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KYBERNETIKA — VOLUME 59 (2023), NUMBER 5, PAGES 700-722

DUALITY FOR A FRACTIONAL VARIATIONAL
FORMULATION USING n-APPROXIMATED METHOD

SoNY KHATRI AND ASHISH KUMAR PRASAD

The present article explores the way n-approximated method is applied to substantiate
duality results for the fractional variational problems under invexity. n-approximated dual pair
is engineered and a careful study of the original dual pair has been done to establish the duality
results for original problems. Moreover, an appropriate example is constructed based on which
we can validate the established dual statements. The paper includes several recent results as
special cases.
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1. INTRODUCTION

In optimization problems, we often identify the leading solutions among all possible fea-
sible solutions. Such formulations sometimes may include more than one objective which
we say vector optimization problems and we aim to extract nondominated solutions for
such problems. Mechanical problems are often characterized by multiobjective varia-
tional problems along with some conditions in the form of constraints entangled with
them. The same can be seen in various other phenomena like economic programming,
production, inventory, and control problems.

A new chapter started with the introduction of symmetric duality by Dorn [J] in the
year 1960. Later on, Mond and Hanson [I8] diversified the duality results to cope with
the variational problems. Hanson [I1] coined invexity as a generalization of differentiable
convex functions and derived Kuhn—Tucker conditions for such problems. Several new
dimensions have been developed to model the complex phenomenon occurring in various
engineering applications. Consequently, Mond et al. [I7] expanded the results of [I§]
and discussed the problems of variational control under invexity. Mond and Husain [20]
derived the sufficiency results to trace out optimality and duality relations for variational
programs with the help of generalized invexity. Bector and Husain [7] established the
duality theorems for multiobjective variational formulations. Subsequently, Nahak and
Nanda [21] introduced the duality relations for the multiobjective variational problems
using invexity. Later, Zhian and Qingkai [24] worked on the dual formulations for
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multiobjective problems under invexity. For solving optimization problems, Lagrange
multipliers and saddle points play a prominent role in optimization theory and several
researchers including Ghosh and Shaiju [I0] and Li et al. [16] devised these tools for
finding the optimum solutions.

Antezak [I] proposed a new approach to solve vector optimization problems by form-
ing an equivalent problem with a modified objective function. Antczak [2] established a
similarity between constrained nonlinear problem and its corresponding n-approximated
problems using invexity and derived some of the duality theorems for both original as
well as corresponding dual. In 2005, Antczak [3] used r-invexity to study the interrelation
between optimal points of the original problems and also n-approximated problems. Af-
ter a gap of two years, Antczak [4] applied n-approximation method to study constrained
nonlinear problems equipped with invex functions. Husain and Ahmed [12] worked on
nonlinear variational programming problems and derived several duality results using
pseudo-invexity. Khazafi et al. [I5] configured conditions to ensure optimality criteria
and duality for multiobjective formulations with generalized of (8, p)-type I functions.
Nahak and Behera [22] derived the duality theorems and optimality conditions for prob-
lems with variational settings under generalized p — (7, 6)-B-type-I functions.

In 2014 Antczak [B] applied (¢, p)-invexity to nonconvex multiobjective problems to
derive suitable duality results for mixed dual problems. Also, Antczak and Michalak
[6] worked for nonconvex multiobjective problems using n-approximation method. Re-
cently, Jayswal et al. [13] established the interrelation between a variational and modified
variational problem using n-approximation method. Jha et al. [I4] introduced expo-
nential type duality for n-approximated variational problems, which we have extended
to the fractional analog in the present paper especially implementing n-approximation
method. We consider the associated fractional variational programming problem using
the n-approximation method under invexity. In this, we constructed the n-approximated
problem for the original variational problem and associated Mond—Weir type dual formu-
lation both. We have proved several duality results for original and modified variational
problems. Also, we have established an example of a fractional variational problem.

The development of the present article will move on as follows. Section 2, recalls
some preliminaries and definitions which we used in the remaining part of the paper. In
Section 3, we constructed Mond—Weir dual model and formulated an n-approximated
variational problem by modifying both the objective function and constraints in the
original problems and its dual. Moreover, we focused on relevant duality results for
the considered original and modified problems. Finally, Section 4 throws light on the
accomplished work in the form of conclusions.

2. PRELIMINARIES
Consider the interval & = [71, 72] and functions ¢; : SXR*XR® - R, G : IXR* xR —

R and N : I x R™” x ®® — R™, which is continuously differentiable. For 7 : & — R", we
use 7(t) to denote the derivative of 7 with regard to t.

)
1. — 7(17}_ ;

om’ Omy’ 7 Omy, Om’ Ory’ " Oy
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where the transpose is represented by the superscript 7. Moreover, N and N; are used
to specify m x n Jacobian matrices of X with regard to m and 7, respectively. Assume
X represents the space of continuously differentiable mappings 7 : & — R™ where we
define norm by ||7|| = ||7||, + [|D7||.. The operator D can be described by

o=Drnen(t)=n(n)+ /J(S) ds,

T1

where the boundary value is 7(r). Therefore, D = % excluding points where the
functions are not continuous.
We work out the following fractional variational programming problem in the present

paper:

Tﬁ(t,ﬂ(t),fr(t))dt
(P) minimize  ¢(7) = T

 Tottr), 7)) at

s.t.
N(t,w(t), 7(t) <0, tES,

m(m) =«a, mw(r2)=24,

where [7* ¢ (t,7(t), 7 (t))dt > 0 and [* Ca(t, 7(t), 7(t)) dt > 0. The region where the
constraints are satisfied (feasible region) is given by F = {r € X : 7n(11) = o, 7w(72) =
B and R(t,m,7) <0, t € S}

Special cases

(i) If f;z Ca(t,m(t), 7 (t)) dt = 1, then the problem (P) reduces to the problem discussed
in Jha et al. [14].

(ii) In addition to (i), if we consider the static case, then we get the problem discussed
in Antczak [4].

Definition 2.1. A feasible point 7 is known as the optimal solution to (P) if we have

Tattn).we)de [l 7(0),5(t) dt

; Vme .

e

T et n(e) 7)) dt [ ot 7(0), 5(1)) dt

Hereafter, we indicate (y (¢, w(¢), 7(¢)) shortly by (1 (¢, 7, 7). Suppose n: Ix X x X —
R™ is a differentiable multi-valued function with n(¢, 7, 7) = 0, for all 7(t) € X. Now,
we define the concept of invexity for variational problems.
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Definition 2.2. The functional f: ¢ (t,m, ) dt is known as invex (strictly invex) at
7 € X with regard to n provided

/Cl(tﬂr,ﬂ') dt—/gl(t,frﬁ) dt

T2

> (>) / {n(t,w,fr)TClw(t,ﬁ,fr) + (jtn(t,ﬂ,ﬁ))Tg“l*(t,ﬁ,fr)}dt; VreX.

T1

Now, we give the criterion of optimality for the problem (P) which is the subcase of
Theorem 3.3 given in Zalmai [23].

Theorem 2.3. Assume 7 € F represents an optimal solution to the variational problem
(P) and Slater’s constraint qualification (see, Theorem 2.1 of Chandra et al. [8]) be
satisfied at m# € F . Then, a smooth piecewise function ¢ : & — R™, (s(t))” > 0 exists
so that

= %[\I](ﬁ-)clw (ta T, 7}) - (I)CQir (ta T, ﬁ-) + (C(t))TNT‘.— (t, m, ﬁ')], (1)
(s(&)R(t, 7,7) =0, @

where ®(7) is same as that of the numerator of ¢(7) whereas ¥(7) is same as that of
the denominator.

3. DUAL FORMULATION

In this section, we establish duality results for Mond—Weir type dual [I9] for the original
variational problem (P) with the help of a modified Mond—Weir dual problem, consisting
of the modified objective function.

The following Mond-Weir type dual model is taken into consideration for the prob-
lem (P):

[ Gito0)dt

(D) maximize  ¢(0) = ———
[ ¢t o,0)dt
s.t.
o(r)=a, o(r)=45 (3)
\II(U)CIW <t7 g, U) - @<U)C27r (t? g, U) + (g(t))TNﬂ (t? g, U)

= %[‘I’(U)Clk(tvm &) — ®(0)Ca, (t,0,6) + (c(1) TR (t,0,0),t €S, (4)
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T2
/ S(t)TR(t,0,6) dt > 0, L€ S, (5)
)t >0, tes, (6)

where ®(o) and V(o) are as depicted in Theorem 2.3 whereas ¢(t) : & — R™ is a smooth
piecewise function. The set containing all feasible solutions to the modified problem (D)
is denoted by W. For (&,<(t)) € W, we construct (P, (5)) and (D, (¢)) as follows:

(P,(5))  minimize / {V(5)G(t,5,6) — ©(6)C(t,5,5)} dt

s.t.
71'(7'1) = «, 77(7-2> =B, (7)
/<(t)TN(t,6,5) dt"‘/{n(t,ﬂ"g)g(t)TNﬂ—(t,&’&)
+ (;n(t,n, &)) <(t)"Rx(t, 5, a)}dt <0.teS .

s.t.
0(7—1) =a, 0(72) =B, (9)
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+ (;tn(t,a, &)> <(t)TN7~T(t,&7&)}dt >0 teg, )

s >0, tes, (12)

where ¢(t) : & — R™ is a piecewise smooth function. F(&) and W(&) denote all feasible
solutions of problems (P, (7)) and (D, (7)), respectively.

Now, we demonstrate weak duality between modified variational problem (P, (5))
and modified Mond-Weir dual problem (D, (5)).

Proposition 3.1. (Weak duality for the modified problems) Let 7 and (o, ¢(t)) be fea-
sible solutions of problems (P, (5)) and (D, (5)), respectively. Then

T2

/{\P(&)Cl(tﬁ,&)—<I>(&)<2(t,6,5)}dt+/{n(tﬂr,&){\ll(&)clﬂ(tﬁﬁ)

—0(5)¢, (t,6,0)} + (jtn(t’ M, a)> {V(6)G,(t,5,0) — ®(6)C2, (t,5,0)} }dt
> / {\II(J)CI (t> g, 5) - ¢(6)<2(t7 g, &)} dt + / {ﬂ(ta g, U) {\II(U)Q" (ta o, 6)

Proof. Since m and (0,c(t)) are feasible solutions of problems (P, (7)) and (D, (5)),
respectively, we have

T2 T2

/g(t)TN(t, &,6)dt + / {n(t, 7,6)5(t) TR (t,5,6)

+ ((in(t,ﬂ', &)) s(t)TR4(t, 5, &)}dt <0 (13)
and
]Zq(t)TN(t, G,0)dt + /T {n(t, 0,5)s(t) TR (t,5,5)

+ (dtn(t,o, o—)) ()R (5, &)}dt >0 (14)

T1
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T2

< / {n(t,a, )5 (O TR (1, 5, 5) + (dtn(t,a, a—)) g(t)TN,-r(t,&,é)}dt. (15)

T1
On the other hand, from equation (10), we have

T2

T1

T1

- /{n(t, 0,5)s(t) TR (t,5,6) + (dtn(t, g,&)><(t)TN7~r(t,&,&)}dt. (17)
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In the same way as in above for the feasible point (m,<(t)) in (D, (5)), we have

which upon adding f:f {w(5)¢(t, 5, 5) — ®(5)(a(t, 5, &)} dt on both sides of the above
inequality, we attain

Hence the result. O
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Theorem 3.2. (Weak duality for the original problems) Let 7 and (&,¢(t)) are feasible
solutions of (P) and (D), respectively. Suppose that the functions sz{\I/ (m)Ca(t,m, @) —
O(m)¢a(t, m, 7) kdt and sz t) IR (¢, 7, 7) dt are invex at & on X with regard to . Then

fgl t,ma)dt [ Gt a,0)dt

I V

f@ t, 7, 7)d ng(t,c},&)dt.

Proof. Asa first move, we will show 7 and (&, <(t)) are feasible to (P, (7)) and (D, (5)),
respectively. Since 7 is feasible to (P), we have

) <0.

-

R(t, 7,
Using the fact <(¢)7 € R™ and ¢(¢)T > 0 in the above inequality, we obtain

T2

/5(t)TN(t,fr,7*r) dt <0. (19)
T1
Due to invexity of f (t)TR(t, 7, %) dt at & on X with regard to 1, we get
T2 T2
/s(t)TN(t,fr,%r) dt > /f(t)TN(t,&,ér) dt
T1 T1
T2 d
+ [{nem o s.5) + (om0 )0 e (0.5.5) b (20)
T1
In view of (19), inequality (20) yields
T2 T2
Jaomsessyars [{ueracom.as)
T1 T1

+ (in(t, 7, &)) TR (2,5, &)}dt <0,

which validates that feasibility of @ to (P,(5)). On the flip side, due to feasibility of
(6,¢(t)) to (D) and inequality (5), we can have
T2
E)TR(t,5,5) dt > 0.

T1
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Since n(t,&,6) = 0, we can interpret easily that

N (;tn(t,&,&)> TR (8, 5, 5—)}dt >0,

which at the same time depicts the feasibility of (¢,<(t)) to (D, (7)), and therefore, using
Proposition 3.1, we get

T1 T1

Z/{\I/(&)Cl(t,&,ér)—@(&)gg(t,&,é—)}dt. (21)

T2

Due to invexity of [ {U(m)(i(¢, 7, 7) — (m)(a(t, m, @)} dt at ¢ on X with regard to 7,
T1

we obtain
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—®(6)C2, (1,5,0)} + (in(t,fr,&)

By (21) and (22), we have

)[‘I’(f})ﬁu(ta&a&) a(6)G, <t,a,&>1}dt. (22)

/ [W(F)G (7, F) — BF)Galt 7, 5) ) dt > / (9(3)C1(,6.5) — B(3)Calt, 5,8) ) dt,

That is,
. T2 .
)t [ G(ta,0)dt

T1 1
]

Hence the result.
Example 3.3. Consider X and 7 : & — §, & = [0, 1] denote the sets of continuously
differentiable functions. We take the following primal and dual pair in our problem.

1
Ii (ﬂ(t) arctan (t) + tw2(t) + 7 (t) + 1) dt
0

(P1) minimize  @(w) = T
I (simr(t) () + 1) dt
0

s.t.
R(t,m,7) =n(t) —1<0,

7(0) =0, =(1)=1.

Take Q@ = {mw € X : 7(0) = 0, m(1) = 1 and n(t) — 1 < 0, where t € J} as the
set containing all feasible solutions and define n : ¥ x X x X — R by n(t,m,7) =

—72(t) + 72(t). Also, let ¢(t)T =1 and 7(t) = 0.
} (U(t) arctan o (t) + to?(t) + o(t) + 1) d¢
0

(D1) maximize ¢(o) = il
1l (sina(t) +o(t) + 1) dt
0

s.t.
c(0)=0, o(l)=1,

(sino(t) +o(t)+1) <arctan o(t) + % + 2to(t) + 1>

—(o(t) arctano(t) 4 to?(t) + o(t) + 1)(cos o (t) + 1) 4+ ¢(t)T

/ (7 (o) — 1) > 0,
0

:07
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s®T>0,teg.

The modified problem for the dual pair (P1) and (D1) for the feasible point (5(t),s(t)T) =
(0,1) can be constructed as follows.

1
(P1(,)()) minimize / 72 (t)dt
0

s.t.
m(0) =0, n(1) =1,
/ () — syt <0,
1
(D1, () maximize /0 o?(t)dt
s.t.

o(0) =0, o(1) =1,

/1 (—o?(t) — )s(t)Tdt > 0,
0

s®)T >o0.

Clearly, 7#(t) = 0 and (6(t),c(t)T) = (0,1) constitute feasible solution to (P1,,(9))
and (Dl(n)(&)), respectively. Moreover, weak duality for modified problems can also be
verified for the chosen feasible points.

Note that n-approximated method transforms the dual pair (P1) and (D1) to a simple
(non-fractional) variational dual problem (P1(,(5)) and (D1, (¢)) for which duality
theorems can be derived easily. Moreover, the method converts the nonlinear dual
problems to linear dual problems as witnessed in [I3]. Further, [I] deal with an example
where a nonconvex variational dual problem is transformed into a convex variational
dual problem using n-approximation method. This suggests that the complexity of the
problems can be reduced for certain classes of problems using n-approximation method
and the interrelation between the two problems can give valuable information.

Theorem 3.4. Any normal optimal solution to (P) will be an optimal solution to
(P, (7).

Proof. Due to optimality of normal solution 7 of (P), we can say there exist ¢(t) :
3 — R such that

= 7[\11(7?)(17( (ta ﬁ-’ 7~T) - q’(ﬁ)C% (t7 7~T’ ﬁ-) + (g(t))TNﬁ' (t’ 7}7 ﬁ-)]v (23)
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()TN, 7,7) =0, (24)
st >o0. (25)

If possible, suppose 7 does not represent the optimal solution to (P, (7)). Then there
exists ¢ € Q(7) satisfying

T2

D)o, (17,7} + (jtnu,fr,fr)){\m)cu(m,%)—@(ﬁ)@(tﬁﬁ)}}dt. (26)

Using the condition that n(t, 7, 7) = 0, we obtain

/T {n (4,6 A {UE)C (1,7, 5) — B(F)Ca (1,7, 5) )

* (i (t,.7) )W 1 (8,7, 7) — (I’(ﬁ)@ﬁ(tﬁ,fr)}}dt <0, @)

Since < is a feasible solution of (P, (7)), we use inequality (8) to get

/:2 c()R(t, 7, 7) At + /72 {n(t,g‘, ) () R (t, 7, 7)

1 T1

Equation (24) together with above inequality yields

T2 . d .
[ s i@ m f) + (Gt )M m ) far <o,

1 (28)
On the other hand, multiplying both sides of equation (23) by 7(t,<,7) and then inte-
grating the output from 7 to 75, we get

/TZ {77 (t, ¢, D) {U(R) o, (7, 7) — ®(R) (o, (¢, 7, 7) + (g(t))TN,r(t,ﬁ,%)}}dt

1

- {n@, & 7) (WG, (17 7) — ()G, (7,7) + (6(0) (1.7, ﬂ}}dt.

1
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Now, integrating by parts the right-hand side of the above equation and utilizing the
fact that n(t,7,7) = 0 gives rise to

/72 {77 (t, ¢, D){ V() o, (7, 7) — ©(R)Co, (¢, 7, 7) + (g(t))TNﬂ(t,ﬁ,%)}}dt

1

= /T2 (in(t,g,fr)> {U(R)G, (7, 7) — ©(7) o, (8,7, 7) 4+ (s(6) R4 (¢, 7, 7) bt

1

Rewriting the above equation, we get

/ N {na, S RUECL (1,7 7) — B(F)a, (67 7))

1

which on using equation (28) gives

/TT {n (t, ¢, M) { V() (¢, 7, 7) — ©(7) (o, (¢, 7,7) }

d .
which contradicts equation (27). Therefore 7 is an optimal solution of (P, (7)). Hence
the proof is complete. O

Theorem 3.5. (Strong duality for the modified problem) If 7 be the normal optimal
solution to (P, (7)). Then there exists a piecewise smooth function ¢(t) : I — R so

that (7,<) will also be an optimal solution to (D, (7)).

Proof. If 7 represent both normal as well as optimal solution to (P, (7)), we may
get a piecewise smooth function ¢(t) : & — R} satisfying (23) - (25). With the help of
equations (23) and (24) along with n(t,7,7) = 0, we obtain

U(7)Cr, (8,7, 1) — B(7)Ga,, (1 70, 7) + (S(1) TR (1, 7, )
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which confirms feasibility of (7,<) to (D, (7)). Also, if (7,<) is not the optimal solution
of (D, (7)), there exist (¢,¢) in S(7) in such a way that

Since (5, £) is feasible to (D, (7)), we use equation (10) to get

U(7)Cr, (t, 7, ) = D(7)Ga,, (t, 7, 7) + E()RR (8, 7, )

d _ s Lz = Lo
= SWEIGL (17, F) — B(E)Ga, (87, ) + EORe(1, 7, 7).

which upon multiplying both sides by 7n(t,&,7) and then integrating from 71 to 7o,
produces

Now, integrating the right side of above equation and making use of n(¢, 7, 7) = 0, we
obtain
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which on using equation (31) gives

/T " {n(t, &, 1) ()R (¢, 7, T) + (in(t, G, ﬁ)) E(t)R4 (L, 7, 7) }dt < 0. (32)

1

Since (,£) is feasible to (D, (7)), we use inequality (11) to get

/TT EOR(t, 7, ) dt + /:2 {n(t,&,ﬁ)g(tm(t,fr,%)

1

+(in(t,&,ﬁ)>§(tm(t, frjr)}dt > 0.

Using equation (24), the above inequality yields

/:2 {n(t, &, 7)E)NL (L, 7, 7T) + (in(t, &,ﬁ'))f(t)N,-r(t, fr,fr)}dt > 0,

1
which contradicts equation (32). Hence, the solution (&,<) is optimal to (D,(7)). O

Theorem 3.6. (Strong duality for original problem) If 7 is a normal optimal solution
to (P) and if all the assumptions specified in Theorem 3.2 are satisfied, then (7, <) will
become an optimal solution to (D) and have equal optimal values.

Proof. As the solution 7 is a normal optimal solution to the problem (P), 7 is also

optimality of (P,(7)). With the help of Theorem 3.5, we infer that (7,<) is also an
optimality solution of (D, (7)). Hence,

HT>0tes,

which asserts that (7,¢) is also feasible to (D). As all the conditions mentioned in the
weak duality theorem are fulfilled at (7, <), so (7,<) turns out to be the optimal solution
to (D) giving the same extremal value as that of (P). O
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Theorem 3.7. (Converse dual statement for the modified problem) Let (5,<) be an
optimal solution of (D, (5)). Then ¢ is an optimal solution of (P, (5)).

Proof. If feasible solution & fails to be optimal to (P, (7)), there exists m € () such
that

/Tz{\l/(&)g(t,a,&) (5)Ca(t, 5, }dt+/72{n(t,w,é){\ll(&)g“lw(t,&,é)

1

Making use of 7(t,5,6) = 0, the relation stated above can be written as

/T2 {n(ﬂﬁﬁ){‘l’(&)ﬁﬂ (tv&v&) - (I)(&)CZ,, (t,&,é’)}
+ (§m.0) ) (96161, (.6.8) - 2(0)6e (1.5.8)} et <. (33)

Since (7,<) is a feasible solution of (D, (5)), we use inequality (11) to get

/ 5(t)TN(t,&,&)dt+/ {n(t,&

+ <§tn(t, G, &)) TR (t,5,0) }dt > 0.

Now, using 7(t,&,5) = 0, the above inequality reduces to

CL‘Q_,

5)S(t) N, (¢,5,5)

/T2 W) R(t,5,5)dt > 0. (34)

1

Using feasibility of & to (P,(¢)), one can have

/T N S)R(t,5,5)dt + / " {n(m, 5)(t) R (t,5,5)

1 T1

+(§t (t.7 a))f(t)TNfr(t,&,é)}dt <o,

which by using (34), reduces to

/:2 {n(t,wﬁ)f(t)TN,,(t,&,é) + (jt"(tv”,5)>5(t)TNﬁ(t,&,c‘r)}dt <0,

1
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Combining inequalities (33) and (35), we get

/T2 {77(757 T &){\I](&)Cl,r (t7 5—3 5—) - (I)(&)C2,r (ta 5—7 &) + G(t)TNW (ta 5—7 &)}

1

- (n(t, m&)) {U(5)¢1, (t,5,0)—(6)Ca, (,6,6)+S(1) T R (2, &,&)}}dt < 0. (36)
Due to the fact that (&,<) is feasible to (D, (&)), we obtain
V(5)C1, (8,5,0) — @(5)C2, (1.5,0) + (S(1) "R (1,5, 5)

= @), (1.5.5) - (), (1.5.5) + () TNe(1.5.5)).

Multiplying n(¢, 7, d) to either side of the equation and integrating the resultant from
T1 to T2, we obtain

/72 {n(tﬂr, G U(6)C1, (t,6,5) = (3)Cz, (1,6,0) + (1)) Ralt, 5»5)}}6“

1

= /72 {n(t,w, &)%{W(&)Clﬁ(t, 5,6) — ®(6)Ca, (t,5,6) + (S() TR (2, &,5—)}}dt.

1

Applying integrating by parts along with (¢, &,5) = 0, one can get

/TZ {n(t,ﬂ, )V W(GE) . (t,6,5) — D(E)Ca (1,6,5) + (S(6) TR, &,5—)}}dt

1

= _/72 (in(t,w,&)){‘P(&)Ch(t,&,&) L B(5) G, (1,6,5) + (1) R4 (1, 5,5) }dt.

1

Rearranging the above equation, we get

A {n(tﬂr, ) (W), (1,5,8) — B(E)a, (1.5,5) + ()N (1, aé)}}dt

1

T2 d .
# [ (G0 ) (100 05.5) 806, 1.5,6) (O Welt.5.6) =
which violates (36) and hence & becomes maximizer of (P,(5)). O
Theorem 3.8. (Converse duality for the original problems) If (7, <) denotes an optimal

solution of the original dual (D) satisfying N(t &,6) = 0. Under the assumption that
f{\Il V(i (t, m,7) — ®(m)Ca(t, 7, 7) }dt and fg N(t,7,7)dt are invex at 6 on X with

T1
regard to 1, & becomes an optimal solution to (P).
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Proof. If we presume that (&,<) is not an optimal solution of (D,,(5)), then we get a
feasible point (¢,<) € S(&) which satisfies the following conditions

{01055 - 2@ [ s o (vea, 600

Due to the fact that n(¢,&,5) = 0, the last expression settles down to

/T2 {ﬁ(t» a, (NT){\:[I(&)CLr (tv &7 5) - @(5)4‘2” (ta 57 6)}

(;t )(t,0,5) ){qf(é)gl*(t,(},&) —®(6)Ca, (t,&,&)}}dt > 0. (37)
Also, by the feasibility of (,<) in (D,(¢)), we have
U(5)C1, (8,5,0) — @(5)¢2, (1.5,0) + (S(1) "R (1,5, 7)

jt[ V(5)C1, (1,6,6) — B(5)Ca, (1,6, 6) + (€(1)TR4 (1,5, 6)].

Multiplying both sides of the above equation by 7(¢, 0, &) and then integrating between
71 and 7o, we get

Rearranging the above equation, we get

/ N {n(t,m W) (1,5.8) — B(E)Ca (1,5,5)}



Duality for a fractional variational formulation using 7)-approximated method 719

which along with inequality (37) gives
T2 . d .
| {55 + (gt ) ) 05.6) bar < o

1

Using the condition X(¢,5,5) = 0, we can rewrite the above inequality as

[ tsonswa s [ {nto.acom.a.6)

+ (jtn(t, o, &)) (<(t) R4 (t, 5, &)}dt <0,

which disagree that (o,¢) is feasible to (D, (¢)) and hence (7,<) is certainly an optimal
solution to (D, (¢)). By converse duality of modified problem, & is an optimal solution
of (P,(6)). It remains to show that ¢ is an optimal solution of (P). Let us assume &
does not represent a minimal solution to the problem (P). Therefore, we have a feasible
point o € Q) satisfying

[ we)ates) - 20Gtankd < [ {0e)a5.8) - 26)a(5.8)

(38)
Since fT2 {U(m)Gi(t, 7, 7) — ®(m)Ca(t, m,7) }dt is invex at ¢ with regard to 7, we have

/T2 {{\p )G (t,0,6) — ®(0)Ca(t,0,0)} — {¥(6)(i(t,6,0) — @(&)gz(t,&,é)}}dt

1

> / {n(t,a, NU(E)C (1,5,5) — D(6)Ca, (1,6,6))

1

Using inequality (38), the above inequality reduces to

I {n@,a,a){wa)g,(m,a—) $(3)Co. (1,5.6)}

1

+ (Cin(ta,&)){\I!(&)Cli(t,é,&) (7)o, (1, 6,&)}}dt<0. (39)

Also, by assumption,f: {<())TR(¢, 7, 7) }dt is invex at & on X with regard to 7, we get

/{< TNtch}dtf/ {S(6)N(t, 5, 5) b dt
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> /T " {n(t, 0, 5) (1) TR (1,5, ) + ((in(ta, &)) ()TN (1, 5, 5)}dt.

1

Since o € () represents a feasible solution, the above expression turns out to be

+(in(t, , &)) ()R (2, a,&)}dt <0,

indicating o is a feasible solution to the modified problem (P, (5)). As ¢ is the minimal
solution to (P, (5)), therefore, we can have

T2

/T2 {@(&)Cl (tv g, &) - (I)(&)CZ (ta g, 6)}dt + / {77@» g, 5—){\:[1(5—)417r (tv g, 5)

1

_q)(&)<2,r (ta 57 6)} + (:;t??(t» 5, 5)) {\II(&)CL-( (t7 5, 5) - (I)(&)C% (t, 57 &)}}dt

T2 T2

< [ {¥(6)G(t,5,5) - ©(5)¢(t,5,0) pdt + / {n(m,a—){wm(t,&,é)

T1

+(5510.0.0) ) {06)6 (,5.6) ~ (616 (1.5.6)} far 2 0,

which contradicts (39). Therefore, we can conclude that & is a minimal solution of (P).
O

4. CONCLUSIONS

In the excogitated paper, we analyzed fractional variational problems using n-approximated
functions by modifying the objective function and constraints for the original problem.
We derived duality results for the modified dual pair and the same can be used to vali-
date the duality results of the original problem. Moreover, constructed example relates
the original problem with the modified problem, and projected duality results can be
easily checked with this example.

(Received November 21, 2022)
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