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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 60 (2024), 21–33

ON OPEN MAPS AND RELATED FUNCTIONS OVER
THE SALBANY COMPACTIFICATION

Mbekezeli Nxumalo

Abstract. Given a topological space X, let UX and ηX : X → UX denote,
respectively, the Salbany compactification of X and the compactification
map called the Salbany map of X. For every continuous function f : X → Y ,
there is a continuous function Uf : UX → UY , called the Salbany lift of f ,
satisfying (Uf) ◦ ηX = ηY ◦ f . If a continuous function f : X → Y has a
stably compact codomain Y , then there is a Salbany extension F : UX → Y
of f , not necessarily unique, such that F ◦ ηX = f . In this paper, we give
a condition on a space such that its Salbany map is open. In particular, we
prove that in a class of Hausdorff spaces, the spaces with open Salbany maps
are precisely those that are almost discrete. We also investigate openness of
the Salbany lift and a Salbany extension of a continuous function. Related
to open continuous functions are initial maps as well as nearly open maps. It
turns out that the Salbany map of every space is both initial and nearly open.
We repeat the procedure done for openness of Salbany maps, Salbany lifts
and Salbany extensions to their initiality and nearly openness.

Introduction

Salbany [11] in 2000, constructed a topological space UX, called the ultrafilter
space, using ultrafilters of a space X as points. He showed that the ultrafilter space
UX is a compactification of a space X with the compactification map ηX : X → UX
taking each point of X to its induced principal ultrafilter. For every continuous
function f : X → Y , there is a continuous function Uf : UX → UY such that
ηY ◦ f = (Uf) ◦ ηX . Another notable result from the cited Salbany’s paper is
that given a continuous function f : X → Y to a compact, locally compact and
supersober space Y , there is a continuous function F : UX → Y , not necessarily
unique, such that F ◦ηX = f . The ultrafilter space UX was later called the Salbany
compactification of X in [5], a term we shall use in paper. The maps ηX , Uf and
F shall be referred to as the Salbany map of X, the Salbany lift of f and a Salbany
extension of f , respectively. The Salbany compactification also appears in a number
of articles such as [4] and [10]. To our knowledge, none of the work done on this
compactification addresses the following questions:
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(1) Under which conditions does a space have an open Salbany map?
(2) When is the Salbany lift of a continuous map open?
(3) When does a continuous function have an open Salbany extension?

In this paper, we address the above questions. We do not only focus on openness,
but also on initiality and nearly openness. The idea of giving conditions on a space
such that its compactification map is open has appeared in articles such as [6]
where the author showed that a non-compact space X is locally compact-small
if and only if the Wallman compactification map wX : X → WX is open. In [7],
Dimov studied conditions on a continuous function such that its Banaschewski
extension is open. In [1], Adjei and Dube characterized continuous maps such that
their Banaschewski extensions are nearly open.

This article is organized as follows: Section one covers some terminologies
that will be useful in this paper and also recalls the construction of the Salbany
compactification given in [11]. In Section two, we discuss openness of (i) the Salbany
map of a Hausdorff space, (ii) the Salbany lift of a surjective continuous function,
and (iii) Salbany extension of a continuous function. We prove that in the class of
Hausdorff spaces, spaces with open Salbany maps are precisely the almost discrete
ones. Section three and Section four, respectively, consider initiality and nearly
openness of the Salbany map of a space, Salbany lift and Salbany extension of a
continuous function.

1. Preliminaries

For basic notations of topological spaces see [8] and refer to [11] for the construc-
tion of the Salbany compactification.

The terms topological space and space shall be used interchangeably and we
shall only write X for a topological space if there is no possible danger of confusion.
Throughout the paper, no separation axioms are assumed on spaces unless stated.
We shall use Ux to denote the system of neighbourhoods (nhoods, in short) of a
point x of a space X.

A space X is supersober if it is compact and for each ultrafilter F on X, there is
x ∈ X such that

⋂
{C : C ∈ F} = {x}. It is called stably compact if it is compact,

locally compact and supersober.
A space X is said to be spectral space provided that it is compact, sober and

has a basis of compact-open sets closed under finite intersections. With the sober
requirement replaced by supersober, X is called quasi-spectral.

Construction of the Salbany compactification: Let (X, τ) be a topological space.
We denote the collection of all ultrafilters on X by UX and the points of UX by
lowercase letters such as p, q, etc. For each A ⊆ X, define A∗ = {p ∈ UX : A ∈ p}.
The collection B = {G∗ : G ∈ τ} forms a base for some topology on UX which is
denoted by Uτ . The Salbany map of X is the continuous function ηX : (X, τ) →
(UX,Uτ) defined by x 7→ {A ⊆ X : x ∈ A}. The pair ((UX,Uτ), ηX) is referred to
as the Salbany compactification of X, and we shall only write UX if there is no
possible danger of confusion.

Here are some properties that we shall use:



OPEN MAPS OVER THE SALBANY COMPACTIFICATION 23

(1) A ∩B = ∅ if and only if A∗ ∩B∗.
(2) A ⊆ B if and only if A∗ ⊆ B∗.
(3) For each U ⊆ X, U = η−1

X (U∗).
Given a continuous function f : X → Y , there is a continuous function Uf : UX →

UY , called the Salbany lift of f , defined by p 7→ {A ⊆ Y : f−1(A) ∈ p} such that
the diagram

(1.1)

X

ηX

��

f // Y

ηY

��
UX Uf

// UY

commutes.
For each stably compact space X, there is a retraction map rX : UX → X,

defined by rX(p) = x for some x such that {x} =
⋂
{A : A ∈ p}, satisfying

that rX ◦ ηX = idX . Hence, for a continuous function f : X → Y with a stably
compact codomain Y , there is a continuous function (not necessarily unique)
F = rY ◦ (Uf) : UX → Y such that the following diagram commutes:

(1.2)

X

f

  B
BB

BB
BB

BB
BB

BB
BB

ηX // UX

F

��
Y

For such F , we have that F (p) = y for some y ∈ Y such that {y} =
⋂
{A : f−1(A) ∈

p}, for all p ∈ UX, and we call F a Salbany extension of f .

2. When Salbany maps, Salbany lifts and Salbany extensions are open

We begin this section with an investigation of spaces with open Salbany maps.
Recall from [9] that a topological space is almost discrete if every open subset is

closed. It is clear that every Hausdorff almost discrete space is discrete. To see this,
let x ∈ X. Since X is Hausdorff, {x} is closed and hence open because X is almost
discrete.

In the following theorem, we give conditions on a class of Hausdorff spaces such
that their Salbany maps are open.

Theorem 2.1. Let (X, τ) be a Hausdorff space. The following statements are
equivalent.

(1) The Salbany map ηX of X is open.
(2) X is almost discrete.
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Proof. (1)⇒ (2): Let A be an open subset of X and assume that there is x ∈ ArA.
Then A ∩N 6= ∅ for every nhood N of x. Extend the collection {A ∩N : N ∈ Ux}
to some ultrafilter p on X. Then A ∈ p and p converges to x. Because A ∈ p and
x /∈ A, we have that p 6= ηX(x). We show that ηX(x) /∈ U for every open set UUX
such that U ⊆ ηX(X) . This will contradict that ηX(X) is open. Let U ∈ Uτ be
such that U ⊆ ηX(X). Then ηX(x) /∈ U , otherwise ηX(x) ∈ V ∗ for some V ∈ τ
such that V ∗ ⊆ U . This makes V a nhood of x which implies that V ∈ p. Therefore
p ∈ V ∗ ⊆ ηX(X) so that p = ηX(y) for some y ∈ X different from x. It follows
that p converges to y. This means that p has more than one limit which contradicts
that X is Hausdorff. Thus ηX(x) /∈ U which is impossible. Hence A is closed.

(2) ⇒ (1): Let U be open in X and choose p ∈ ηX(U). Then p = ηX(x) for
some x ∈ U . Since X is discrete, {x} is open in X. Therefore p = ηX(x) ∈ ({x})∗.
Observe that ({x})∗ = ηX({x}). Indeed, if q ∈ ({x})∗, then {x} ∈ q. Therefore
each A ∈ ηX(x) belongs to q so that ηX(x) ⊆ q. Because ηX(x) is an ultrafilter,
ηX(x) = q. Thus q ∈ ηX({x}). The other containment is straightforward.

Therefore p ∈ ({x})∗ ⊆ ηX(U), making ηX(X) open. �

Denote by X0 and e0X the T0-reflection of a space X and the T0-reflection map,
respectively. It is well-known that T0-reflection maps are open.

In [11], Salbany proved that the T0-reflection of the Salbany compactification UX
of a T0-space X is a stable compactification of X (see [12] for a formal definition of a
stable compactification) with the compactification map denoted by β0X : X → β0X.

We have the following result following from Theorem 2.1.

Corollary 2.2. If X is discrete, then β0X is open.

Proof. Follows since β0X = e0UX ◦ ηX where both e0UX and ηX are open. �

We give an example which shows that the statements of Theorem 2.1 are not
equivalent to almost discrete UX unless X is a finite discrete space.

We shall need the following lemma.

Lemma 2.3. Let (X, τ) be a topological space and B ⊆ P(X). Then
(⋃

V ∈B V
)∗

=⋃
V ∈B V

∗.

Proof. Let q ∈
(⋃

V ∈B V
)∗

and assume that q ∈ X∗ r
⋃
V ∈B V

∗. Then there
is G ∈ τ such that q ∈ G∗ ⊆ X∗ r

⋃
V ∈B V

∗. This makes G∗ ∩
(⋃

V ∈B V
∗) = ∅.

Therefore G∗∩V ∗ = ∅ for each V ∈ B so that G∩V = ∅ for each V ∈ B. Therefore
G∩

(⋃
V ∈B V

)
= ∅. Since G is open in X, G∩

⋃
V ∈B V = ∅, which contradicts that

both G and
⋃
V ∈B V belong to q.

On the other hand, choose q ∈
⋃
V ∈B V

∗ and assume that q /∈
(⋃

V ∈B V
)∗

.

Then
⋃
V ∈B V /∈ q, making X r

⋃
V ∈B V ∈ q. Therefore X∗ r

(⋃
V ∈B V

)∗
is an

open neighbourhood of q so that

∅ 6=
⋃
V ∈B

V ∗ ∩

(
X∗ r

( ⋃
V ∈B

V

)∗)
=
⋃
V ∈B

V ∗ ∩

(
X∗ r

( ⋃
V ∈B

V

)∗)
.
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Since
⋃
V ∈B V

∗ ⊆
(⋃

V ∈B V
)∗, (

⋃
V ∈B V )∗ ∩

(
X∗ r

(⋃
V ∈B V

)∗) 6= ∅, which is not
possible.

Thus
(⋃

V ∈B V
)∗

=
⋃
V ∈B V

∗. �

The previous lemma is a generalized result of the following.

Corollary 2.4. Let (X, τ) be a topological space. Then (A)∗ = A∗ for every A ⊆ X.

Example 2.5. A space X is finite and discrete if and only if UX is almost discrete.
Indeed, if X is finite, then ηX is a homeomorphism. Because being discrete is a
topological property, UX is discrete, making it almost discrete.

On the other hand, for each open U ⊆ X, we have that U∗ is open in UX and
hence closed because UX is almost discrete. Therefore U = η−1

X (U∗) is closed in
X, making X almost discrete.

We show that X is compact. Let C = {Ui : i ∈ I} be a collection of open subsets
of X such that X =

⋃
i∈I Ui. Then X∗ =

(⋃
i∈I Ui

)∗. Because
⋃
i∈I Ui is open in

X and hence closed since X is now almost discrete, we get that X∗ =
(⋃

i∈I Ui

)∗
.

Therefore
X∗ =

⋃
i∈I

U∗i =
⋃
i∈I

U∗i

where the former equality follows from Lemma 2.3 and the latter equality follows
since

⋃
i∈I U

∗
i is open in UX and hence closed because UX is almost discrete. Since

X∗ is compact, there is a finite J ⊆ I such that X∗ =
⋃
i∈J U

∗
i . Therefore

X = η−1
X (X∗) =

⋃
i∈J

η−1
X (U∗i ) =

⋃
i∈J

Ui .

Thus X is compact.
Now, X is Hausdorff, compact and almost discrete making it compact and

discrete. Therefore X is finite since every compact discrete space is finite.
Therefore, an infinite almost discrete and Hausdorff space X does not imply

that UX is almost discrete. This tells us that we cannot replace X in the second
statement of Theorem 2.1 with UX unless X is finite.

Our next step is to find conditions on some continuous functions such that their
Salbany lifts are open. We give the following result some part of which will be used
below.

Proposition 2.6. Let f : X → Y be a function. Then f is surjective iff Uf is
surjective.

Proof. (=⇒): Let p ∈ UY . Consider the filter q = {B ⊆ X : f−1(D) ⊆
B for some D ∈ p} on X.

Extend q to an ultrafilter r on X. Then (Uf)(r) = p. To see this, choose D ∈ p.
Then f−1(D) ∈ q ⊆ r. By definition of (Uf)(r), D ∈ (Uf)(r) so that p ⊆ (Uf)(r).
Since p is an ultrafilter on Y , p = (Uf)(r).

(⇐=): Let y ∈ Y . Then ηY (y) ∈ UY . Since Uf is surjective, there is p ∈ UX
such that ηY (y) = (Uf)(p). Choose a non-empty subset A of X such that A ∈ p.
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Then f−1(f(A)) ∈ p so that f(A) ∈ (Uf)(p) = ηY (y). Therefore y ∈ f(A) which
implies the existence of x ∈ A such that f(x) = y. Thus f is surjective. �

We show that openness of a surjective continuous function is equivalent to
openness of its Salbany lift.
Theorem 2.7. Let f : (X, τ)→ (Y, ρ) be a surjective continuous function. Then
f is open iff Uf is open.
Proof. (=⇒): Let U be open in UX. Then U =

⋃
{A∗ : A ∈ B} for some B ⊆ τ .

Therefore (Uf)(U) =
⋃
{(Uf)(A∗) : A ∈ B}. Observe that (Uf)(A∗) = (f(A))∗.

We only verify the containment (Uf)(A∗) ⊇ (f(A))∗. Choose p ∈ (f(A))∗. Then
f(A) ∈ p. But Uf is surjective by Lemma 2.6, so there is q ∈ UX such that
(Uf)(q) = p. Therefore A ∈ q so that q ∈ A∗. As a result, p = (Uf)(q) ∈ (Uf)(A∗),
as required.

Therefore (Uf)(U) =
⋃
{(f(A))∗ : A ∈ B} and each f(A) is open in Y . Thus

(Uf)(U) is open, making Uf an open map.
(⇐=): Let U be an open subset of X and choose y ∈ f(U). Then y = f(a) for

some a ∈ U . Therefore ηX(a) ∈ U∗, where U∗ is open in UX. We then get that
ηY (y) = ηY (f(a)) = (Uf)(ηX(a)) ∈ (Uf)(U∗) ,

with (Uf)(U∗) being an open subset of UY because of openness of Uf . Therefore
y ∈ η−1

Y ((Uf)(U∗)). By continuity of ηY , we have that η−1
Y ((Uf)(U∗)) is open in

Y and since (Uf)(U∗) ⊆ (f(U))∗ which implies η−1
Y ((Uf)(U∗)) ⊆ η−1

Y ((f(U))∗) =
f(U), we get that η−1

Y ((Uf)(U∗)) ⊆ f(U). Thus y ∈ int(f(U)), making f open.
(We did not need surjectivity). �

We close this section with a discussion of openness of Salbany extensions.
Proposition 2.8. Let f : X → Y be a continuous function with a Salbany extension
F . Then F is open only if f is open.
Proof. Let U be open in UX. Then U =

⋃
V ∈B V

∗ for some collection B of open
subsets of X. Therefore η−1

X (U) is open in X so that f(η−1
X (U)) is open in Y by

openness of f . Let y ∈ f(η−1
X )(U). Then y = f(x) for some x ∈ η−1

X (U). Therefore
ηX(x) ∈ U . We get that y = f(x) = F (ηX(x)) ∈ F (U). Thus F (U) is open in
Y . �

The converse of Proposition 2.8 is not always true, as shown below.
Example 2.9. Consider a Hausdorff space X which is not almost discrete. The
identity map idUX is open but ηX is not open by Theorem 2.1.

With some conditions on both the domain and codomain of a continuous function,
we are able to improve Theorem 2.8.

Recall from [5] that every continuous function f : X → Y with a spectral
codomain Y has a unique Salbany extension F which satisfies the condition that
F−1(U) = (f−1(U))∗ for every compact-open U ⊆ Y .
Proposition 2.10. Let f : X → Y be a continuous function from a space X with
compact-open basis to a spectral space Y . Then f is open iff its Salbany extension
F is open.
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Proof. The existence of the Salbany extension F of f follows since Y is spectral.
Proof for the necessary condition follows from Proposition 2.8.
For the sufficient condition, let U be compact-open inX. Then U∗ is compact-open

in UX. Since images of compact sets are compact and F is open, F (U∗) is
compact-open in Y . Now, choose y ∈ F (U∗). Then y = F (p) for some p ∈ U∗. We
get that U ∈ p and p ∈ F−1(F (U∗)). Since F (U∗) is compact-open, F−1(F (U∗)) =
(f−1(F (U∗)))∗.

Therefore f−1(F (U∗)) ∈ p, making f−1(F (U∗)) ∩ U ∈ p. We have that

f−1(F (U∗) ∩ f(U)) = f−1(F (U∗)) ∩ f−1(f(U)) ∈ p .

Since F (U∗) ∩ f(U) is compact,
⋂
{C ∩ F (U∗) ∩ f(U) : f−1(C) ∈ p} is nonempty

and ⋂
{C ∩ F (U∗) ∩ f(U) : f−1(C) ∈ p} = {F (p)} ∩ F (U∗) ∩ f(U)

= {F (p)} ∩ F (U∗) ∩ f(U) ,

where the first equality follows since
⋂
{C : f−1(C) ∈ p} = {F (p)} and intersections

distribute over arbitrary intersections. Therefore y = F (p) ∈ f(U) so that f(U) =
F (U∗).

Now, for open V ⊆ X, we have that V =
⋃
U∈B U for some collection B of

compact-open subsets of X. Therefore

f(V ) = f

( ⋃
U∈B

U

)
=
⋃
U∈B

f(U) =
⋃
U∈B

F (U∗) ,

where each F (U∗) is open (and compact), making f(V ) open. Thus f is open. �

Example 2.11. I proved in [10, Proposition 3.5.] that a space β0X is sober and
hence spectral. Therefore the map β0X : X → β0X from an infinite discrete space
X is an example of an open continuous map (see Corollary 2.2) which is not a
homeomorphism. For, if β0X is a homeomorphism, then β0X is discrete, making
UX discrete and hence almost discrete. By Example 2.5, X is finite which is
impossible.

3. Initiality of Salbany maps, Salbany lifts and Salbany extensions

In [3], the authors call a continuous function f : X → Y initial in case A =
f−1(f(A)) for all closed A ⊆ X. This is equivalent to saying that for each open
A ⊆ X, A = f−1(U) for some open U ⊆ Y . To see this, assume that f is initial
and let U ⊆ X be open. Then X r U = f−1(f(X r U)). Therefore

U = X r f−1(f(X r U)) = f−1(Y r f(X r U)) .

On the other hand, we always have that F ⊆ f−1(f(F )) for all F ⊆ X. For closed
F ⊆ X, choose x ∈ f−1(f(F )) such that x /∈ F . Then X r F = f−1(V ) for some
open V ⊆ Y . Therefore f(x) ∈ f(F ) ∩ V so that f(F ) ∩ V 6= ∅ since V is open. It
is clear that

∅ 6= F ∩ f−1(V ) = F ∩ (X r F )
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which is impossible. Thus x ∈ F and hence F = f−1(f(F )), making f initial.
Although initiality is not directly a type of open maps, but every surjective

initial continuous map is open. Indeed, if U ⊆ X is open, then U = f−1(V ) for
some open V ⊆ Y . By surjectivity of f , f(U) = f(f−1(V )) = V , making f(U)
open and hence f open.

The Salbany map is initial, as we show below.

Proposition 3.1. For any space X, the Salbany map ηX is initial.

Proof. Follows since U = η−1
X (U∗) for every U ⊆ X. �

Observation 3.2. Since the Salbany map is seldomly open, Proposition 3.1 tells
us that not every initial map is open.

We recall the following result from [10] which we shall use below.

Lemma 3.3. Let f : X → Y be a function. Then (f−1(A))∗ = (Uf)−1(A∗) for
every A ⊆ Y .

In the following result, we characterize initiality of the Salbany lift of any
continuous function.

Theorem 3.4. Let f : (X, τ)→ (Y, ρ) be a continuous function. Then f is initial
iff Uf is initial.

Proof. (=⇒): Let U be an open subset of UX. Then there is B ⊆ τ such that

U =
⋃
{B∗ : B ∈ B} .

Since f is initial, for each B ∈ B, there is AB ∈ ρ such that B = f−1(AB).
Therefore B∗ = (f−1(AB))∗ = (Uf)−1(A∗B) where the latter equality follows from
Lemma 3.3. Therefore

U =
⋃
{(Uf)−1(A∗B) : B ∈ B} = (Uf)−1

(⋃
{A∗B : B ∈ B}

)
.

Thus Uf is initial.
(⇐=): Let V be open in X. Then V ∗ is open in UX. Since f is initial, there is

W ∈ Uρ such that V ∗ = (Uf)−1(W ). Therefore

V = η−1
X (V ∗) = η−1

X ((Uf)−1(W )) = f−1(W ) .

Thus f is initial. �

We consider initiality of Salbany extensions.

Theorem 3.5. Let f : (X, τ)→ (Y, ρ) be a continuous function from a hereditary
compact space X onto a spectral space Y and let F be the Salbany extension of f .
The following statements are equivalent.

(1) f is initial.
(2) F is initial.
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Proof. (1) =⇒ (2): Let U be open in UX. Then U =
⋃
V ∈B V

∗ for some collection
B ⊆ τ . Since X is hereditary compact, each V ∈ B is compact. By initiality of f ,
for each V ∈ B, there is an open set WV ⊆ Y such that V = f−1(WV ). Because
f is surjective, f(V ) = WV , making WV compact-open in Y . Since Y is spectral,
F−1(WV ) = (f−1(WV ))∗ so that F−1(WV ) = V ∗. Therefore

U =
⋃
V ∈B

F−1(WV ) = F−1

( ⋃
V ∈B

WV

)
.

Thus F is initial.
(2) =⇒ (1): Let U be open in X. Then U∗ is open in UX so that U∗ = F−1(W )

for some open W ⊆ Y . We get that

U = η−1
X (U∗) = η−1

X (F−1(W )) = f−1(W ) .

Thus f is initial. (We did not use the assumptions that X is hereditary compact
and f is surjective). �

We consider an example of a continuous map with properties hypothesized above
that is not a homeomorphism.

Example 3.6. It is clear that every sober and finite space is spectral. For instance,
the space (Y, ρ), where Y = {0, 1} and ρ = {∅, Y, {1}}, is spectral (see [10] for
verification of sobriety). Define a map f : (X, τ)→ (Y, ρ), where where X = {0, 1, 2}
and τ = {∅, X}, by f(0) = f(1) = f(2) = 1. Then f is an initial map which is not
a homeomorphism.

4. Nearly openness of Salbany maps, Salbany lifts and Salbany
extensions

Recall from [1] that a continuous function f : X → Y is nearly open if for each
open V ⊆ Y , f−1(V ) = f−1(V ). This is equivalent to saying that for every open
set V ⊆ Y , f−1(V ) ⊆ f−1(V ) since every continuous function g : Z → Q satisfies
the condition that g−1(A) ⊆ g−1(A) for every A ⊆ Q, [8]. We shall freely use the
fact that the composition of two nearly open maps is nearly open.

We start by showing that Salbany maps are nearly open. This result will follow
from the following proposition.

Proposition 4.1. Let f : X → Y be an initial map such that f(X) is dense in Y ,
then f is nearly open.

Proof. Let U ⊆ Y be open. If U = ∅, then f−1(U) = f−1(U). For U 6= ∅, choose
x ∈ f−1(U) and assume that there is an open nhood V of x missing f−1(U). Since
f is initial, there is an open W ⊆ Y such that V = f−1(W ). Therefore W is an
open nhood of f(x) and hence meets U . Since f(X) is dense, f(X) ∩W ∩ U 6= ∅.
Therefore V ∩ f−1(U) = f−1(W ) ∩ f−1(U) 6= ∅ which is a contradiction. Thus
f−1(U) ⊆ f−1(U) as required. �

Corollary 4.2. For each space X, the Salbany map ηX is nearly open.
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In the next theorem, we characterize nearly openness of the Salbany lift of a
continuous function.

Theorem 4.3. A continuous function f : (X, τ)→ (Y, ρ) is nearly open iff Uf is
nearly open.

Proof. (=⇒): Let Q ⊆ UY be open and assume that there is p ∈ (Uf)−1(Q) such
that p /∈ (Uf)−1(Q). There is a collection B ⊆ ρ such that Q =

⋃
V ∈B V

∗ so that

p ∈ (Uf)−1(Q) = (Uf)−1

( ⋃
V ∈B

V ∗

)

= (Uf)−1

(( ⋃
V ∈B

V

)∗)
by Lemma 2.3

=
(
f−1

( ⋃
V ∈B

V

))∗
by Lemma 3.3

=

f−1

( ⋃
V ∈B

V

)∗ since f is nearly open

=
( ⋃
V ∈B

f−1(V )
)∗

=
⋃
V ∈B

(f−1(V ))∗ by Lemma 2.3.

We also have that p ∈ X∗r(Uf)−1(Q) so that
⋃
V ∈B(f−1(V ))∗∩

(
X∗ r (Uf)−1(Q)

)
6= ∅. Therefore⋃

V ∈B
((Uf)−1(V ∗)) ∩

(
X∗ r (Uf)−1(Q)

)
6= ∅

=⇒ (Uf)−1

( ⋃
V ∈B

V ∗

)
∩
(
X∗ r (Uf)−1(Q)

)
6= ∅

=⇒ (Uf)−1 (Q) ∩
(
X∗ r (Uf)−1(Q)

)
6= ∅

which is impossible. Thus p ∈ (Uf)−1(Q) and hence Uf is nearly open.
(⇐=): Let U ⊆ Y be open. Then U∗ is open in UX. Since Uf is nearly open,

(Uf)−1(U∗) = (Uf)−1(U∗), i.e., (Uf)−1(U∗) = (f−1(U))∗. Therefore
η−1
X ((Uf)−1(U∗)) = η−1

X ((f−1(U))∗) so that f−1(η−1
Y (U∗)) = η−1

X ((Uf)−1(U∗))
because ηY ◦ f = (Uf) ◦ ηX and ηX is nearly open. We further get that

f−1(U) = f−1
(
η−1
Y (U∗)

)
= f−1(η−1

Y (U∗)) = f−1(U).

Thus f is nearly open. �
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We consider nearly openness of Salbany extensions.
We start by showing that continuous functions with nearly open Salbany exten-

sions are nearly open.

Proposition 4.4. Let f : X → Y be a continuous function. If f has a nearly open
Salbany extension, then f is nearly open.

Proof. Let F be a nearly open Salbany extension of f and choose an open U ⊆ Y .
Then F−1(U) = F−1(U) since F is nearly open. Because F ◦ ηX = f and ηX is
nearly open, we have that

f−1(U) = η−1
X (F−1(U)) = η−1

X (F−1(U)) = η−1
X (F−1(U)) = f−1(U)

which proves the result. �

Recall that a space X is Stonean if X is compact, Hausdorff and extremally
disconnected in the sense that for each open U ⊆ X and each x ∈ U , there is a
clopen set C ⊆ X such that x ∈ C ⊆ U . Extremally disconnection is equivalent to
a condition that every regular-closed subset is open.

Lemma 4.5. If X is Stonean, then the retraction rX map of the Salbany map ηX
is nearly open.

Proof. Let U ⊆ X be open and assume that there is p ∈ r−1
X (U) such that p /∈

r−1
X (U). Then rX(p) ∈ U and there is open V ⊆ X such that p ∈ V ∗ ⊆ X∗rr−1

X (U).
Therefore V ∗ ∩ r−1

X (U) = ∅, making

∅ = V ∗ ∩ r−1
X (U) = (V )∗ ∩ r−1

X (U)

because r−1
X (U) is open. We also have that V ∈ p which, by definition of rX ,

implies that rX(p) ∈ V . Since X is Stonean, there is a clopen C ⊆ X such that
rX(p) ∈ C ⊆ V . Therefore C ∩ U 6= ∅.

We claim that r−1
X (C) ⊆ C∗. To see this, let q ∈ r−1

X (C) be such that q /∈ C∗.
Then rX(q) ∈ C and X r C ∈ q. Therefore rX(p) ∈ X r C = X r C which is
impossible.

Now, since rX is surjective, r−1
X (C) ∩ r−1

X (U) 6= ∅ so that

∅ 6= C∗ ∩ r−1
X (U) ⊆ (V )∗ ∩ r−1

X (U)

which is impossible. Thus p ∈ r−1
X (U). �

Remark 4.6. The claim that r−1
X (C) ⊆ C∗ for clopen C ⊆ X actually holds for

all open subset C of a space X in which ηX has a retraction map rX .

Theorem 4.7. Let f : X → Y be a continuous map to a Stonean space Y . Then
f is nearly open iff it has a nearly open Salbany extension.

Proof. (=⇒): It is clear that rX ◦ Uf is the Salbany extension of f . Now, since f
is nearly open, it follows from Theorem 4.3 that Uf is nearly open. Because rX is
also nearly open, we have that rX ◦ Uf is nearly open.

(⇐=): Follows from Proposition 4.4. �
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Remark 4.8. The map rX ◦ Uf in Theorem 4.7 is unique. This follows from [10]
where I proved that every continuous function with a compact Hausdorff codomain
has a unique Salbany extension. A similar result can also be found in [5] where
the authors showed that every continuous function with a spectral codomain has a
unique Salbany extension, a result we recalled and used in Section 3. Since every
Stonean space is spectral, this makes Y spectral.

In the next example we give an example of a non-homeomorphism nearly open
map with a Stonean codomain. We shall need the following result.

Lemma 4.9. Let (X, τ) be a topological space. If X is a clopen subset of U , then
C = V ∗ for some clopen V ⊆ X.

Proof. See [2]. �

Example 4.10. Let (X, τ) be a topological space. Then X is discrete if and
only if UX is Stonean. To verify this, we start by showing that X is extremally
disconnected if and only if UX is extremally disconnected. Suppose that X is
extremally disconnected, let U be an open subset of UX and choose p ∈ U . Then
p ∈ U =

⋃
V ∈B V

∗ for some B ⊆ τ . By Lemma 2.3, U =
(⋃

V ∈B V
)∗

so that⋃
V ∈B V ∈ p. Because

⋃
V ∈B V is a regular-closed subset of X, it follows from that

it is open and hence clopen. Therefore
(⋃

V ∈B V
)∗

is clopen in UX, making U the
required clopen set.

Conversely, assume that UX is extremally disconnected, let U ∈ τ and choose
x ∈ U . Then ηX(x) ∈ (U)∗ = U∗, where the latter equality follows from Corollary
2.4. Therefore there is a clopen C ⊆ UX such that ηX(x) ∈ C ⊆ U∗. By Lemma 4.9,
such C = V ∗ for some clopen V ⊆ X. Therefore x ∈ V ⊆ U so that x ∈ V ⊆

∫
(U).

Thus U =
∫

(U), as required.
Now, if X is discrete, then X is extremally disconnected, making UX extremally

disconnected. Since UX is compact and X being discrete also implies that UX is
Hausdorff, we have that UX is a Stonean space.

On the other hand, if UX is Stonean, then it is Hausdorff, making X discrete.
As a result, the Salbany map of an infinite discrete space is nearly open, not a

homeomorphism and has a Stonean codomain.
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