

to deal with the second half of the statement. Assume that L is a rectangular

lattice. For m ∈ N+, the mth neon tube of a lamp I is understood as the mth neon

tube of I from the left; see Convention 3.1. We also count on the fixed multifork

sequence of L, see Lemmas 3.2 and 3.6. We know from Lemma 3.9 that there is

an order isomorphism P → Lamp(L); we denote its action by capitalization, that

is, x 7→ X . The notation used in Lemma 3.6 is in effect. Since j is not a maximal

element of P , J is an internal lamp; let, say, J = It. In Figures 5 and
7 6, t = 3.

Note that P ∩ P ′ = P \ {j} = P \ {j′, j′′} is a subposet both in P and in P ′.

7Apart from scaling, the two figures are the same. Figure 5 illustrates the idea of the
construction better while Figure 6 is more readable.
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For any x ∈ P ∩ P ′, the lamp corresponding to x is denoted by X both in L and

in L′; this should not cause confusion since it will be clear from the context whether

X ∈ Lamp(L) or X ∈ Lamp(L′). The pair (Foot(X),Peak(X)) is the same in L′ as

in L. So, implicitly, the proof mostly considers lamps as pairs.

We define L′ in the following way. Let ε ∈ R, ε > 0, be the smallest one out of the

geometric lengths of the edges of (the fixed C1-diagram of) L. With reference to the

multifork sequence of L, let L′

0 := L0, L
′

1 := L1,. . . , L
′

t−1 := Lt−1; these equations

also mean the exact coincidence of the corresponding C1-diagrams in the plane. As for

the forthcoming notation, we continue the sequence by L′

t−0.5, L
′

t, L
′

t+1, . . . , L
′

k =: L′.

In L′

t−1 (which is the same as Lt−1), letH
′

t−0.5 be the same 4-cell (even geometrically

the same) as Ht in Lt−1.

Later, Ht turns into CircR(It) in L; in the figure, CircR(It) = CircR(I3) is the

“3-filled” area in L. In L′, only the “major part” of CircR(I ′t−0.5) = CircR(I ′2.5) is

3-filled; the rest of CircR(I ′t−0.5) = CircR(I ′2.5) is yellow-filled. AtHt in Lt−1, we per-

form a NumTube(It)-fold multifork extension, which produces J = It. (In the figure,

where It = I3 = J , NumTube(It) = 4.) However, in L′

t−1, we add a 2-fold multifork

at H ′

t−0.5 to obtain a new lattice L
′

t−0.5. Geometrically (in the C1-diagram), this new

multifork extension and the lamp J ′ = It−0.5 it produces look unusual compared to

other figures. Namely, we require that the 4-cell H ′

t whose peak is the foot of the

leftmost neon tube of J ′ should be almost as large as H ′

t−0.5. That is, the width η of

the “legs” of the Λ-shaped difference H ′

t−0.5 \H
′

t, which is yellow-filled in the figure,

should be very small. (We may think of η = ε/1000.) On the right of the figure,

H ′

t = H ′

3 in L′ is 3-filled.

Next, we perform a NumTube(It)-fold multifork extension at H
′

t to obtain L
′

t from

Lt−0.5 and to produce the lamp J
′′ = It of L

′

t (and of L
′). The feet of the neon tubes

of J ′′ = It in L′

t (and in L′) should be the same geometric points as the feet of the

neon tubes of J = It in Lt (and in L). So the geometric shape of J and that of J ′′

are almost the same (and they tend to be the same as η tends to 0).

From L′

t, we continue the multifork sequence for L
′ in the same way as we continue

the sequence from Lt to reach L. Even in geometric sense, we do almost the same,

that is, with very little differences that would diminish if we formed the limit at

η → 0. To be more specific, let us agree that we use the alternative notation

I−1 = A1, I−2 = B1, I−3 = A2, I−4 = B2, . . . , I−2k+1 = Ak, I−2k = Bk, . . . for

the boundary lamps. (The purpose of this notation is that now each lamp is of the

form Im for some m ∈ R.) For s = t, t+1, . . . , k−1, we select H ′

s+1 as follows. In Ls,

the trajectory through the top left edge of the 4-cell Hs+1 contains exactly one neon

tube, p. Since the top left edge of Hs+1 is of slope (1, 1), it is in the descending part

of the trajectory. The neon tube p belongs to exactly one lamp, which is older than

or as old as Is; let Iu denote this lamp. Note that we never use the trajectory through
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the leftmost neon tube of It−0.5 (in the figure, the “narrow” trajectory through the

yellow-filled area), whereby u 6= t− 0.5 and so u is an integer and Iu will also make

sense in L′, not only in L.

Among the neon tubes of Iu, let p be the αth neon tube (from the left). In L′

t,

let p′ be the αth neon tube of Iu. By left-right symmetry, the top right edge of Hs+1

defines a neon tube q of a lamp Iv in Ls and its counterpart q
′ in L′

s. The top right

edge ofHs+1 is in the ascending part of the trajectory in question. Now we can simply

select H ′

s+1 as the unique 4-cell of L
′

s where the descending part of the trajectory

through p′ and the ascending part of the trajectory through q′ cross each other8.

Once H ′

s+1 has been selected, we perform a NumTube(Is+1)-fold multifork extension

at this 4-cell of L′

s to obtain L
′

s+1 and its lamp Is+1. This multifork extension should

almost be the same geometrically as in the passage from Ls to Ls+1; in particular,

the feet of the new neon tubes have to be geometrically the same in L′

s+1 as in Ls+1.

For later reference, note that

(6.1)







the left upper edge of CircR(Is+1) = Hs+1 belongs to the trajectory

through a neon tube of Iu both in L an L′,

and similarly for the right upper edge and Iv.

Finally, we obtain L′ = L′

k.

Next, in order to recall Czédli [10], Lemma 7.5, we need some notation. Let U be

an internal lamp of a slim rectangular lattice K. Then the top edge of the trajectory

containing the upper left edge of CircR(U) is a neon tube of a lamp; we denote this

lamp by Nwl(U). Left-right symmetrically, Nel(U) stands for the unique lamp that

has a neon tube whose trajectory contains the upper right edge of CircR(U). For

a poset Q, let Min(Q) stand for the set of minimal elements of Q. Now Lemma 7.5

in [10] asserts that if K is a slim rectangular lattice and U, V ∈ Lamp(K), then

(6.2)

{

U ≺ V in Lamp(K) if and only if U is an internal lamp

and V ∈ Min({Nwl(U),Nel(U)}).

Comparing (6.1) and (6.2) and taking into account that only internal lamps, which

all occur in (6.1), can be covered by another lamp, the construction implies that

Lamp(L)\{J} is order isomorphic to Lamp(L′)\{J ′, J ′′}. We obtain from Lemma 3.9

that J ′ < J ′′ in Lamp(L′), Lamp(L) ∼= Lamp(L′)\{J ′}, and Lamp(L) ∼= Lamp(L′)\

{J ′′}. Thus, using that P ∼= Lamp(L), we conclude that P ′ ∼= Lamp(L′), as required.

Furthermore, the construction and (5.2) yield that len(L′) = len(L) + 2.

8 The possible doubts whether they cross will be dissolved later.
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However, the proof is not complete yet. Indeed, we need to show that the trajec-

tories mentioned earlier do cross in L′

s. To be more precise, we need to show that

if the geometric areas REOT(p) and LEOT(q) cross in Ls, than so do REOT(p′)

and LEOT(q′) in L′

s. Of course, REOT(p′) and LEOT(q′) are perpendicular if we

disregard their thickness but, in principle, they could avoid each other like the right

leg of the upper ∧ and the left leg of the lower ∧ do in

(6.3)

∧
∧

.

Fortunately, it is clear by continuity that whenever η is small enough (compared

to ε), then REOT(p′) and LEOT(q′) are close enough to REOT(p) and LEOT(q),

respectively. Thus, since REOT(p) and LEOT(q) cross each other at a rectangle with

sides at least ε, REOT(p′)∩LEOT(q′) is a rectangle of a positive area. Furthermore,

in Ls, REOT(p) ∩ LEOT(q) is a 4-cell. Since, except when J ′′ = It was created,

OT(J ′) = OT(It−0.5) is never used, we conclude that REOT(p′) ∩ LEOT(q′) is also

a 4-cell. This shows that the definition of L′

s+1 and that of L
′ make sense, completing

the proof of Proposition 6.1. �

R em a r k 6.2. In most of the cases, the estimate given in (5.1) of Theorem 5.1

is far from being optimal. For example, if J(ConL′) ∼= J(D) ∼= P ′ and P ′ is obtained

from a smaller poset P by doubling a non-maximal element j ∈ P , then, with the

notation of Proposition 6.1, the lamp J ′ corresponding to j′ ∈ P ′ has only two neon

tubes and contributes to len(L′) by 2 regardless the size of ↓Lamp(L′)J
′.

To present another example, let 4 6 n ∈ N+ and let Pn be the n-element poset

consisting of two maximal elements, a and b, n− 3 minimal elements, c1, . . . , cn−3,

and an element u such that u ≺ a, u ≺ b, and ci ≺ u for all i ∈ {1, . . . , n− 3}. Then

there is a slim rectangular lattice L such that J(ConL) ∼= Pn and len(L) = n + 1,

which is much smaller than what the estimate (5.1) gives.

In our third example, 3 6 n ∈ N+ and Qn is the poset with two maximal el-

ements and n − 2 minimal elements such that every minimal element is covered

by both maximal elements. Then there is a slim rectangular lattice L such that

J(ConL) ∼= Qn and len(L) = n. This example shows that the lower estimate given

in Theorem 5.1 (B) cannot be improved.

As Remarks 5.2 and 6.2 allow us to guess, there are many factors that can reduce

the number len(L) = |NumTubeall(L)| and improve the estimate (5.1). However, it

seems to be difficult to take more factors into account without making Theorem 5.1

and the corresponding proof too complicated. Corollary 5.3 is not sharp either.

Indeed, in addition to that this corollary is built on the non-sharp Theorem 5.1,

there is another reason for this. Namely, if J(D) ∼= J(ConL) has few non-maximal
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elements (in particular, if J(D) is an antichain and so D is boolean), then |L| has

few internal lamps and |L| is close to len(L)2 but then len(L) is much smaller than

what (5.1) gives. On the other hand, if J(D) has many non-maximal elements, then L

has many internal lamps and |L| is considerably smaller than len(L)2.

R em a r k 6.3. In order to decide whether a given n-element poset P is JConSPS-

representable, it is not economic and usually not even feasible to list all slim rectan-

gular lattices of lengths at most 2n2 − 10n+ 15; see (2.1) and (5.1), or those of size

at most (2n2 − 10n+ 15)2; see Corollary 5.3. It is much faster to rely on the known

properties and constructions. To exclude the JConSPS-representability of P in many

cases, we can check the known properties of JConSPS-representable posets, see (5.3),

Czédli [7], [11], and Czédli and Grätzer [13] (where two earlier properties from

Grätzer [18] and [19] are also recalled). To conclude the JConSPS-representability

of P and to obtain a slim rectangular lattice L such that P ∼= J(ConL), we can

often use the known constructions; see Proposition 6.1, Czédli ([10], Theorems 3.14

and 3.16), and Czédli and Grätzer ([13], Theorem 1.2). If the known properties and

constructions do not help, then, compared to what (5.1) gives, the ideas in their

proofs radically reduce the number of cases to be inspected for the given P .

If |P | is a small poset, then Remark 6.3 offers a way to decide, in few hours

without computers, whether P is JConSPS-representable. (We feel but have not

checked that every at most 6-element poset is small in this aspect.) Note that by

Czédli [10], Corollary 3.11, each finite poset P that is not JConSPS-representable

gives a property (but not always a new property) of JConSPS-representable posets.
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