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POSITIVE UNKNOWN INPUTS FUNCTIONAL OBSERVERS
NEW DESIGN FOR POSITIVE LINEAR SYSTEMS

Montassar Ezzine, Mohamed Darouach, Harouna Souley Ali,
and Hassani Messaoud

This paper deals with the problem of designing positive functional observers for positive
linear systems subject to unknown inputs. The order of the designed observer is equal to
the dimension of the functional to be estimated. The designed functional observer is always
nonnegative at any time and converges asymptotically to the real functional state vector. In
fact, we propose a new positive reduced order observer for positive linear systems affected by
unknown inputs. The proposed procedure is based on the positivity of an augmented system
composed of dynamics of both considered system and proposed observer and also, on the
unbiasedness of the estimation error by the resolution of Sylvester equation. Then existence
conditions of such observers are formulated in terms of linear programming (LP) problem,
where we use the Perron–Frobenius theorem applied to Metzler matrices. An algorithm that
summarizes the different steps of the proposed positive functional observer design is given.
Finally, numerical example and simulation results are given to illustrate the effectiveness of the
proposed design method.

Keywords: positive systems, functional observers, unknown inputs, linear systems, LP
problem

Classification: 93C05, 93C28, 93B53

Notations: We shall use throughout the paper the following notations:

• Let < be the set of real numbers; <n
+ denotes the nonnegative orthant of the n-

dimensional real space <n and <m×n is the set of m × n matrices for which all
entries belong to <.

• For a matrix A ∈ <m×n, aij denotes the element located at the ith row (i ≤ m)
and jth column (j ≤ n).

• A matrix A is said to be nonnegative, denoted by A � 0, if ∀(i, j), aij ≥ 0. It
is said to be positive, if ∀(i, j), aij ≥ 0,∃(i, j), aij > 0. Note that definitions
of nonnegative and positive matrices are equivalent, except when a nonnegative
matrix is identically zero which is the degenerate case and is of no interest. So, we
consider that these two definitions are equivalent in general cases.
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• A matrix A is said to be negative, denoted by A ≺ 0, if ∀(i, j), aij ≤ 0.

• A > 0 (respectively, A < 0) means that the matrix A is positive definite (respec-
tively, negative definite), A ≥ 0 (respectively, A ≤ 0) means that the matrix A is
positive semidefinite (respectively, negative semidefinite)

• For a real matrix A, AT denotes the transpose.

• A− denotes any generalized inverse of matrix A, i. e. verifies AA−A = A.

• λi(A) designs the ith eigenvalue of matrix A.

• diag (v) denotes the diagonal matrix formed from the vector v.

• Ones (mz) denotes an mz × 1 vector of ones : =
(

1, . . . , 1
)T

.

• I and 0 are the identity matrix and the zero matrix of appropriate dimensions.

• s denotes the Laplace variable, it is a complex number.

• v � 0 denotes a vector v such that for all its coordinates it holds, ∀i, vi ≥ 0.

1. INTRODUCTION

Real systems in many area as biomedicine [5], biology [23], physiology [15], epidemiology
[31], industrial engineering [3]. . . are positive. Positive systems, belongs to an important
class of dynamical systems whose states are nonnegative for any nonnegative initial
condition and any nonnegative input. In view of these widespread applications, it is
necessary to investigate the study and synthesis problems for positive linear systems
(see [14, 19], . . . ). Note that, positive systems differ from linear standard systems by
the existence of positivity constraints. In fact, for example, if a system is controllable,
the poles of the system can be placed arbitrarily, whereas for positive one this feature
may not be true owing the positivity constraints on systems matrices.

On the other hand, in practice, many control processes require the availability of
some components of the system state vector for the purpose of monitoring for example.
This problem, has motivated a great deal of work to the observers design for linear
systems [6, 25, 30]. . . when the states are not measurable or measured. Mainly, problem
of functional observer design is equivalent to find an observer, that estimates a linear
combination of the states of a system using the input and output measurements. Such
estimator has the same order as the linear combination to be estimated. Note that, it
has been the object of numerous studies for non positive systems where the aim is only to
minimise the estimation error (make the estimation error converge to zero) [6], [7], [9]. . . .
For positive systems, in addition to minimizing this error, positive observers must also
guarantee the nonnegativity of the state estimates [8, 10, 12]. This makes the positive
observer design significantly more challenging [22], [2], [27]. . . . For positive systems with
unknown inputs (see [28]. . . ) a design method via LMIs is provided. In [21] and [29],
unknown input observers for discrete-time positive systems, state and unknown input
observers for positive systems were reported. Despite the recent advances on observers
design for positive systems, to the best of our knowledge, little attention has been paid
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for the positive functional observer design for positive linear systems subject to unknown
inputs [28], which motivates the present work. This is an important problem finding
its way into multiple engineering applications such as in fault detection. . . and it is an
important research topic since these kind of observes are very important in practice as
they possess real physical meaning which motivates the present work. Notice that, in
this paper we means by unknown inputs inputs that are totally unknown not even the
borders of their energy, which is of practical interest.

Note that [13] addresses the problem of positive observer design for positive time-
delay systems subject to unknown inputs, where the designed observer is of full order
one. On the contrary, here we focus on the purpose of functional observer design for
standard linear systems. Our aim is to estimate only a functional or a linear combi-
nation of the state that can be useful for control purposes. Therefore, in this paper,
we consider a new problem of designing functional positive observer for positive linear
standard systems subject to unknown inputs. In fact, we propose a new positive reduced
order observer (its order is equal to the dimension of the vector to be estimated) for
positive linear systems subject to unknown inputs. The proposed approach is based on
the positivity of an augmented system composed of dynamics of both considered sys-
tem and proposed observer and also, on the unbiasedness of the estimation error by the
resolution of Sylvester equation. Then existence conditions of such observers are formu-
lated in terms of linear programming (LP) problem, where we use the Perron–Frobenius
theorem applied to Metzler matrices. The different steps of the proposed approach are
summarized. Numerical example and simulation results are finally given to illustrate
the effectiveness of the proposed design method.

2. PROBLEM STATEMENT

Let us consider the following linear multivariable continuous system described by

ẋ(t) = Ax(t) +Bu(t) +Dd(t) (1a)

z(t) = Kx(t) (1b)

y(t) = Cx(t) (1c)

where x(t) ∈ <n is the state vector, u(t) ∈ <p is the control input vector, d(t) ∈ <q

represents the unknown inputs vector, y(t) ∈ <m is the output vector and z(t) ∈ <mz

is the the functional to be estimated. A, B, D, K and C are known constant matrices
of appropriate dimensions.

Further, it is assumed through the paper that:

Assumption 2.1. 1) rank K = mz, mz ≤ n.

2) rank C = m, m ≤ n.

In the following section, we give necessary conditions that ensure the positivity of the
proposed linear system (1).
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3. BASIC RESULTS ON POSITIVE LINEAR STANDARD SYSTEMS

Definition 3.1. (Shafai et al. [28]) A linear system is said to be positive if its state
and output are both nonnegative (x(t) ∈ <n

+, y(t) ∈ <m
+ ∀t ≥ 0 ) for any nonnegative

input and nonnegative initial state.

Definition 3.2. (Luenberger [26]) A square real matrix M is called a Metzler matrix
if its off-diagonal elements are nonnegative, i. e. mij � 0, i 6= j.

Now, we present two lemmas which will be used in the sequel of the paper.

Lemma 3.3. (Shafai et al. [28]) System (1) is positive if and only if A is a Metzler
matrix and B ∈ <n×p

+ , D ∈ <n×q
+ , K ∈ <mz×n

+ , C ∈ <m×n
+ are nonnegative matrices:

(B � 0, D � 0, K � 0 and C � 0).

Lemma 3.4. A matrix G is a generalized inverse of positive matrix Ã if it satisfies
ÃGÃ = Ã. Let Ã− be one generalized inverse of Ã i. e. ÃÃ−Ã = Ã, then

G = Ã− + Ṽ (I − ÃÃ−) + (I − Ã−Ã)W̃ (2)

where Ṽ and W̃ are arbitrary matrices.
In fact it is easy to see that

ÃGÃ = ÃÃ−Ã+ ÃṼ (I − ÃÃ−)Ã+ Ã(I − Ã−Ã)W̃ Ã = ÃÃ−Ã = Ã. (3)

Let us now assume that the considered linear system defined in (1) is positive. The
functional z(t) = Kx(t) ∈ <mz

+ , mz ≤ n is defined as a positive linear function of the
state vector, where K � 0 is any given mz × n matrix.

Objective 3.5. Our main purpose in this paper is to design for the positive linear
system (1), a reduced order positive linear functional observer of order mz, (mz ≤ n),
that generates a positive estimate of functional z(t), ẑ(t) ∈ <mz

+ such that the estimation
error e(t) = ẑ(t)− z(t) converges asymptotically to zero as t→∞.

Note, that the designed observer uses only the available input and output in order to
estimate the linear functional of the state.

4. NEW POSITIVE FUNCTIONAL OBSERVER DESIGN

4.1. Positive functional observer structure

Our aim is to design a new positive reduced order observer with the following structure

ϕ̇(t) = Nϕ(t) + Jy(t) +Hu(t) (4a)

ẑ(t) = ϕ(t) + Ey(t) (4b)

where ϕ(t) is the observer state, ẑ(t) is the estimate of z(t) the functional to be estimated.
Observer matrices N , J , H and E are to be designed.

Lemma 4.1. The functional observer defined in (4) is called a positive linear functional
observer of system (1) if for any initial condition, ϕ(0) ∈ <mz

+ and all inputs u(t) ∈
<p

+,∀t ≥ 0 then ẑ(t) ∈ <mz
+ for all t ≥ 0 and ẑ(t) converges asymptotically to z(t) as

t→∞.
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4.2. Existence conditions of positive functional observer

Before providing the first result of the paper, let us compute the estimation error, that
is given by:

e(t) = ẑ(t)− z(t) (5a)

= ϕ(t) + (EC −K)x(t). (5b)

So, its dynamics can be written as

ė(t) = ϕ̇(t) + (EC −K)ẋ(t) (6a)

= Ne(t) + (H + ECB −KB)u(t) + (NK −NEC + JC + ECA−KA)x(t)

+ (ECD −KD)d(t). (6b)

Furthermore, we propose to compute the following augmented system composed by
the system state x(t) and the observer output ẑ(t). In fact, it is given by:(

ẋ(t)
˙̂z(t)

)
=

(
A 0

JC + ECA−NEC N

)(
x(t)
ẑ(t)

)
+

(
B

H + ECB

)
u(t) +

(
D

ECD

)
d(t). (7)

We are now ready to state the first result of the paper, namely the existence con-
ditions of the proposed functional observer. In fact, the following theorem provides
conditions which ensure that the proposed system (4) is a positive linear functional
observer of system (1), by providing an output ẑ(t) that is always nonnegative and
converges asymptotically to the functional z(t).

Theorem 4.2. The observer defined in (4) is an asymptotic positive linear functional
observer of system (1) if and only if the following conditions are satisfied:

1) N is Metzler and Hurwitz matrix

2) JC + ECA−NEC � 0

3) H + ECB � 0

4) ECD � 0

5) NK −NEC + JC + ECA−KA = 0

6) H + ECB −KB = 0

7) ECD −KD = 0.

P r o o f . The first part of condition 1) (N is Metzler matrix) with conditions 2), 3) and
4) are obtained by applying lemma 3.3 on augmented system (7). They ensure that the
estimate ẑ(t), output of the proposed observer (4), be nonnegative all the time.
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In addition, by considering the expression (6) of the estimation error dynamics, one
can conclude that it is unbiased (does not depend explicitly on state x(t) and input u(t))
if and only if conditions 5) and 6) are satisfied with the unknown inputs independent
observer condition 7). So, the estimation error dynamics ė(t) = Ne(t) is asymptotically
stable if and only if second part of condition 1) (N is Hurwitz) is satisfied.

Finally, it is clear that if conditions of the proposed theorem are satisfied then ẑ(t) is
always nonnegative and it tends to z(t) asymptotically (e(t) tends to zero asymptotically
for any initial value e(0); lim t→∞e(t) = 0). �

From previous developments, we can give the existence conditions of the proposed
positive unknown inputs functional observer:

Lemma 4.3. The unknown input observer, defined in (4) for positive system (1), exists
if:

rank(CD) = rank

[ (
K
C

)
D

]
= q (8)

In fact, condition 7) of theorem (4.2) is solvable if (8) is satisfied.
We are now ready to state the second result of the paper, namely the design procedure

of the proposed functional observer. In fact, the following subsection is devoted to find
the functional observer matrices N , J , H and E such that conditions 1)−7) of Theorem
4.2 are satisfied.

Before continuing, we will give the following remark on the design of positive func-
tional observer with respect to classical functional observer.

Remark 4.4. It is worth noting that the functional observer design for positive systems
is significantly more difficult than for systems without nonnegativity constraint. The
main feature of the proposed method in this paper, is that the design is reduced to a
linear programming problem that makes it interesting and easy to manipulate.

4.3. Positive functional observer synthesis

As first step of the design, let us consider conditions 6) and 7) of theorem 4.2. One can
get positive functional observer matrix E from condition 7) of theorem (4.2), if rank
condition (8) is verified provided that a nonnegative left inverse of CD exists.

Notice that, a parametrization of all positive generalized inverses of a known and
positive matrix Ã is stated by lemma 3.4. Therefore in order to guarantee the positivity
of the generalized inverse of CD, it is sufficient to solve an LP problem (2) to find
matrices Ṽ and W̃ since CD is known and positive (C ∈ <m×n

+ and D ∈ <n×q
+ ).

So, observer matrix E can be given by

E = KD(CD)− − Z1(I − (CD)(CD)−) (9)

where Z1 is an arbitrary matrix that can be, for simplicity assumed to be zero, which
gives that

E = KD(CD)− (10)
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Then, we can get functional observer matrix H from condition 6) of Theorem 4.2

H = KB −KD(CD)−CB (11)

Now, to achieve unbiasedness of the proposed observer, the following condition 5) of
Theorem 4.2 must hold:

NK −NEC + JC + ECA−KA = 0. (12)

The equation (12), which has two unknowns, that are observer matrices N and J ,
can be transformed to

[N J ]

[
T
C

]
= TA (13)

where T = K − EC. (E is given by (10)).
For the resolution of (13), let set

[N J ] = X (14)

[
T
C

]
= Σ (15)

TA = Θ (16)

therefore (13) becomes

XΣ = Θ. (17)

This equation has a solution X if and only if

rank

(
Σ
Θ

)
= rank Σ (18)

in this case the general solution for (17), is given by

X = ΘΣ− − Z(Imz+m − ΣΣ−) (19)

where Σ− is a generalized inverse of matrix Σ given by (15) and Z ∈ <mz×(mz+m) is an
arbitrary matrix, that will be determined in the sequel. Once matrix X is determined,
it is easy to give the expressions of matrices N and J .

In fact,

N = X

(
Imz

0m×mz

)
= A11 − ZB11 (20)

where

A11 = ΘΣ−
(

Imz

0m×mz

)
(21)

B11 = (Imz+m − ΣΣ−)

(
Imz

0m×mz

)
(22)
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and

J = X

(
0mz×m
Im

)
= A22 − ZB22 (23)

with

A22 = ΘΣ−
(

0mz×m
Im

)
(24)

B22 = (Imz+m − ΣΣ−)

(
0mz×m
Im

)
. (25)

Hence functional observer matrices N and J are determined if and only if the matrix
Z is known.
Now, we propose a method to compute this matrix Z such that conditions 1)- 4) of The-
orem 4.2 are satisfied; Note that equations (17), (11) and (10) correspond to conditions
5), 6) and 7) of Theorem 4.2.

For that, we recall the following result that will be useful in the sequel.

Lemma 4.5. (Arrow [1]) The Perron–Frobenius theorem applied to matrices S ∈ M∩H,
where M denotes the set of Metzler matrices and H denotes the set of Hurwitz matrices,
states that: for all S ∈ M ∩ H, there exists a nonnegative vector v i. e. v � 0, such that
Sv ≺ 0.

Now, let us note that conditions 3) and 4) of Theorem 4.2 are all time verified due
to the nonnegativity of matrices B, C, D, K and (CD)−. In addition, from condition
1) of Theorem 4.2 and lemma 4.5, there exists a strictly positive v ∈ <mz that verifies
following inequalities:

v � 0 (26)

Nv ≺ 0 (27)

N diag(v) � 0 for i 6= j. (28)

Note that we can write v =diag(v)× Ones(mz). As such, we can rewrite condition 1)
and condition 2) of Theorem 4.2 (that are useful for the positivity of the ẑ(t)) in terms
of this vector v, where we define V1 = diag(v), as follows:

• N is Metzler and Hurwitz matrix:
v � 0

NTV1Ones(mz) ≺ 0

NTV1 � 0 for 1 ≤ i 6= j ≤ mz.

(29)

• From condition 2) of Theorem 4.2, we can write the following equivalent condition

(JC + ECA−NEC)TV1 � 0. (30)
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At this stage, using equivalent conditions (29)-(30), we’re ready to state the main
result of the paper that permits to obtain for observer matrices N and J such that con-
ditions 1) and 2) of Theorem (4.2) are satisfied. Note that based on linear programming
problem, one can get the gain matrix Z which parameterizes the positive functional
observer matrices N and J (see (20) and (23)).

So, we give the following theorem which permits to ensure the existence of the un-
known input functional positive observer and to obtain the observer’s matrices.

Theorem 4.6. The positive unknown inputs functional observer (4) for positive linear
system (1) exists if the following conditions holds:

1. Rank conditions (8) and (18) are satisfied.

2. The positivity test of a one generalized inverse (CD)− of CD as mentioned by
lemma (3.4) is satisfied.

3. Verify that the following linear programming (LP) problem in variables V1 ∈
<mz×mz , where V1 = diag(v) for a strictly positive vector v and Y ∈ <(mz+m)×mz

is feasible: 

v � 0

AT
11v −BT

11Y Ones(mz) ≺ 0

AT
11V1 −BT

11Y � 0 for 1 ≤ i 6= j ≤ mz

(A22C + E1A−A11E1)TV1 + (B11E1 −B22C)TY � 0

(31)

where E1 = EC.

If this proposed (LP) problem is feasible, variables V1 and Y are consequently known.
Then, the gain Z is given by Z = V−11 YT .

P r o o f .

1. Let’s consider (29) with (20) and using the fact that v = V1 Ones(mz), yields to
the first three inequalities of (31) where Y = ZTV1.

2. Finally, by considering inequality (30), using (20) and (23), the last inequality
holds with Y = ZTV1 and E1 = EC.

This completes the proof of the proposed theorem.

�

In the following section, we intend to summarise the different steps that must be
achieved to design the proposed positive functional observer.
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5. POSITIVE FUNCTIONAL OBSERVER DESIGN STEPS SUMMARY

1. Check existence condition of the observer (8).

2. Verify the existence of a one nonnegative generalized inverse (CD)− of (CD), using
lemma 3.4.

3. Get observer matrices E and H from (10) and (11).

4. Compute Σ and Θ from (15) and (16).

5. Verify rank condition (18).

6. Compute A11, B11, A22 and B22 from relations (21), (22), (24) and (25).

7. If the Linear programming (LP) problem is feasible, get matrices V1 and Y .

8. Compute matrix gain Z by Z = V −11 Y T .

9. Get filter matrices N and J from (20) and (23).

Note, if rank conditions fails and/or the linear programming problem isn’t feasible, the
observer does not exist and we much augment the dimension of the filter to hope to
have a functional filter. And if the algorithm runs well until the end, then the proposed
positive functional observer description (4) for positive linear system (1) is obtained.

The following section is devoted to demonstrate the effectiveness of the proposed
approach on a numerical example.

6. NUMERICAL RESULTS

Consider the system presented in section 2, where

A =


−15 2 3 1

2 −9 1 3
1 2 −14 1
3 1 1 −10

, B =


1
2
3
4

, D =


1

0.5
0.5
1

 , K =

[
1 0 1 0
3 0 0 2

]
,

C =

[
1 0 0 0
0 1 0 0

]
.

With the computational approach presented in section 5 which is based on LP and after
verifying rank conditions (8) and (18), we have obtained the following results:

1. E =

[
1.2 0.6
4 2

]
, H =

[
1.6
3

]
.

2. Σ =

 5.3 6.3
4.7 4.2
0.1 0.1

 and Θ =

[
4.94 −7.15
−3.94 −0.1

]
.

Then, we have found that the LP is feasible. One such feasible solution to the LP
problem (31) provides:
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3. N =

(
−1.3333 0.6667
0.3333 −0.6667

)
and J =

(
76.4889 62.1539
83.0434 38.1760

)
.

So, the proposed design of the positive observer for positive linear system subject to
unknown inputs is obtained.

Simulation results are illustrated by Figures 3, 4, 5, 6, 7 and 8, where we present in
Figures 1 and 2 the behavior of the used known and unknwon inputs u(t) and d(t). Note
that Figures 3 – 4 demonstrates the positivity of the functional state components z1(t)
and z2(t), Figures 5 – 6 shows the responses of the estimated functional state components
ẑ1(t) and ẑ2(t) and in Figures 7 – 8 we draw the estimation error components. It is clear
that the estimates are nonnegative and the designed functional observer estimated the
functional state z(t) as expected. Finally, simulation results show the behavior of the
proposed positive functional filter for positive linear systems and so, the effectiveness of
our approach.

Remark 6.1. We can consider a matrix A that is not necessarily stable for system (1)
and the proposed method permits to design the functional observer as expected. In fact,
for example for same matrices B, C, D, D1, C and K where,

A =


1 2 3 1
2 9 1 3
1 2 14 1
3 1 1 0

 and using the same computational approach, we obtain the

following functional observer matrices: E =

[
1.2 0.6
4 2

]
, H =

[
1.6
3

]
,

N =

(
−1.3333 0.6666
0.3333 −0.6667

)
and J =

(
60.4216 54.4866
20.6115 3.7441

)
.
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Fig. 1. Known input u(t) behavior.
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Fig. 2. Unknown inputs d(t) behavior.
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Fig. 3. First component z1(t) of the functional to be estimated.
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Fig. 4. Second component z2(t) of the functional to be estimated.
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Fig. 5. First component ẑ1(t) of the estimated functional ẑ(t).
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Fig. 6. Second component ẑ2(t) of the estimated functional ẑ(t).

7. CONCLUSION

In this paper, we have presented new results for designing positive functional observers
for linear positive standard systems subject to unknown inputs. The observer is of
reduced order, it is equal to the dimension of the functional to be estimated. It is always
nonnegative at any time and converges asymptotically to the real functional state vector.
The proposed approach is based on the nonnegativity of an augmented system consisted
of the dynamics of both considered system and proposed observer and it is based also, on
the unbiasedness of the estimation error by the resolution of Sylvester equation. Then
existence conditions of such observers are formulated in terms of linear programming
(LP) problem, where we use the Perron–Frobenius theorem applied to Metzler matrices.
The proposed new approach for positive functional observer design is summarized by an
algorithm that gives different steps useful for this new design. Numerical example and
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Fig. 7. The first component e1(t) of the estimation error e(t).
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Fig. 8. The second component e2(t) of the estimation error e(t).

simulation results have been given to illustrate the effectiveness of the proposed design
method.

Availability of data and materials: Not Applicable.
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