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Abstract. In the theories of integration and of ordinary differential and integral equations,
convergence theorems provide one of the most widely used tools. Since the values of the
Kurzweil-Stieltjes integrals over various kinds of bounded intervals having the same infimum
and supremum need not coincide, the Harnack extension principle in the Kurzweil-Henstock
integral, which is a key step to supply convergence theorems, cannot be easily extended to
the Kurzweil-type Stieltjes integrals with discontinuous integrators. Moreover, in general,
the existence of integral over an elementary set E does not always imply the existence of in-
tegral over every subset T of E. The goal of this paper is to construct the Harnack extension
principle for the Kurzweil-Stieltjes integral with values in Banach spaces and then to demon-
strate its role in guaranteeing the integrability over arbitrary subsets of elementary sets.
New concepts of equiintegrability and equiregulatedness involving elementary sets are piv-
otal to the notion of the Harnack extension principle for the Kurzweil-Stieltjes integration.

Keywords: Kurzweil-Stieltjes integral; integral over arbitrary bounded sets; equiintegra-
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1. Introduction

One of the meaningful discussions on the topic of Kurzweil-Henstock integration

concerns the Harnack extension principle and Cauchy property (see, e.g., [26], Corol-

laries 7.10–7.11, and [28], Theorems 1.4.6, 1.4.8 and 4.4.4). The Cauchy property was

first used for the Riemann integral to integrate functions unbounded in the neighbor-
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hood of a finite number of points (see, e.g., [15], Theorems 2.12–2.16). A similar idea

has also been applied to integrate in a Lebesgue sense functions not summable in the

neighborhood of some points. Based on the Cauchy property, Harnack suggested a

method to calculate the integrals of functions defined on an open set. The Cauchy

property in the integral theory presents a sufficient condition for the integrable func-

tions on every [c, d] ⊂ (a, b) to be integrable on [a, b] (see, e.g., [19], [26]–[28]). In

the setting of the Kurzweil-Henstock integral for real-valued functions, the Harnack

extension principle reads as follows (see, e.g., [13], Theorem 9.22, [26], Corollary 7.11,

and [28], Theorem 4.4.4):

Theorem 1.1. Let T ⊂ [a, b] be a closed set and let {[ai, bi] : i ∈ N} be a collection

of pairwise disjoint intervals such that (a, b) \ T =
∞⋃
i=1

(ai, bi). Then, if g is a real-

valued function and the Kurzweil-Henstock integrals
∫ b

a
gχT dt and

∫ bi

ai
g dt exist for

all i ∈ N and the series

∞∑

i=1

sup

{∣∣∣∣
∫ t

r

g dt

∣∣∣∣ : ai 6 r 6 t 6 bi

}

converges, then the Kurzweil-Henstock integral
∫ b

a
g dt exists and

(1.1)

∫ b

a

g dt =

∫ b

a

gχT dt+

∞∑

i=1

∫ bi

ai

g dt.

Note that an analogous result to Theorem 1.1 can be obtained also for the

Kurzweil-Henstock integrable real-valued functions defined on measure spaces en-

dowed with locally compact metric topologies, see, e.g., [36], Theorem 5.1.

The definition of Kurzweil-Henstock (or Henstock-Kurzweil) integral based on

Riemannian-type sums and refinements controlled by gauges (see, e.g., [10], [20],

[23], [40]) leads to a non-absolutely convergent integral that is more powerful than

the Lebesgue integral, and also contains a special case, i.e., Stieltjes-type integrals.

Throughout this paper, we work with the Kurzweil-Stieltjes integrals for Banach

space-valued functions. The simplest integral of this type is the Riemann-Stieltjes

integral of the form
∫ b

a
[df ] g, in which a function g : [a, b] → R called the integrand is

integrated with respect to another function f : [a, b] → R referred to as the integrator

(see, e.g., [13], [33], [37], [49]). This integral appeared for the first time in a famous

treatise [49] by Stieltjes. Up to now, many authors have considered various kinds

of Stieltjes integrals using the gauge integration (see, e.g., [14], [17], [33], [34], [37],

[42], [51]), which have become highly popular in the fields of differential and integral

equations and other applications such as in the finite element method, approximation
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of the Fourier transform having implications in digital image processing, economic

estimates, and acoustic phonetics, integral equations to game theory, financial market

modeling, etc. (see, e.g., [1], [5], [8], [10], [18], [29], [39], [43]). In the literature, these

integrals are known under several different names (e.g., Henstock-Stieltjes, Perron-

Stieltjes, and generalized Riemann-Stieltjes). All of these integrals are special cases

of the Kurzweil integral referred from [21] or [24]. Therefore, we prefer to call this

integral the Kurzweil-Stieltjes integral.

The Kurzweil-Henstock integral has been generalized in various ways. For in-

stance, Cao (see [6]) noticed that Kurzweil’s definition can be easily extended to

functions with values in Banach spaces and investigated some of properties of the

abstract Kurzweil-Henstock integral. This abstract Kurzweil-Henstock integral re-

ceived further attention, such as the monograph by Schwabik and Ye (see [47]) that

discusses these types of integrals, i.e., the McShane, Bochner, Dunford, and Pettis

integrals for Banach space-valued functions, and compares the relationship between

these various integrals. Moreover, the fundamental results concerning the Kurzweil-

Stieltjes integral for Banach space-valued functions were given by Schwabik in [42]

and [44], where he called it the abstract Perron-Stieltjes integral. The results ob-

tained by Schwabik have been extended by Monteiro and Tvrdý, cf. [34] and [35], in

such a way that they were applicable in proofs of some new results on the continuous

dependence of solutions to generalized linear differential equations in a Banach space.

Convergence theorems, that concern the possibility of interchanging the limit and

the integral (see, e.g., [2], [12], [14], [16], [27], [37], [45]), provide one of the most

widely used tools in theories of integration and of ordinary differential and integral

equations. In the theory of the Denjoy-Perron integral, a key step to prove conver-

gence theorems by means of the category argument is the use of Harnack extension

principle (see, e.g., [26], page 47, [38], page 253). The further extension of the

Kurzweil-Stieltjes integral to the integration over elementary sets, i.e., sets that are

finite unions of bounded intervals, was presented by Monteiro, Hanung, and Tvrdý

in [32], Section 5, where it was a useful ingredient for proving the bounded conver-

gence theorem for the abstract Kurzweil-Stieltjes integral which was further applied

to the linear Stieltjes differential and integral equations, dynamic equations, etc.

(see, e.g., [7], [30], [48]). However, based on [32], Theorems 5.8–5.10, Remark 5.12,

Theorem 5.13, the Harnack extension principle for the Kurzweil-Henstock integral,

see, e.g., Theorem 1.1, cannot be valid any longer for the Kurzweil-Stieltjes integral

as, whenever the integrator F is not continuous on [a, b], for a subinterval J ⊂ [a, b]

having an infimum and a supremum c and d, respectively, the integrals

(1.2)

∫ d

c

[dF ] g,

∫

[c,d]

[dF ] g,

∫

[c,d)

[dF ] g,

∫

(c,d]

[dF ] g,

∫

(c,d)

[dF ] g
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need not have the same values, even if they all exist (see [32], Remark 5.12). As

a consequence, the Harnack extension principle for the Kurzweil-Henstock integral

cannot be easily extended to the setting of Stieltjes-type integrals.

From the study of convergence theorems for gauge-type integrals, the notion of

equiintegrability appeared, whose idea is that there exists a single gauge δ that

works for all the functions in a sequence (see, e.g., [4], [12], [25], [31], [33], [46], [47]).

Aside from extending the definition of the Kurzweil-Stieltjes integral over arbitrary

bounded sets equipped with all results formulated for the setting of this manuscript

with a general bilinear triple (see Section 3), to deal with the Harnack extension

principle for the Kurzweil-Stieltjes integral based on [32], it is necessary to develop

the notion of equiintegrability touching the sequences of integrands and integra-

tors for Banach space-valued functions, which is a new convergence theorem for the

Kurzweil-Stieltjes integral, and investigate its fundamental properties including some

notable results regarding equiregulatedness involving elementary sets, as presented

in Section 4. Furthermore, the theory in Sections 3 and 4 leads to a new Harnack

extension principle for the Kurzweil-Stieltjes integral, which significantly improves

the results from [32]. Meanwhile, in general, the existence of the integral
∫
E
[dF ] g

does not (even in the case of the identity integrator F (x) := x and E = [a, b]) always

imply the existence of the integral
∫
T
[dF ] g for every subset T of E. The goal of this

paper is to provide sufficient conditions vouching the Harnack extension principle for

the Kurzweil-Stieltjes integral with values in Banach spaces and then to show that

it plays an important role in guaranteeing the existence of integration over arbitrary

subsets of an elementary set, as shown in Section 5.

2. Preliminaries

In this section we recall some terminologies and notations commonly used in the

literature.

Let X , Y, and Z be Banach spaces. The symbols ‖·‖X , ‖·‖Y , and ‖·‖Z stand for

the norm in X , Y, and Z, respectively. If there are bilinear mapping B : X×Y → Z

and β ∈ [0,∞) such that

‖B(x, y)‖Z 6 β‖x‖X‖y‖Y for x ∈ X, y ∈ Y,

then the triple (X,Y, Z) is a bilinear triple with respect to B. In such a case, we write

B = (X,Y, Z) and use the abbreviation xy for B(x, y). Besides a classical situation

with X = Y = Z = R, a typical nontrivial example is, e.g., B = (L(X,Z), X, Z),

where L(X,Z) is the space of all linear bounded operators L : X → Z, whereas

B(L, x) = Lx ∈ Z for x ∈ X and L ∈ L(X,Z). Clearly, without any loss of generality,

we may assume that β = 1.
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Two intervals in R are said to be disjoint if their intersection is empty, whereas

they are said to be non-overlapping if their intersection contains at most one point.

In this study, by an elementary set, we understand a finite union of mutually disjoint

bounded intervals. Note that bounded intervals are themselves elementary sets.

A finite set α = {α0, α1, . . . , αm} ⊂ [a, b] with m ∈ N is said to be a division of

the interval [a, b] if

a = α0 < α1 < . . . < αm = b.

The set of all divisions of [a, b] is denoted by D[a, b]. The symbol ν(α) is kept for the

number of subintervals [αj−1, αj ] generated by the division α, i.e., ν(α) = m in the

above case.

Let f : [a, b] → X be a function with values in a Banach space X. As in the case

of the real-valued functions, the variation of f on [a, b] is defined by

b
var
a

f = sup
α∈D[a,b]

ν(α)∑

j=1

‖f(αj)− f(αj−1)‖X .

If varba f < ∞, then f has a bounded variation on [a, b]. BV([a, b], X) is the set of

all functions f : [a, b] → X of a bounded variation on [a, b].

Let B = (X,Y, Z) be a bilinear triple. For a division α = {α0, α1, . . . , ν(α)} of

[a, b] and a function f : [a, b] → X we put

(B)V b
a (f,α) := sup

{∥∥∥∥
ν(α)∑

j=1

[f(αj)− f(αj−1)]yj

∥∥∥∥
Z

:

yj ∈ Y, ‖yj‖Y 6 1, j ∈ {1 . . . , ν(α)}

}

and

(B)
b

var
a

f = sup{(B)V b
a (f,α) : α ∈ D[a, b]}.

A function f : [a, b] → X with (B) varba(f) < ∞ is said to have a bounded B-variation

on [a, b] or a bounded semi-variation. The set of all functions f : [a, b] → X with

bounded B-variation on [a, b] is denoted by (B)BV([a, b], X); G([a, b], X) denotes the

set of all X-valued functions which are regulated on [a, b]. Recall that f : [a, b] → X

is regulated on [a, b] if for any t ∈ [a, b) there is a f(t+) ∈ X such that

lim
s→t+

‖f(s)− f(t+)‖X = 0,

and for any t ∈ (a, b], there is a f(t−) ∈ X such that

lim
s→t−

‖f(s)− f(t−)‖X = 0.
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For f ∈ G([a, b], X) and t ∈ [a, b], we put ∆+f(t) = f(t+) − f(t), ∆−f(t) = f(t) −

f(t−) and ∆f(t) = f(t+)− f(t−) (where by convention ∆−f(a) = ∆+f(b) = 0).

Let B = (X,Y, Z) be a bilinear triple. A function f : [a, b] → X is called B-

regulated on [a, b] (or simply-regulated on [a, b]) if the function fy : t ∈ [a, b] →

f(t)y ∈ Z is regulated for all y ∈ Y. The set of all simply-regulated functions

f : [a, b] → X is denoted by (B)G([a, b], X). Clearly, G([a, b], X) ⊂ (B)G([a, b], X).

Moreover,

BV([a, b], X) ⊂ G([a, b], X) and BV([a, b], X) ⊂ (B)BV([a, b], X).

A finite set of points in [a, b]

P = {α0, ξ1, α1, ξ2, . . . , αm−1, ξm, αm}

where {α0, α1, . . . , αm} ∈ D[a, b] and ξj ∈ [αj−1, αj ] for j = 1, 2, . . . , ν(P ) is called

a tagged partition of [a, b]. The point ξj is called the tag of the subinterval [αj−1, αj ]

for every j = 1, 2, . . . , ν(P ). We then write

P = {([αj−1, αj ], ξj)} or P = (α, ξ)

with α = {α0, α1, . . . , αm}, ξ = {ξ1, ξ1, . . . , ξm} and ν(P ) = ν(α).

Positive functions δ : [a, b] → (0,∞) are called gauges on [a, b]. For a given gauge δ

on [a, b], a tagged partition P = {([αj−1, αj ], ξj)} of [a, b] is called δ-fine if

[αj−1, αj ] ⊂ (ξj − δ(ξj), ξj + δ(ξj)) for j = 1, 2, . . . , ν(P ).

If B = (X,Y, Z) is a bilinear triple, then for functions f : [a, b] → X, g : [a, b] → Y

and a tagged partition P = {([αj−1, αj ], ξj)} of [a, b], we set

S(df, g, P ) =

ν(P )∑

j=1

[f(αj)− f(αj−1)]g(ξj)

and

S(f, dg, P ) =

ν(P )∑

j=1

f(ξj)[g(αj)− g(αj−1)].

Now, we can present the definition of the abstract Kurzweil-Stieltjes integral as

introduced by Schwabik in [42], Definition 5.
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Definition 2.1. Let B = (X,Y, Z) be a bilinear triple and let f : [a, b] → X

and g : [a, b] → Y be given. We say that the Kurzweil-Stieltjes integral (shortly

KS-integral)
∫ b

a
[df ] g exists if there is I ∈ Z such that for every ε > 0 there is a

gauge δ on [a, b] such that

(2.1) ‖S(df, g, P )− I‖Z < ε

holds for every δ-fine tagged partition P = (α, ξ) of [a, b]. In such a case, we put

∫ b

a

[df ] g = I.

Furthermore, we put

∫ a

a

[df ] g = 0 and

∫ a

b

[df ] g = −

∫ b

a

[df ] g if a < b.

Similarly, if f : [a, b] → X and g : [a, b] → Y, then
∫ b

a
f [dg] = I ∈ Z if and only if

for every ε > 0 there is a gauge δ on [a, b] such that

(2.2) ‖S(f, dg, P )− I‖Z < ε

holds for every δ-fine tagged partition P = (α, ξ) of [a, b].

Clearly, Definition 2.1 can be reasonable only if for any gauge δ on [a, b] the set

of δ-fine partitions of [a, b] is nonempty. This crucial question is answered by the

following lemma which is known as the Cousin lemma (see, e.g., [9], [13], Lemma 9.2,

[26], Theorem 2.3.1, [28], Theorem 1.1.5).

Lemma 2.2 (Cousin). Given an arbitrary gauge δ on [a, b], there is a δ-fine tagged

partition of [a, b].

R em a r k 2.3. Evidently, the Kurzweil-Stieltjes integral reduces to the Kurzweil-

Henstock integral whenever the integrator f in (2.1) and the integrator g in (2.2) are

the identity functions.

Throughout the paper, we assume that B = (X,Y, Z) is a bilinear triple. Further-

more, [a, b] is a fixed bounded and closed interval in R. All functions f are supposed

to be defined on the entire interval [a, b] and extended outside the interval [a, b] in

such a way that f(t) = f(a) and f(s) = f(b) for t < a and s > b.
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3. Integration over arbitrary bounded sets

In [32], Section 5, the Kurzweil-Stieltjes integral of operator-valued functions over

elementary subsets of [a, b] was introduced, and its basic properties were described.

This definition can be easily extended to arbitrary subsets of [a, b] and to setting in

a general bilinear triple B = (X,Y, Z).

Definition 3.1. Let f : [a, b] → X , g : [a, b] → Y and let S be an arbitrary

subset of [a, b]. Then, the Kurzweil-Stieltjes integral (shortly KS-integral or integral)

of g with respect to f over the set S, denoted by
∫
S
[df ] g, is defined by

∫

S

[df ] g :=

∫ b

a

[df ] (gχS)

whenever the integral on the right-hand side exists.

Similarly, if f : [a, b] → X , g : [a, b] → Y, then the integral
∫
S
f [dg] is defined by

∫

S

f [dg] :=

∫ b

a

(fχS)[dg]

whenever the integral on the right-hand side exists.

R em a r k 3.2. By Definitions 2.1 and 3.1, the existence of the integral
∫
S
[df ] g

means that there exists I ∈ Z with the following property: for every ε > 0 there

exists a gauge δ on [a, b] such that

‖S(df, gχS, P )− I‖Z < ε

whenever P = (α, ξ) is a δ-fine tagged partition of [a, b].

Definition 5.1 from [32] is a special case of Definition 3.1. However, all the results

presented in [32] for the special case B = (L(X,Z), X, Z) can be reformulated for

the setting of this paper with a general bilinear triple B = (X,Y, Z). In particular,

Propositions 3.3 and 3.5 are valid.

Proposition 3.3. Let S be an arbitrary subset of [a, b]. Then, the following as-

sertions are true:

(i) Let f : [a, b] → X and gi : [a, b] → Y, i = 1, 2, such that the integrals
∫
S
[df ] gi

for i = 1, 2 exist. Then, the integral
∫
S
[df ](c1g1 + c2g2) also exists, and

∫

S

[df ](c1g1 + c2g2) = c1

∫

S

[df ] g1 + c2

∫

S

[df ] g2 ∀ c1, c2 ∈ R.

(ii) Let fi : [a, b] → X, i = 1, 2, and g : [a, b] → Y, such that the integrals
∫
S
[dfi] g

for i = 1, 2 exist. Then, the integral
∫
S
[d(c1f1 + c2f2)] g also exists, and

∫

S

[d(c1f1 + c2f2)] g = c1

∫

S

[df1] g + c2

∫

S

[df2] g ∀ c1, c2 ∈ R.
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R em a r k 3.4. Let f : [a, b] → X be B-regulated on [a, b]. As gχ[a,b] = g on [a, b],

the integral
∫ b

a
[df ] g exists if and only if the integral

∫
[a,b] [df ] g exists. In such a

case, these integrals have the same value, i.e.,

(3.1)

∫

[a,b]

[df ] g =

∫ b

a

[df ] g.

Meanwhile,

g(t)χ(a,b)(t)− g(t) =





−g(a) if t = a,

0 if t ∈ (a, b),

−g(b) if t = b,

and hence, by [42], Lemma 12, we get for an arbitrary d ∈ (a, b)

∫ b

a

[df ](gχ(a,b) − g) =

∫ d

a

[df ](gχ(a,b) − g) +

∫ b

d

[df ](gχ(a,b) − g)

= −
(
lim

r→a+
[f(r)g(a)] − f(a)g(a)

)
−
(
f(b)g(b)− lim

r→b−
[f(r)g(b)]

)
,

i.e., the integral
∫ b

a
[df ] g exists if and only if the integral

∫
(a,b)

[df ] g exists, and in

such a case,

(3.2)

∫

(a,b)

[df ] g =

∫ b

a

[df ] g + f(a)g(a)− f(b)g(b)

+ lim
r→b−

[f(r)g(b)] − lim
r→a+

[f(r)g(a)].

The next proposition summarizes the properties of the KS-integral over all possible

kinds of subintervals of [a, b]. The proofs of its assertions are easy modifications of

those of [32], Theorems 5.8, 5.10, and 5.11. The above observations concerning the

cases c = a and/or d = b will be included, considering the convention that the

functions f and g are to be considered extended outside of the interval [a, b] as

constant functions on (−∞, a] ∪ [b,∞).

Proposition 3.5. Let f ∈ (B)G([a, b];X), g : [a, b] → Y, and a 6 c < d 6 b.

Then, the following assertions are true:

(i) The integral
∫
(c,d)

[df ] g exists if and only if the integral
∫ d

c
[df ] g exists. In such

a case,

∫

(c,d)

[df ] g = f(c)g(c)− lim
r→c+

[f(r)g(c)] +

∫ d

c

[df ] g − f(d)g(d) + lim
r→d−

[f(r)g(d)].
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(ii) The integral
∫
[c,d) [df ] g exists if and only if the integral

∫ d

c
[df ] g exists. In such

a case,

∫

[c,d)

[df ] g = f(c)g(c)− lim
r→c−

[f(r)g(c)] +

∫ d

c

[df ] g − f(d)g(d)− lim
r→d−

[f(r)g(d)].

(iii) The integral
∫
(c,d]

[df ] g exists if and only if the integral
∫ d

c
[df ] g exists. In such

a case,

∫

(c,d]

[df ] g = f(c)g(c)− lim
r→c+

[f(r)g(c)] +

∫ d

c

[df ] g + lim
r→d+

[f(r)g(d)] − f(d)g(d).

(iv) The integral
∫
[c,d] [df ] g exists if and only if the integral

∫ d

c
[df ] g exists. In such

a case,

∫

[c,d]

[df ] g = f(c)g(c)− lim
r→c−

[f(r)g(c)] +

∫ d

c

[df ] g + lim
r→d+

[f(r)g(d)]− f(d)g(d).

R em a r k 3.6. If a 6 c < d 6 b, f ∈ (B)G([a, b];X), and g : [a, b] → Y, then

Proposition 3.5 implies that if any one of the integrals

(3.3)

∫

(c,d)

[df ] g,

∫

[c,d)

[df ] g,

∫

(c,d]

[df ] g,

∫

[c,d]

[df ] g,

∫ d

c

[df ] g

exists, then all the others exist as well. Of course, their values can differ, in general.

If, in addition, f is continuous on [a, b], then all the equalities

(3.4)

∫

(c,d)

[df ] g =

∫

[c,d)

[df ] g =

∫

(c,d]

[df ] g =

∫

[c,d]

[df ] g =

∫ d

c

[df ] g

are true.

R em a r k 3.7. The existence of the integral
∫ b

a
[df ] g need not (even in the case of

the identity integrator f(x) := x) always imply the existence of the integral
∫
T
[df ] g

for every subset T of [a, b]. This is demonstrated by the following example (cf. [22]

or [26]): Let g : [0, 1] → R be defined by

g(t) =






0 if t = 0,

2t cos
π

t2
+

2π

t
sin

π

t2
if 0 < t 6 1.

Then, g is Kurzweil-Henstock integrable on [0, 1]. However, if T :={t ∈ [0, 1] :

g(t) > 0}, then
∫
T
g dt does not exist.

As shown by the next assertion, this cannot happen when we restrict ourselves to

elementary subsets of [a, b].
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The next definition is taken from [32], Definition 4.9.

Definition 3.8. A set {Jk : k = 1, . . . , p} of bounded intervals is said to be

a minimal decomposition of the elementary set E ⊂ [a, b] if
p⋃

k=1

Jk = E, while the

union Jk ∪ Jl is not an interval whenever k 6= l. We will always assume that the

ordering of the minimal decomposition is such that sup Jk 6 inf Jl for k 6 l.

R em a r k 3.9. It is easy to see that if {Jk : k = 1, . . . , p} is a minimal de-

composition of some elementary sets, then Jk ∩ Jl 6= ∅ only if l = k + 1 and

sup Jk = inf Jl /∈ Jk ∩ Jl.

Proposition 3.10. The following assertions are true for all f ∈ (B)G([a, b];X)

and g : [a, b] → Y.

(i) Let E be an elementary subset of [a, b] such that the integral
∫
E
[df ] g exists.

Then, the integral
∫
T
[df ] g exists for every elementary subset T of E.

(ii) Let E =
p⋃

k=1

Jk, where {Jk : k = 1, 2, . . . , p} are mutually disjoint subintervals

of [a, b], and let the integral
∫
E
[df ] g exist. Then, all the integrals

∫

Jk

[df ] g, k = 1, 2, . . . , p,

exist as well and

(3.5)

∫

E

[df ] g =

p∑

k=1

∫

Jk

[df ] g.

P r o o f. (i) See [32], Corollary 5.15.

(ii) By [32], Theorem 5.13, this assertion is true if the set {Jk : k = 1, 2, . . . , p}

is a minimal decomposition of E. In a general case, we may assume that the inter-

vals {Jk} are ordered in such a way that x 6 y holds whenever x ∈ Jk, y ∈ Jl and

k < l. Then, if {Jk : k = 1, 2, . . . , p} is not a minimal decomposition, there must exist

k ∈ {1, 2, . . . , p− 1} such that J = Jk ∪ Jk+1 is an interval. Then, as Jk ∩ Jk+1 = ∅,

we get

∫

Jk

[df ] g +

∫

Jk+1

[df ] g =

∫ b

a

[df ] g(χJk
+ χJk+1

) =

∫ b

a

[df ](gχJ) =

∫

J

[df ] g.

Hence, when we replace all such couples in the sum on the right-hand side of (3.5)

by their unions, we get the sum over a minimal decomposition of E, while the sum

itself does not change. This completes the proof. �
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R em a r k 3.11. Let E =
p⋃

k=1

Jk be an elementary subset of [a, b].

(i) Let {J∗
k : k = 1, 2, . . . , p∗} be the minimal decomposition of E. Then, Proposi-

tion 3.10 (ii) implies that p∗6p and

∫

E

[df ] g =

p∑

k=1

∫

Jk

[df ] g =

p∗∑

k=1

∫

J∗

k

[df ] g.

(ii) Let ck and dk be the infimum and the supremum of Jk, respectively, for every

k = 1, 2, . . . , p. Then, from Remark 3.6 with Proposition 3.10 (ii), the equality

(3.6)

∫

E

[df ] g =

p∑

k=1

∫

Jk

[df ] g =

p∑

k=1

∫ dk

ck

[df ] g

holds for all continuous integrators f, especially for the Kurzweil-Henstock in-

tegral. However, (3.6) is no longer valid for the KS-integral, in general.

R em a r k 3.12. If a function g : [a, b] → Y and a subset S of [a, b] are such

that g = 0 on S, then gχS = 0 on [a, b], and hence
∫
S
[df ] g =

∫ b

a
[df ] (gχS) = 0

and
∫
T
[df ] g = 0 as well for every subset T of S and every f : [a, b] → X. In

particular, if the integral
∫
S
[df ] g exists and h : [a, b] → Y coincides with g on S,

then
∫
S
[df ]h =

∫
S
[df ] g.

The next assertion discloses the additivity properties of the KS-integral over ar-

bitrary subsets of [a, b].

Proposition 3.13. Let f : [a, b] → X, g : [a, b] → Y and subsets S1, S2 in [a, b]

be given. Then, whenever three of the integrals

∫

S1

[df ] g,

∫

S2

[df ] g,

∫

S1∪S2

[df ] g,

∫

S1∩S2

[df ] g

exist, then there also exists the remaining one and

∫

S1

[df ] g +

∫

S2

[df ] g =

∫

S1∪S2

[df ] g +

∫

S1∩S2

[df ] g.

P r o o f. It follows directly from the identity χS1
+ χS2

= χS1∪S2
+ χS1∩S2

. �
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Proposition 3.14. Let f : [a, b] → X, g : [a, b] → Y, and subsets S1, . . . , Sn

in [a, b] be such that Sj ∩ Sk = ∅ for j 6= k and the integral
∫
Sj
[df ] g exists for each

j ∈ {1, . . . , n}. Put S =
n⋃

j=1

Sj . Then, the integral
∫
S
[df ] g exists and

∫

S

[df ] g =

n∑

j=1

∫

Sj

[df ] g.

P r o o f. Follows directly from the identity χS =
n∑

j=1

χSj
. �

Proposition 3.15. Let f : [a, b] → X and g : [a, b] → Y be given and let

S1, . . . , Sp be subsets of [a, b] and p > 2. Put

S =

p⋃

j=1

Sj and Ti =
( i−1⋃

j=1

Sj

)
∩ Si for i = 2, 3, . . . , p

and assume that all the integrals

∫

Si

[df ] g,

∫

Ti

[df ] g, i = 1, 2, . . . , p,

exist. Then, the integral ∫

S

[df ] g

exists as well and

(3.7)

∫

S

[df ] g =

p∑

i=1

∫

Si

[df ] g −

p∑

i=2

∫

Ti

[df ] g.

P r o o f. Observe that

S = S1 ∪ (S2 \ S1) ∪

p⋃

i=3

(
Si \ Si ∩

i−1⋃

j=1

Sj

)
=

p⋃

i=1

Si \

p⋃

i=2

Ti

and, hence,

χS =

p∑

i=1

χSi
−

p∑

i=2

χTi

wherefrom our assertion follows. �
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4. Equiintegrability and equiregulatedness

Convergence theorems belong to the most important topics discussed in the frames

of integration theory (see, e.g., [2], [14], [32], [42]). For the abstract KS-integral, the

uniform convergence theorem given by Schwabik in [42], Theorem 11, is the simplest

one. It states that if the sequence of integrands {gn} tends uniformly to g on [a, b] and

if all the integrals
∫ b

a
[df ] gn, n ∈ N, exist, then the integral

∫ b

a
[df ] g exists as well and

∫ b

a

[df ] g = lim
n→∞

∫ b

a

[df ] gn.

When the uniform convergence of the sequence of integrands {gn} to g is replaced

by a just pointwise convergence on [a, b], the situation is more difficult. One possible

way is indicated by Monteiro, Hanung, and Tvrdý by means of the bounded conver-

gence theorem for the abstract KS-integral in [32], Theorem 6.3, which requires the

uniform boundedness of the sequence {gn} on [a, b]. Meanwhile, some convergence

theorems for the abstract Stieltjes type integrals of Young, Dushnik and Kurzweil,

which require a uniform convergence of the sequence of integrators with an inte-

grand of bounded variation or a bounded variation convergence of the sequence of

integrators with a bounded integrand, are presented by Hanung and Tvrdý in [14],

Theorems 3.5–3.7. The next theorem deals with the case that the sequences of in-

tegrands and integrators {gn} and {fn} converge pointwise to g and f, respectively,

and need neither boundedness nor bounded variation.

Theorem 4.1 (Equiintegrability convergence theorem). Let fn : [a, b] → X and

gn : [a, b] → Y for n ∈ N be such that the integral
∫ b

a
[dfn]gn exists for each n ∈ N.

Furthermore let the functions f : [a, b] → X and g : [a, b] → Y be such that the

sequences {fn} and {gn} converge pointwise on [a, b] to f and g, respectively. Finally

suppose that

(C1) for every η > 0 there is a gauge δ on [a, b] such that
∥∥S(dfn, gn, P ) −∫ b

a
[dfn]gn

∥∥
Z

< η for every δ-fine tagged partition P = (α, ξ) of [a, b] and

every n ∈ N.

Then, the integral
∫ b

a
[df ] g and the limit lim

n→∞

∫ b

a
[dfn] gn exist and

(4.1)

∫ b

a

[df ] g = lim
n→∞

∫ b

a

[dfn] gn.

P r o o f. It is quite analogous to that known for the real-valued case X = Y = R

(cf., e.g., [33], Thorem 6.8.2) and can be omitted. �
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Definition 4.2. Let fn : [a, b] → X and gn : [a, b] → Y for n ∈ N.

(i) The sequence {gn} is said to be equiintegrable with respect to {fn} on [a, b] if

the integrals
∫ b

a
[dfn] gn exist for all n ∈ N and the condition (C1) in Theorem 4.1 is

satisfied.

(ii) Similarly, if S is an arbitrary subset of [a, b], then the sequence {gn} is equi-

integrable with respect to {fn} on S if {gnχS} is equiintegrable with respect to {fn}

on [a, b].

In view of Definition 4.2, Theorem 4.1 may be reformulated as follows:

Theorem 4.1′. Let f, fn : [a, b] → X and g, gn : [a, b] → Y, n ∈ N, be such that

lim
n→∞

fn(t) = f(t) and lim
n→∞

gn(t) = g(t) on [a, b] and suppose that the sequence {gn}

is equiintegrable with respect to {fn} on [a, b]. Then the integral
∫ b

a
[df ] g and the

limit lim
n→∞

∫ b

a
[dfn] gn exist and (4.1) holds.

R em a r k 4.3.

(i) Equiintegrability is often met in the literature dealing with the theory of

Kurzweil-Henstock integrals (see, e.g., Bartle [3], Chapter 8; Gordon [13], Chap-

ter 13 and [12]; Kurzweil [22], Chapter 5; Kurzweil and Jarník [25]; Schwabik [41],

Chapter 1; Schwabik and Vrkoč [46]; Schwabik and Ye [47], Chapter 3). Nonetheless,

little is known about the conditions that ensure the equiintegrability for Stieltjes-type

integrals for real-valued functions (see [4], [33], Chapter 6, [31]).

(ii) Referring to, e.g., Gordon [13], Definition 13.15 or Schwabik and Vrkoč [46],

Remark 6, a sequence {gn} equiintegrable with respect to {fn} on [a, b] can be also

called uniformly integrable with respect to {fn} on [a, b].

(iii) If fn = f for all n ∈ N, then {gn} is called equiintegrable with respect to f

on [a, b].

In general, it is rather difficult to verify that the condition (C1) is satisfied. The

following statement at least enables us to decide whether a given sequence {gn} is

equiintegrable with respect to {fn} on [a, b] without calculating the values of all the

integrals
∫ b

a
[dfn]gn, n ∈ N.

Theorem 4.4 (Cauchy equiintegrability criterion). Let fn : [a, b] → X and gn :

[a, b] → Y for n ∈ N. Then, the sequence {gn} is equiintegrable with respect to {fn}

on [a, b] if and only if

(C2) for every ε > 0 there is a gauge δ such that ‖S(dfn, gn, P )−S(dfn, gn, Q)‖Z < ε

holds for all n ∈ N and all δ-fine tagged partitions P = (α, ξ), and Q = (β,η)

of [a, b].
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P r o o f. (a) Assume that the sequence {gn} is equiintegrable with respect to {fn}

on [a, b]. Let ε > 0 be given and let δ be an arbitrary gauge corresponding by (C1) to

η = 1
2ε. Then, for any couple P = (α, ξ), Q = (β,η) of the δ-fine tagged partitions

of [a, b] and any n ∈ N, we obtain

‖S(dfn, gn, P )− S(dfn, gn, Q)‖Z

6

∥∥∥∥S(dfn, gn, P )−

∫ b

a

[dfn] gn

∥∥∥∥
Z

+

∥∥∥∥S(dfn, gn, Q)−

∫ b

a

[dfn] gn

∥∥∥∥
Z

< ε.

(b) Assume that the condition (C2) is satisfied. Then, by the Cauchy-Bolzano

criterion (see [42], Proposition 7) for the existence of the KS-integral, the integral∫ b

a
[dfn] gn exists for every n ∈ N. For a given n ∈ N, gauge δ and ε > 0, put

In(ε, δ) = {S(dfn, gn, P ) : P = (α, ξ) is a δ-fine tagged partition of [a, b]}.

Due to (C2), we have

(4.2)

diam(In(ε, δ)) = sup{‖S(dfn, gn, P )− S(dfn, gn, Q)‖Z :

P = (α, ξ), Q = (β,η) are δ-fine tagged partitions of [a, b]} 6 ε.

By Cousin lemma (cf. Lemma 2.2), any In(ε, δ) is nonempty and, furthermore,

0 < ε1 < ε2 ⇒ In(ε1, δ) ⊂ In(ε2, δ) for every n ∈ N and gauge δ.

Thus, using the Cantor intersection theorem for complete metric spaces (see, e.g.,

[50], Theorem 5.1.17), we conclude that, for every n ∈ N, the intersection
⋂
ε>0

In(ε, δ)

is a one-point set {In} with

In =

∫ b

a

[dfn] gn ∈ Z.

As a consequence, if an arbitrary η > 0 and a gauge δε are given, such that (C2) is

true with ε = 1
2η, then In ∈ In(ε, δε) for every n ∈ N. In particular, considering (4.2),

we have

∥∥∥∥S(dfn, gn, P )−

∫ b

a

[dfn] gn

∥∥∥∥
Z

= ‖S(dfn, gn, P )− In‖Z 6 ε < η

for every δε-fine tagged partition P = (α, ξ) of [a, b] and every n ∈ N. In other words,

the sequence {gn} is equiintegrable with respect to {fn} on [a, b]. This completes the

proof. �
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In the special case when S in Definition 4.2 (ii) is a subinterval J of [a, b] we have

the following assertion.

Lemma 4.5. Let J be a subinterval of [a, b], c = inf J < d = sup J, let {fn}

be a sequence in G([a, b], X) and let {gn} be a sequence of functions mapping [a, b]

into Y. Furthermore assume that the following assertions are satisfied:

(A1) there is K ∈ [0,∞) such that ‖gn(c)‖Y 6 K and ‖gn(d)‖Y 6 K for all n ∈ N

whenever c > a or d < b,

(A2) if c > a and c ∈ J , then for any ε > 0 there is a ∆−
c > 0 such that ‖fn(c−) −

fn(t)‖X < ε for all t ∈ (c−∆−
c , c) and n ∈ N,

(A3) if c > a and c /∈ J , then for any ε > 0 there is a ∆+
c > 0 such that ‖fn(t) −

fn(c
+)‖X < ε for all t ∈ (c, c+∆+

c ) and n ∈ N,

(A4) if d < b and d ∈ J , then for any ε > 0 there is a ∆+
d > 0 such that ‖fn(t) −

fn(d
+)‖X < ε for all t ∈ (d, d+∆+

d ) and n ∈ N,

(A5) if d < b and d /∈ J , then for any ε > 0 there is a ∆−
d > 0 such that ‖fn(d−)−

fn(t)‖X < ε for all t ∈ (d−∆−
d , d) and n ∈ N.

Then, {gn} is equiintegrable with respect to {fn} on J if and only if

(∗) the integrals
∫ d

c
[dfn] gn exist for all n ∈ N and for every ε > 0 there is a gauge δ̃

on [c, d] such that
∥∥S(dfn, gn, P̃ )−

∫ d

c
[dfn] gn

∥∥
Z
< ε holds for every δ̃-fine tagged

partition P̃ of [c, d] and every n ∈ N.

P r o o f. (a) Assume that a < c < d < b and J = [c, d]. Notice, that by Proposi-

tion 3.5 (iv), for a given n ∈ N the integral
∫
J
[dfn] gn exists if and only the integral∫ d

c
[dfn] gn exists. Furthermore,

(4.3)

∫ b

a

[dfn](gnχ[c,d]) =

∫ c

a

[dfn](gnχ{c}) +

∫ d

c

[dfn] gn +

∫ b

d

[dfn](gnχ{d}),

where

(4.4)

∫ c

a

[dfn](gnχ{c}) = ∆−fn(c)gn(c),

∫ b

d

[dfn](gnχ{d}) = ∆+fn(d)gn(d).

Now, let (∗) be true and let an arbitrary ε > 0 be given. Put

δ(t) =





min{ 1
4 (c− t), 1} if t ∈ [a, c),

min{∆−
c , δ̃(c)} if t = c,

min{ 1
4 (t− c), 1

4 (d− t), δ̃(t)} if t ∈ (c, d),

min{∆+
d , δ̃(d)} if t = d,

min{ 1
4 (t− d), 1} if t ∈ (d, b],
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where δ̃ is the gauge on [c, d] from (∗), and ∆−
c and ∆+

d are given by the con-

ditions (A2) and (A4), respectively. Then (cf. [33], Lemma 6.2.11 and its proof)

necessarily {c, d} ⊂ {ξj} ∩ {αj} for any δ-fine partition P = {([αj−1, αj ], ξj)} of

[a, b]. In particular, there are indices k, l ∈ N such that 2 6 k < l 6 ν(P ) − 2,

a < c−∆−
c < αk−1 < ξk = c = αk and ξl = d = αl < αl+1 < d+∆+

d < b. Hence, for

any n ∈ N, we obtain

S(dfn, gnχ[c,d], P ) = (fn(c)− fn(αk−1))gn(c) + [fn(αl+1)− fn(d)]gn(d)

+

l∑

j=k+1

[fn(αj)− fn(αj−1)]gn(ξj)

= ∆−fn(c)gn(c) + [fn(c
−)− fn(αk−1)]gn(c) + ∆+fn(d)gn(d)

+ [fn(αl+1)− fn(d
+)]gn(d) +

l∑

j=k+1

[fn(αj)− fn(αj−1)]gn(ξj).

Thus, using (A1), (A2), (A4) and (∗), we get finally

∥∥∥∥
∫ b

a

[dfn](gnχ[c,d])− S(dfn, gnχ[c,d], P )

∥∥∥∥
Z

6 ‖fn(c
−)− fn(αk−1)‖X‖gn(c)‖Y + ‖fn(αl+1)− fn(d

+)‖X‖gn(d)‖Y

+

∥∥∥∥
∫ d

c

[dfn] gn −
l∑

j=k+1

[fn(αj)− fn(αj−1)]gn(ξj)

∥∥∥∥
Z

6 ε(2K + 1) ∀n ∈ N.

It follows immediately that the sequence {gn} is equiintegrable with respect to {fn}

on [c, d]. If {gn} is equiintegrable with respect to {fn} on [c, d], then there is a gauge δ

on [a, b] such that

∥∥∥∥
∫ b

a

[dfn](gnχ[c,d])− S(dfn, gnχ[c,d], P )

∥∥∥∥
Z

< ε ∀n ∈ N.

By [33], Lemma 6.2.11 we can choose this gauge in such a way that {c, d} ⊂

{ξj} ∩ {αj} for any δ-fine partition P = {([αj−1, αj ], ξj)} of [a, b]. Let again

a < c−∆−
c < αk−1 < ξk = c = αk and ξl = d = αl < αl+1 < d+∆+

d < b.

Modifying a little bit the previous part of the proof it is now easy to prove that the

restriction δ̃ of δ to [c, d] is the proper gauge to ensure that (∗) is true.
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(b) Let a < c < d < b and J = (c, d). Then, according to Proposition 3.5 (i) we

have
∫ d

c

[dfn] gn = ∆+fn(c)gn(c) +

∫

(c,d)

[dfn] gn +∆−fn(d)gn(d)

= ∆+fn(c)gn(c) +

∫ b

a

[dfn](gnχ(c,d)) + ∆−fn(d)gn(d) ∀n ∈ N.

The proof can be completed analogously as in the part (a), only instead of (A2)

and (A4) we have to make use of (A3) and (A5).

(c) All the remaining cases can be treated analogously. �

Now, let us recall the notion of equiregulatedness due to Fraňková (see [11]) which

will be useful in what follows.

Definition 4.6. A subsetM of G([a, b];X) is called equiregulated if the following

conditions hold.

(i) For any ε > 0 and τ ∈ (a, b] there is a δ1(τ) ∈ (0, τ − a) such that

‖f(τ−)− f(t)‖X < ε ∀ t ∈ (τ − δ1(τ), τ) and f ∈ M.

(ii) For any ε > 0 and τ ∈ [a, b) there is a δ2(τ) ∈ (0, b− τ) such that

‖f(τ+)− f(t)‖X < ε ∀ t ∈ (τ, τ + δ2(τ)) and f ∈ M.

Since any equiregulated sequence {fn} in G([a, b];X) automatically satisfies the

assumption (A2)–(A5) in Lemma 4.5, we can state the following assertion.

Corollary 4.7. Let J be an arbitrary subinterval of [a, b], c = inf J and d = sup J.

Let the sequence {fn} ⊂ G([a, b];X) be equiregulated and let {gn} be a sequence of

functions mapping [a, b] into Y such that {gn(t)} is bounded in Y whenever t = c > a

or t = d < b. Then, {gn} is equiintegrable with respect to {fn} on J if and only if (∗)

is true.

Corollary 4.7 together with the Cauchy equiintegrability criterion, cf. Theorem 4.4,

enable us to prove the following assertion.

Corollary 4.8. Let J be an arbitrary subinterval of [a, b], c = inf J and d = sup J.

Let the sequence {fn} ⊂ G([a, b];X) be equiregulated and let {gn} be a sequence of

functions mapping [a, b] into Y such that {gn(t)} is bounded in Y whenever t = c > a

or t = d < b. Then:

(i) If the sequence {gn} is equiintegrable with respect to {fn} on [a, b], then it is

equiintegrable with respect to {fn} on any subinterval J of [a, b].
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(ii) For every c ∈ (a, b), the sequence {gn} is equiintegrable with respect to {fn} on

[a, b] if and only if it is equiintegrable with respect to {fn} on both the intervals

[a, c] and [c, b].

P r o o f. (i) Let the sequence {gn} be equiintegrable with respect to {fn} on [a, b].

Obviously, cf., e.g., [42], Proposition 8,
∫ d

c
[dfn] gn exists in Z for each n ∈ N. Fur-

thermore, by the Cauchy equiintegrability criterion, the hypothesis (C2) is satisfied.

It can be shown in a rather routine way that then (C2) holds also on [c, d]. Therefore,

by Theorem 4.4, {gn} is equiintegrable with respect to {fn} when [a, b] is replaced

by [c, d]. Finally, due to Corollary 4.7, we can conclude that {gn} is equiintegrable

with respect to {fn} on J.

(ii) It remains to show just the sufficiency part of the implication. Let η > 0 and

c ∈ (a, b) be given. Let δa and δb be the gauges satisfying (C1) for [a, b] replaced by

[a, c] or [c, b], respectively. Then, for a given η > 0, the condition (C1) is satisfied if

we put

δ(t) =






δa(t) if t ∈ [a, c),

min{δa(c), δb(c)} if t = c,

δb(t) if t ∈ (c, b].

This completes the proof. �

Next assertion is a direct consequence of Lemma 4.5 and Corollary 4.8.

Corollary 4.9. Let the sequence {fn} ⊂ G([a, b];X) be equiregulated and let

the sequence {gn} of mappings of [a, b] into Y be pointwise bounded, i.e., {gn(t)} is

bounded in Y for any t ∈ [a, b]. Then, {gn} is equiintegrable with respect to {fn}

on [a, b] if and only if the sequence {gn} is equiintegrable with respect to {fn} on

arbitrary elementary subsets E of [a, b].

The Saks-Henstock lemma (see, e.g., [42], Lemma 16) states that the Riemannian

sums not only approximate the integrals in the “gauge topology” over the entire

interval, but also over suitably chosen systems of subintervals. Next, we show that

the equiintegrability implies a uniform Saks-Henstock property. However, first, let

us introduce the notion of a δ-fine system, cf., e.g., [42], Lemma 16.

Definition 4.10. The set W = {([βj , γj ], ξj), j = 1, 2, . . . ,m} is a δ-fine system

in [a, b] if

a 6 β1 6 ξ1 6 γ1 6 β2 6 ξ2 6 γ2 6 . . . 6 βm 6 ξm 6 γm 6 b

and

[βj , γj ] ⊂ (ξj − δ(ξj), ξj + δ(ξj)) for j = 1, 2, . . . ,m.
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Similarly, for divisions and tagged partitions of the interval [a, b], we denote by ν(W )

the number of the intervals contained in W, i.e., ν(W ) = m in the above situation.

Let T ⊂ [a, b] and let W = {([βj, γj ], ξj), j = 1, 2, . . . ,m} be a δ-fine system

in [a, b]. Then, W is called a δ-fine T -tagged system in [a, b] if ξj ∈ T for every

j = 1, 2, . . . ,m.

Proposition 4.11. Let {fn} ⊂ G([a, b], X) be equiregulated and let the se-

quence {gn} of functions mapping [a, b] into Y be equiintegrable with respect to {fn}

on [a, b]. Furthermore, let ε > 0 be given arbitrarily and let δ be a gauge on [a, b]

such that ∥∥∥∥S(dfn, gn, P )−

∫ b

a

[dfn] gn

∥∥∥∥
Z

< ε

for every δ-fine tagged partition P = (α, ξ) of [a, b] and every n ∈ N. Then,

∥∥∥∥
ν(S)∑

j=1

(
[fn(γj)− fn(βj)]gn(ξj)−

∫ γj

βj

[dfn] gn

)∥∥∥∥
Z

6 ε

holds for every δ-fine system W = {([βj , γj ], ξj)} in [a, b] and every n ∈ N.

P r o o f. Assume that the system {([βj , γj ], ξj), j = 1, 2, . . . ,m} in [a, b] satisfies

the conditions

a 6 β1 6 ξ1 6 γ1 6 β2 6 ξ2 6 γ2 6 . . . 6 βm 6 ξm 6 γm 6 b,

[βj , γj ] ⊂ (ξj − δ(ξj), ξj + δ(ξj)) for j = 1, 2, . . . ,m,

and put γ0 = a and βm+1 = b. Then, by Corollary 4.9, the sequence {gn} is equi-

integrable with respect to {fn} on any subinterval [γj , βj+1] for j = 0, 1, . . . ,m.

Hence, we can apply the method of the proof of the Saks-Henstock lemma in [33],

Lemma 6.5.1 to complete the proof of this proposition. �

5. Harnack extension principle and its applications

In this section we extend the Harnack extension principle, cf. Theorem 1.1, to

KS-integrals. As we already mentioned in the introduction, unlike the case with

identity integrators, the integrals (1.2) (or see (3.3)) need not have, in general, the

same values. This indicates that it cannot be done in a straightforward way.

The following definition is used in this section.

Definition 5.1. Let E be an elementary set in R and let S be a subset of E.

Then a sequence {Ei} of mutually disjoint elementary sets in R is called a proper

cover of S if S =
⋃
i∈N

Ei.
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Having in mind Theorem 4.1 and Definition 5.1, we are now ready to state and

prove the Harnack extension principle for the KS-integral.

Theorem 5.2 (Harnack extension principle). Let f ∈ (B)G([a, b], X) and g :

[a, b] → Y. Let T be a closed subset of [a, b] such that the integral
∫
T
[df ] g ex-

ists. Furthermore, let {Ei} be a proper cover of [a, b] \ T. Put Sn =
n⋃

i=1

Ei for n ∈ N

and assume that the sequence {gχSn
} is equiintegrable with respect to f on [a, b].

Then, the integrals
∫
[a,b]\T

[df ] g,
∫
[a,b]

[df ] g, and
∫
Ei

[df ] g exist for all i ∈ N and

∫

[a,b]

[df ] g =

∫

T

[df ] g +

∫

[a,b]\T

[df ] g,(5.1)

where

∫

[a,b]\T

[df ] g =

∞∑

i=1

∫

Ei

[df ] g.(5.2)

P r o o f. Obviously, Sn is an elementary set in [a, b] for every n ∈ N and Ei ⊂ Sn

for every i = 1, . . . , n. Since the integral
∫
Sn

[df ] g =
∫ b

a
[df ](gχSn

) exists for every

n ∈ N, the sets Ei, i = 1, . . . , n, are mutually disjoint, and f ∈ (B)G([a, b], X) by

Propositions 3.10 (i) and 3.14, the integrals
∫
Ei

[df ] g exist for all i = 1, . . . , n, and

(5.3)

∫

Sn

[df ] g =

n∑

i=1

∫

Ei

[df ] g for any n ∈ N.

Furthermore, as

(5.4) (gχ[a,b]\T )(t) = lim
n→∞

(gχSn
)(t) ∀ t ∈ [a, b],

making use of Theorem 4.1 and (5.3), we obtain

∫

[a,b]\T

[df ] g = lim
n→∞

∫

Sn

[df ] g =

∞∑

i=1

∫

Ei

[df ] g,

i.e., (5.2) is true. Finally, (5.2) together with Proposition 3.14 imply (5.1). This

completes the proof. �

R em a r k 5.3. Recall, cf. Remark 3.4, that under the assumptions of Theo-

rem 5.2, the integrals
∫
[a,b]

[df ] g and
∫ b

a
[df ] g coincide.
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If T is an arbitrary subset of the elementary set E ⊆ [a, b], then, as noticed in

Remark 3.7 when E = [a, b], the existence of the integral
∫
E
[df ] g does not always

imply the existence of the integral
∫
T
[df ] g (except when T is an elementary subset

of E; see Proposition 3.10 (i)). This means that the assumptions on existence of the

integral
∫
T
[df ] g in Proposition 3.10 cannot be omitted, in general. Next theorem

provides a certain affirmative result for the case E = [a, b].

Theorem 5.4. Let f ∈ (B)G([a, b], X) and g : [a, b] → Y. Let T be a closed

subset of [a, b] and let {Ei} be a proper cover of [a, b] \ T. Put Sn =
n⋃

i=1

Ei for n ∈ N

and assume that the sequence {gχSn
} is equiintegrable with respect to f on [a, b].

Furthermore, assume that the integral
∫
[a,b]

[df ] g exists. Then,

(i) All integrals
∫
Ei

[df ] g,
∫
[a,b]\T [df ] g, and

∫
T
[df ] g exist for all i ∈ N and the

equalities

∫

[a,b]\T

[df ] g =

∞∑

i=1

∫

Ei

[df ] g and

∫

[a,b]

[df ] g =

∫

T

[df ] g +

∫

[a,b]\T

[df ] g

are true.

(ii) For every ε > 0, there is a gauge δ on T, such that

∥∥∥∥
ν(Q)∑

j=1

(∫ βj

αj

[df ] gχT −

∫ βj

αj

[df ] g

)∥∥∥∥
Z

< ε

for every δ-fine T -tagged system W = {([αj , βj ], ξj)} in [a, b].

P r o o f. (i) Similarly like in the proof of Theorem 5.2, we can show that all the

integrals
∫
Ei

[df ] g, i ∈ N, exist and

∫

[a,b]\T

[df ] g =

∞∑

i=1

∫

Ei

[df ] g.

Evidently, ([a, b]\T )∪T = [a, b] and ([a, b]\T )∩T = ∅. Therefore, by Proposition 3.14

we obtain that the integral
∫
T
[df ] g exists and

∫

[a,b]

[df ] g =

∫

[a,b]\T

[df ] g +

∫

T

[df ] g.

(ii) Let ε > 0 be given, and let δ be a gauge on [a, b] such that

∥∥∥∥S(df, g, P )−

∫ b

a

[df ] g

∥∥∥∥
Z

<
ε

3
and

∥∥∥∥S(df, gχT , P )−

∫ b

a

[df ](gχT )

∥∥∥∥
Z

<
ε

3

whenever P = (α, ξ) is a δ-fine tagged partition of [a, b].
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Impose now that W = {([αj , βj], ξj)} is a δ-fine T -tagged system in [a, b]. Then,

using the Saks-Henstock lemma (see [42], Lemma 16), we deduce

∥∥∥∥
ν(W )∑

j=1

(∫ βj

αj

[df ](gχT )−

∫ βj

αj

[df ] g

)∥∥∥∥
Z

6

∥∥∥∥
ν(W )∑

j=1

(∫ βj

αj

[df ](gχT )− [f(βj)− f(αj)](gχT )(ξj)

)∥∥∥∥
Z

+

∥∥∥∥
ν(W )∑

j=1

(
[f(βj)− f(αj)]g(ξj)−

∫ βj

αj

[df ] g

)∥∥∥∥
Z

< ε.

This completes the proof. �

If E could be an arbitrary elementary subset of [a, b], then to obtain an assertion

similar to that of Theorem 5.4, we have to require that the integrator f is (strongly)

regulated, instead of only belonging to (B)G([a, b], X).

Theorem 5.5. Let f ∈ G([a, b], X) and g : [a, b] → Y. Let E be an elementary

set in [a, b] such that the integral
∫
E
[df ] g exists. Let T be a closed subset of E

and {Ei} be a proper cover of E \ T. Furthermore, put Sn =
n⋃

i=1

Ei for n ∈ N and

assume that the sequence {gχSn
} is equiintegrable with respect to f on [a, b]. Then,

both the integrals
∫
T
[df ] g and

∫
E\T

[df ] g exist and the equality

(5.5)

∫

E

[df ] g =

∫

T

[df ] g +

∫

E\T

[df ] g

is true.

P r o o f. Without loss of generality we may assume that E =
m⋃

k=1

Jk where

{Jk}mk=1 is a minimal decomposition of E, cf. Definition 3.8. By Proposition 3.10

with Remark 3.6, the integral
∫
Jk

[df ] g, where Jk denotes, as usual, the closure of Jk,

exists for every k = 1, 2, . . . ,m. Let us put

Tk = T ∩ Jk for k = 1, 2, . . . ,m.

Then all Tk, k = 1, 2, . . . ,m, are closed and, cf. Remark 3.9, Tk ∩ Tl ⊂ Jk ∩ J l for

k, l = 1, 2, . . . ,m.

Now, let us fix an arbitrary k = 1, 2, . . . ,m, and put

Ei,k:=Ei ∩ Jk for i ∈ N and Sn,k:=

n⋃

i=1

Ei,k for n ∈ N.
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Notice that Sn,k = Sn ∩ Jk for k = 1, 2, . . . ,m, and hence Sn,k ⊆ Sn for n ∈ N. The

collection {Ei} is supposed to be a proper cover of E \T, i.e., (cf. Definition 5.1), Ei

are mutually disjoint elementary sets and
⋃
i∈N

Ei = E \ T. The sets Ei,k are clearly

elementary sets and since Ei,k ⊂ Ei for each i ∈ N, they are mutually disjoint as

well. Finally,

⋃

i∈N

Ei,k =
⋃

i∈N

(Ei ∩ Jk) =
( ⋃

i∈N

Ei

)
∩ Jk = (E \ T ) ∩ Jk = Jk \ Tk.

To summarize, the collection {Ei,k : i ∈ N} is a proper cover of Jk \ Tk.

Moreover, from (5.4) in the proof of Theorem 5.2, the sequence {gχSn
} converges

pointwise on [a, b], which further implies the boundedness of the sequence {(gχSn
)(t)}

in Y for any t ∈ [a, b]. Accordingly, we obtain that the sequence {(gχSn,k
)(t)} is

bounded in Y for any t ∈ [a, b] and k = 1, 2, . . . ,m. Hence, by Corollary 4.8 (i), the

sequence {gχSn,k
: n ∈ N} is equiintegrable with respect to f on Jk. Consequently,

Theorem 5.4 gives the existence of the integrals
∫
Tk

[df ] g and
∫
Jk\Tk

[df ] g and the

equality ∫

Jk

[df ] g =

∫

Tk

[df ] g +

∫

Jk\Tk

[df ] g

for all k = 1, 2, . . . ,m.

Finally, by Proposition 3.15, where we insert {Tk}mk=1 instead of {Sj}
p
j=1, the in-

tegral
∫
T
[df ] g exists. The existence of the integral

∫
E\T

[df ] g and the equality (5.5)

then follow directly from Proposition 3.13. �
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