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Coloring triangles and rectangles

Jindřich Zapletal

Abstract. It is consistent that ZF + DC holds, the hypergraph of rectangles on
a given Euclidean space has countable chromatic number, while the hypergraph
of equilateral triangles on R

2 does not.

Keywords: real algebraic geometry; algebraic hypergraph; chromatic number;
geometric set theory; consistency result

Classification: 03E35, 14P99, 05C15

1. Introduction

This paper continues the study of algebraic hypergraphs on Euclidean spaces

from the point of view of their chromatic numbers in the context of choiceless

ZF + DC (Zermelo–Fraenkel set theory with the axiom of dependence choice) set

theory. In the context of ZFC (Zermelo–Fraenkel set theory with the axiom of

choice), such hypergraphs were completely classified by J.H. Schmerl regarding

their countable chromatic number in [8]. In the choiceless context, the study be-

comes much more difficult and informative; in particular, the arity and dimension

of the hypergraphs concerned begin to play much larger role. In this paper, we

compare chromatic numbers of equilateral triangles with that of rectangles.

Definition 1.1. Let ∆ denote the hypergraph of arity three consisting of equi-

lateral triangles on R
2. Let n ≥ 2 be a number and Γn denote the hypergraph of

arity four consisting of rectangles on R
n.

In the base theory ZFC, these hypergraphs are well-understood. By an old

result of [1], ∆ has countable chromatic number. On the other hand, for every

number n ≥ 2 the chromatic number of Γn is countable if and only if the con-

tinuum hypothesis holds; this is a conjunction of [2] and [3, Theorem 2]. In the

base theory ZF + DC, we present an independence result:

Theorem 1.2. Let n ≥ 2. It is consistent relative to an inaccessible cardinal

that ZF + DC holds, the chromatic number of Γn is countable, yet every non-

null subset of R
2 contains all vertices of an equilateral triangle.
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Note that the conclusion implies that the chromatic number of ∆ is not count-

able: in a partition of R2 into countably many pieces, not all of them can be

Lebesgue null. The consistency result can be achieved simultaneously for all

n ≥ 2. The proof seems to use the algebra and geometry of both rectangles and

equilateral triangles in a way which does not allow an easy generalization.

The paper follows the set theoretic standard of [5]. The calculus of geometric

set theory and balanced pairs in Suslin forcings is developed in [6, Section 5.2].

If n > 0 is a natural number, A ⊂ R
n and F ⊂ R are sets, the set A is algebraic

over F if there is a polynomial p(x̄) with n many variables and coefficients in F

such that A is the set of all solutions to the equation p(x̄) = 0. The set A is

semialgebraic over F if there is a formula φ of real closed fields with parameters

in F and n free variables such that A = {x̄ ∈ R
n : R |= φ(x̄)}. If X,Y,C are

sets and C ⊂ X × Y and x ∈ X is an element, then Cx is the vertical section

of C associated with x, Cx = {y ∈ Y : 〈x, y〉 ∈ C}. Let X be a Polish space

and µ a σ-finite Borel measure on it. If M is a transitive model of ZFC and

x ∈ X is a point, then x is random over M if it belongs to no µ-null Borel subset

of X coded in M . By the Fubini theorem, for points x0, x1 ∈ X the following

are equivalent: (a) x0 is random over M and x1 is random over M [x0], (b) x1 is

random over M and x0 is random over M [x1], and (c) the pair 〈x0, x1〉 is random

over M for the product measure on X ×X . In each case, we will say that x0, x1

are mutually random over M . The only measure appearing in this paper is the

Lebesgue measure on R
2 and the word null always pertains to it. DC denotes the

axiom of dependent choice.

2. A preservation theorem

In accordance with the methodology of geometric set theory [6], the model for

Theorem 1.2 is obtained as a generic extension of the Solovay model by Suslin

forcing. Here, a forcing 〈P,≤〉 is Suslin, see [4], if for some ambient Polish spaceX ,

P ⊂ X is an analytic set, “≤” is a transitive relation on P which is analytic as

a subset of X ×X , and incompatibility in “≤” is again an analytic relation. It is

necessary to isolate a class of Suslin forcings with a suitable preservation property.

First, recall the main concepts of [9].

Definition 2.1 ([9, Section 2]). Let X,Y be Polish spaces.

(1) A closed set C ⊂ Y × X is a Noetherian subbasis if there is no infinite

sequence 〈an : n ∈ ω〉 of finite subsets of Y such that the sets Dn =
⋂

y∈an

Cy are strictly decreasing with respect to inclusion;

(2) if M is a transitive model of set theory containing the code for C and

A ⊂ X is a set, let C(M,A) =
⋂
{Cy : y ∈ Y ∩M and A ⊂ Cy};
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(3) generic extensions V [G0] and V [G1] are mutually Noetherian if for all

Polish spaces X,Y and Noetherian subbases C ⊂ Y × X coded in the

ground model, if A0 ⊂ X is a set in V [G0] then C(V [G1], A0) = C(V,A0),

and if A1 ⊂ X is a set in V [G1] then C(V [G0], A1) = C(V,A1).

For example, mutually generic extensions are mutually Noetherian [9, Corol-

lary 2.10], and if x0, x1 are mutually random reals, then V [x0] and V [x1] are

mutually Noetherian [9, Corollary 3.14]. Another easy and important observation

is that the Noetherian assumption on the subbasis C implies that the intersection

defining the set C(M,A) is always equal to the intersection of a finite subcol-

lection; therefore, the set C(M,A) is coded in M no matter whether A ∈ M

or not.

We will need the following strengthening of balance of Suslin forcings.

Definition 2.2. Let P be a Suslin forcing.

(1) A pair 〈Q, σ〉 is (3, 2)-Noetherian balanced over P if Q  σ ∈ P and for

every collection 〈V [Gi] : i ∈ 3〉 of pairwise mutually Noetherian exten-

sions of V , every collection 〈Hi : i ∈ 3〉 of filters on Q-generic over V in

the respective models V [Gi], every tuple 〈pi : i ∈ 3〉 of conditions in P

stronger than σ/Hi in the respective models V [Gi] has a common lower

bound;

(2) P is (3, 2)-Noetherian balanced if for every condition p ∈ P there is

a (3, 2)-Noetherian balanced pair 〈Q, σ〉 such that Q  σ ≤ p̌.

In item (1), the words “over P” will be omitted when the poset P is understood

from context. The common lower bound is found in the model V [G0, G1, G2] or

any larger ambient forcing extension; by the Shoenfield absoluteness its existence

is absolute among all forcing extensions containing the conditions pi for i ∈ 3.

The following theorem is stated using the parlance of [6, Convention 1.7.18].

Theorem 2.3. In every forcing extension of the choiceless Solovay model by

a cofinally (3, 2)-Noetherian balanced Suslin forcing, every non-null subset of R
2

contains all vertices of an equilateral triangle.

Proof: Let κ be an inaccessible cardinal. Let P be a Suslin forcing which is

(3, 2)-Noetherian balanced cofinally in κ. Let W be a choiceless Solovay model

derived from κ. Work inW . Suppose that τ is a P -name and p ∈ P is a condition

which forces τ to be a non-null subset of R
2. We must find an equilateral

triangle {x0, x1, x2} ⊂ R
2 and a condition in P stronger than p which forces

x̌0, x̌1, x̌2 ∈ τ .
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To do that, note that both p, τ are definable from a ground model parameter

and an additional parameter z ∈ 2ω. Let V [K] be an intermediate extension ob-

tained by a poset of cardinality smaller than κ such that z ∈ V [K] and P is (3, 2)-

Noetherian balanced in Vκ[K]. Work in V [K]. Let 〈Q, σ〉 be a (3, 2)-Noetherian

balanced pair for the poset P such that |Q| < κ and Q  σ ≤ p̌. Let R be the

usual random poset of non-null closed subsets of R
2 ordered by inclusion, adding

an element ẋgen ∈ R
2.

Claim 2.4. There is a poset S of cardinality smaller than κ, a Q×R×S-name η

for a condition in P stronger than σ, and conditions q ∈ Q, r ∈ R, s ∈ S such

that

〈q, r, s〉 Q×R×S Coll(ω,< κ)  η P ẋgen ∈ τ.

Proof: Suppose towards a contradiction that this fails. Since any condition in P

in the Coll(ω,< κ) extension is found in an extension by a poset of cardinality κ,

this means that the following statement holds in V [K]:

Q×R× Coll(ω,< κ)  σ P ẋgen /∈ τ.

In the model W , let B ⊂ R
2 be the set of all points random over the model V [K];

thus, the complement of B is null. Choose a filter H0 ⊂ Q generic over V [K] and

consider the condition σ/H0 ≤ p in the poset P . We will show that σ/H0 P

τ ∩B = 0, in contradiction to the initial assumptions of the condition p ∈ P .

To show this, let x ∈ B be a point and p0 ≤ σ/H0 be a condition; it will be

enough to find a condition p1 ∈ P compatible with p0 which forces x̌ /∈ τ . Let

H1 ⊂ Q be a filter generic over the model V [K][H0, x, p0]. The contradictory

assumption shows that p1 = σ/H1 P x̌ /∈ τ . At the same time, V [K][H0, x, p0]

and V [K][H1] are mutually generic extensions of the model V [K]. By the balance

assumption on the pair 〈Q, σ〉, the conditions p0 and p1 are compatible in P .

This concludes the proof. �

Pick S, η and q ∈ Q, r ∈ R, s ∈ S as in the claim and move to the model W .

Let x0 ∈ r be a point random over V [K]. Since x0 is a point of density of the

set r, there must be a real number ε > 0 such that, writing D ⊂ R
2 for the closed

disc centered at x0 of radius ε, the relative mass of r in D is greater than 1/2.

Consider the measure-preserving self-homeomorphism h of R
2 rotating the whole

plane around the point x0 by angle π/3 counterclockwise. The disc D is invariant

under h; by the choice of D, r ∩ h−1r ∩ D is a closed set of positive mass. Let

x1 ∈ r ∩ h−1r ∩ D be a point random over V [K][x0], and let x2 = h(x1).

Clearly, the points x0, x1, x2 ∈ r form an equilateral triangle.
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Claim 2.5. The points x0, x1, x2 ∈ R
2 are pairwise random over V [K].

Proof: The point x1 is chosen to be random over V [K][x0], therefore the points

x0, x1 are mutually random over V [K]. The point x2 is the image of x1 under

a measure-preserving self-homeomorphism in V [K][x0]. Therefore, x2 is random

over V [K][x0], and x0, x2 are mutually random over V [K]. Finally, the point x2 is

the image of x0 under the measure-preserving rotation around x1 by angle π/3.

Since x0 is random over V [K][x1], so is x2, and the points x1, x2 are mutually

random over V [K] as well. �

Now, for each i ∈ 3 let Hi ⊂ Q and Gi ⊂ S for i ∈ 3 be filters mutually generic

over the model V [K][xj : j ∈ 3], containing the conditions q, s, respectively. The

models V [K][xi] for i ∈ 3 are pairwise mutually Noetherian extensions of V [K]

by [9, Corollary 3.14]. The models V [K][xi][Gi][Hi] for i ∈ 3 are then pairwise

mutually Noetherian extensions of V [K] as well by [9, Proposition 2.9]. For each

i ∈ 3 let pi = η/Hi, xi, Gi ∈ P . By the balance assumption on the pair 〈Q, σ〉,

the conditions pi for i ∈ 3 have a common lower bound in the poset P . By the

forcing theorem applied in the respective models V [K][xi][Gi][Hi], this common

lower bound forces {xi : i ∈ 3} ⊂ τ as desired. �

3. The coloring poset

Let n ≥ 2 be a number, and write Γn for the hypergraph of rectangles in R
n.

To prove Theorem 1.2, we must produce a (3, 2)-Noetherian balanced Suslin poset

adding a total Γn-coloring. The definition of the poset uses, as a technical pa-

rameter, a Borel ideal I on ω which contains all singletons and which is not

generated by countably many sets. Further properties of the ideal I seem to be

irrelevant; the summable ideal will do.

Definition 3.1. Let n ≥ 2 be a number. The poset Pn consists of partial func-

tions p : Rn → ω such that there is a countable real closed subfield supp(p) ⊂ R

such that dom(p) = supp(p)n, and p is a Γn-coloring. The ordering is defined by

p1 ≤ p0 if

(1) p0 ⊂ p1;

(2) for every hypersphere S ⊂ R
n algebraic over supp(p0) and any two points

x, y ∈ dom(p1 \ p0), if x, y are opposite points on S then p1(x) 6= p1(y);

(3) for any two parallel hyperplanes P,Q ⊂ R
n algebraic over supp(p0) and

any two points x, y ∈ dom(p1 \ p0), if x, y are opposite points on the

respective hyperplanes P,Q then p1(x) 6= p1(y);

(4) if a ⊂ supp(p1) is a finite set, then p′′1δ(p0, p1, a) ∈ I where δ(p0, p1, a) =

{x ∈ dom(p1 \ p0) : x is algebraic over supp(p0) ∪ a}.
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Proposition 3.2. The ordering “≤” is a σ-closed transitive relation.

Proof: For the transitivity, suppose that r ≤ q ≤ p are conditions in the

poset Pn; we must show that r ≤ p. Checking the items of Definition 3.1, (1) is

obvious. For (2), suppose that S is a hypersphere algebraic over p and x, y are

opposite points on it in dom(r \ p). By the closure properties of dom(q), either

both x, y belong to dom(q) or both do not. In the former case (2) is confirmed by

an application of (2) of q ≤ p, in the latter case (2) is confirmed by an application

of (2) of r ≤ q. (3) is verified in a similar way. For (4), suppose that a ⊂ supp(r)

is a finite set. Let b ⊂ supp(q) be an inclusion maximal set of points algebraic over

supp(p) ∪ a which is algebraically independent over supp(p). A transcendence

dimension argument over the field supp(p) shows that |b| ≤ |a| holds. Note that

δ(p, r, a) ⊆ δ(p, q, b) ∪ δ(q, r, a) and r′′δ(p, r, a) ⊆ q′′δ(p, q, b) ∪ r′′(q, r, a). Thus,

the set r′′δ(p, r, a) belongs to I, since it is covered by two sets which are in I by

an application of (4) of q ≤ p and r ≤ q.

For the σ-closure, let 〈pi : i ∈ ω〉 be a descending sequence of conditions in Pn,

and let q =
⋃

i pi; we will show that q is a common lower bound of the sequence.

Let i ∈ ω be arbitrary and work to show q ≤ pi. For brevity, we deal only with

item (4) of Definition 3.1. Let a ⊂ supp(q) be a finite set. There must be j ∈ ω

greater than i such that a ⊂ supp(pj). By the closure properties of dom(pj), it

follows that δ(pi, q, a) = δ(pi, pj , a). Thus, q′′δ(pi, q, a) = p′′j δ(pi, pj , a) and the

latter set belongs to I by an application of (4) of pj ≤ pi. �

Further analysis of the poset Pn depends on a characterization of compatibility

of conditions.

Proposition 3.3. Let p0, p1 ∈ Pn be conditions. The following are equivalent:

(1) p0, p1 are compatible;

(2) for every point x0 ∈ R
n there is a common lower bound of p0, p1 con-

taining x0 in its domain;

(3) the conjunction of the following:

(a) p0 ∪ p1 is a function and a Γn-coloring;

(b) whenever S is a hypersphere algebraic over supp(p0) and x, y ∈

dom(p1 \ p0) are opposite points on S, then p1(x) 6= p1(y);

(c) whenever P,Q are parallel hyperplanes algebraic over supp(p0) and

x, y ∈ dom(p1 \p0) are opposite points on them, then p1(x) 6= p1(y);

(d) for every finite set a ⊂ supp(p1), p
′′

1δ(p0, p1, a) ∈ I;

(e) items above with subscripts 0, 1 interchanged.

Proof: (2) implies (1), which in turn implies (3) by Definition 3.1. The hard

implication is the remaining one: (3) implies (2). Suppose that all items in (3)

hold and x0 ∈ R
n is a point. To find a common lower bound of p0, p1 which
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contains x0 in its domain, let F ⊂ R be a countable real closed field containing x0

as an element and supp(p0), supp(p1) as subsets. The common lower bound q

will be constructed in such a way that dom(q) = Fn. Write d = Fn \ (dom(p0) ∪

dom(p1)). For every point x ∈ d and every i ∈ 2, let α(x, i) = {y ∈ dom(pi) \

dom(p1−i) : y and x are mutually algebraic over supp(p1−i)}. Here, points x, y

are mutually algebraic over supp(pi−1) if each coordinate of x is algebraic over

supp(p1−i) ∪ {y} and vice versa.

Claim 3.4. For each x ∈ d and i ∈ 2, the set p′′i α(x, i) belongs to the ideal I.

Proof: For definiteness set i = 1. The set α(x, 1) is a subset of δ(p0, p1, a)

where a is the set of coordinates of any point in α(x, 1). The claim then follows

from assumption (3) (d). �

Now, use the claim to find a set b ⊂ ω in the ideal I which cannot be covered

by finitely many elements of the form p′′i α(x, i) for x ∈ d and i ∈ 2 and finitely

many singletons. Let q : Fn → ω be a function extending p0 ∪ p1 such that

q ↾ d is an injection and for every x ∈ d, q(x) ∈ b \ (p′′0α(x, 0) ∪ p′′1α(x, 1)). Such

a function exists by the choice of the set b. We will show that q ∈ Pn and q is

a lower bound of p0, p1.

To see that q ∈ Pn, let R ⊂ dom(q) be a rectangle and work to show that R is

not monochromatic. The treatment splits into cases.

Case 1. Let R ⊂ dom(p0)∪dom(p1). By the closure properties of the sets dom(p0)

and dom(p1), there are two subcases.

Case 1.1. Let R be entirely contained in one of the two conditions. Then R is

not monochromatic as both p0, p1 are Γn-colorings.

Case 1.2. There are exactly two vertices of R in dom(p0 \ p1) and exactly two

vertices of R in dom(p1 \ p0). There are again two subcases.

Case 1.2.1. If the two vertices in dom(p0 \ p1) are opposite on the rectangle R,

then they determine a hypersphere visible from supp(p0) on which the other two

vertices are opposite as well. Then the other two vertices receive distinct p1-colors

by assumption (3) (b).

Case 1.2.2. If the two vertices in dom(p0 \ p1) are next to each other on the

rectangle R, then they determine parallel hyperplanes visible from supp(p0) on

which the other two vertices are opposite as well. Then the other two vertices

receive distinct p1-colors by assumption (3) (c).

Case 2. Let R contain exactly one vertex in the set d; call it x. By the closure

properties of the sets dom(p0) and dom(p1), the remaining three vertices of R

cannot all belong to the same condition. Thus, there must be two vertices con-

tained in (say) dom(p0) and one vertex, call it y, in dom(p1 \ p0). Then y, x

are mutually algebraic over dom(p0). Thus y ∈ α(x, 1) and q(x) 6= q(y) by
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the initial assumptions on the function q. In conclusion, the rectangle R is not

monochromatic.

Case 3. Let R contain more than one vertex in the set d. Then R is not

monochromatic as q ↾ d is an injection.

This shows that q ∈ Pn holds. We must show that q ≤ p1; the proof of

q ≤ p0 is symmetric. To verify Definition 3.1 (2), suppose that S is a hypersphere

algebraic over dom(p0) and x, y ∈ dom(q \ p0) are opposite points on S. If x, y ∈

dom(p1) then item (3) (b) shows that q(x) 6= q(y). If x ∈ d and y ∈ dom(p1)

(or vice versa) then y ∈ α(x, 0) and q(x) 6= q(y) by the choice of the color q(x).

Finally, if x, y ∈ d then q(x) 6= q(y) as q ↾ d is an injection.

Definition 3.1 (3) is verified in the same way. For item (4) of Definition 3.1,

let a ⊂ F be a finite set. Let a′ ⊂ supp(p0) be a maximal set of reals in

supp(p0) algebraic over supp(p1) ∪ a which is algebraically free over supp(p1).

By a transcendence dimension argument over the field supp(p1), |a
′| ≤ |a| holds,

in particular a′ is finite. Now, q′′δ(q, p1, a) ⊂ q′′δ(p1, p0, a
′) ∪ b, the first set on

the right belongs to I by assumption (3) (d), so the whole union belongs to I as

required. �

Corollary 3.5. Pn is a Suslin poset.

Proof: It is clear from Definition 3.1 that the underlying set and the ordering of

the poset Pn are Borel. Proposition 3.3 shows that the (in)compatibility relation

is Borel as well. �

Corollary 3.6. Pn forces the union of the generic filter to be a total Γn-coloring.

Proof: By a genericity argument, it is enough to show that for every condition

p ∈ Pn and very point x0 ∈ R
n there is a stronger condition containing x0 in its

domain. This follows from Proposition 3.3 with p = p0 = p1. �

It is time for the balance proof. It uses the following general fact.

Proposition 3.7. Let V [G0], V [G1] be mutually Noetherian extensions.

(1) Let n0 ∈ ω be a number and A ⊂ R
n0 be a set algebraic over V [G1].

Suppose that x̄0 ∈ V [G0] ∩ R
n0 is a point in A. Then there is a set

B ⊆ A algebraic over V such that x̄0 ∈ B;

(2) same as (1) except for semialgebraic sets;

(3) if a ⊂ R ∩ V [G1] is a finite set and r ∈ R ∩ V [G1] is a real algebraic over

(R ∩ V [G0]) ∪ a, then r is algebraic over (R ∩ V ) ∪ a;

(4) R ∩ V [G0] ∩ V [G1] = R ∩ V .

Proof: For (1), let n1 ∈ ω be a number and φ(v̄0, v̄1) be a polynomial with

integer coefficients and n0+n1 many free variables, and let x̄1 ∈ V [G1] be an n1-

tuple of real numbers such that A = {ȳ ∈ R
n0 : φ(ȳ,x̄1) = 0}. Let C ⊂ R

n1 ×R
n0
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be the set of all pairs 〈ȳ1, ȳ0〉 such that φ(ȳ0, ȳ1) = 0. This is a Noetherian

subbasis by the Hilbert basis theorem. Since C(V [G1], {x̄0}) ⊆ A = Cx̄1
holds by

the definitions and C(V [G1], {x̄0}) = C(V, {x̄0}) holds by the initial assumption

on the generic extensions, (1) is witnessed by B = C(V, {x̄0}).

For (2), let A ⊂ R
n0 be a set semialgebraic over V [G1]. By the elimination of

quantifiers for real closed fields [7, Section 3.3], A is defined by a quantifier free

formula θ with parameters in V [G1]. The formula can be rearranged so that its

atomic subformulas compare a value of a polynomial with zero. Let {φi : i ∈ m}

be a list of all polynomials mentioned in θ. Let x̄0 ∈ V [G0]∩R
n0 be a point in A.

Let a ⊂ m be the set of all i such that φi(x̄0) = 0. Let O ⊂ R
n0 be a rational

open box around x̄0 in which the polynomials φi for i /∈ a do not change sign.

Use (1) to find a set C algebraic over V such that x̄0 ∈ C and for all ȳ ∈ C and

all i ∈ a, φi(ȳ) = 0. It is clear that the set B = C ∩ O ⊆ A works as required

in (2).

For (3), let φ(x̄0, x̄1, v) be a nonzero polynomial with parameters x̄0 in V [G0]

and x̄1 ∈ a and a free variable v such that φ(x̄0, x̄1, r) = 0 holds. There is an open

neighborhood O of x̄0 such that for every x̄′

0 ∈ O, the polynomial φ(x̄′

0, x̄1, v)

remains nonzero. Let A = {ȳ0 : φ(ȳ0, x̄1, r) = 0}, use (1) to find a set B ⊆ A

algebraic over V such that x̄0 ∈ B, and use a Mostowski absoluteness argument

to find a tuple x̄′

0 ∈ O ∩ B in the ground model. (3) is then witnessed by the

tuple x′

0. Finally, (4) immediately follows from (3). �

Theorem 3.8. Let n ≥ 2 be a number. In the poset Pn,

(1) for every total Γn-coloring c : Rn → ω, the pair 〈Coll(ω,R), č〉 is (3, 2)-

Noetherian balanced;

(2) if the continuum hypothesis holds then the poset Pn is (3, 2)-Noetherian

balanced.

The fine details of this proof are the reason behind the rather mysterious Def-

inition 3.1.

Proof: For item (1), let c : Rn → ω be a total Γn-coloring. Let V [Gi] for

i ∈ 3 be pairwise mutually Noetherian extensions of V . Suppose that pi ≤ c

is a condition in Pn in the model V [Gi] for each i ∈ 3; we must find a common

lower bound of all pi for i ∈ 3.

Work in the model V [Gi : i ∈ 3]. Let F ⊂ R be a countable real closed field

containing supp(pi) for i ∈ 3. We will construct a lower bound q such that

F = supp(q). Write d = Fn \
⋃

i dom(pi). For each point x ∈ d and for each pair

i, j ∈ 3 of distinct indices, define sets α(x, i, j), β(x, i, j) and γ(x, i, j) ⊂ dom(pi)

as follows:
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◦ α(x, i, j) = {y ∈ dom(pi \ c) : there is a hypersphere S ⊂ R
n algebraic

over supp(pj) such that x, y are opposite points on S};

◦ β(x, i, j) = {y ∈ dom(pi \ c) : there are parallel hyperplanes P,Q ⊂ R
n

algebraic over supp(pj) such that x, y are opposite points on P,Q, re-

spectively};

◦ γ(x, i, j) = {y ∈ dom(pi \ c) : there are points xj ∈ dom(pj \ c) and

xk ∈ dom(pk \ c) such that x, y, xj , xk are four vertices of a rectangle

listed in a clockwise or counterclockwise order}. Here k ∈ 3 is the index

distinct from i and j.

Claim 3.9. There is a finite set a ⊂ supp(pi) such that α(x, i, j) consists of

points algebraic over (R ∩ V ) ∪ a.

Proof: This is clear if α(x, i, j) = 0. Otherwise, let y ∈ α(x, i, j) be any point

and argue that all other points in α(x, i, j) are algebraic over (R ∩ V ) ∪ {y}. To

see this, suppose that z ∈ α(x, i, j) is any other point. Let Sy, Sz be hyperspheres

algebraic in supp(pj) such that x is opposite of y on Sy and opposite of z on Sz.

It follows that z is algebraic over supp(pj) ∪ {y}: one first derives x from y and

then z from x. By Fact 3.7 z is algebraic over (R ∩ V ) ∪ {y} as desired. �

Claim 3.10. There is a finite set a ⊂ supp(pi) such that β(x, i, j) consists of

points algebraic over (R ∩ V ) ∪ a.

Proof: This is parallel to the previous argument. �

Claim 3.11. There is a finite set a ⊂ supp(pi) such that γ(x, i, j) consists of

points algebraic over (R ∩ V ) ∪ a.

Proof: This is the heart of the whole construction and the reason why item (4)

appears in Definition 3.1. For each point y ∈ γ(x, i, j) choose points xj(y) ∈

dom(pj \ c) and xk(y) ∈ dom(pk \ c) witnessing the membership relation. Let

H(y) ⊂ R
n be the hyperplane passing through y and perpendicular to the vector

y− xj(y); thus, x ∈ H(y). Write H =
⋂

y∈γ(x,i,j)H(y). Let a ⊂ γ(x, i, j) be a set

of minimum cardinality such that H =
⋂

y∈aH(y); the set a is finite. Identify

a with one of its enumerations 〈a(l) : l ∈ m〉. We will show that every point

y ∈ γ(x, i, j) is algebraic over (R ∩ V ) ∪ a. This will prove the claim.

Let y ∈ γ(x, i, j) be an arbitrary point. Consider the set A = {u ∈ (Rn)m+1:

∀ z ∈ R
n (∀ l ∈ m (xj(a(l)) − u(l)) · (z − u(l)) = 0) → (xj(y) − u(m)) ×

(z − u(m)) = 0}. The set A is semialgebraic in parameters from supp(pj) and

contains the tuple aay. In addition, by Thales’s theorem the section Aa is a sub-

set of the hypersphere of which the segment between xj(y) and x, and also the

segment between xk(y) and y, is a diameter. By Fact 3.7 (2) and the Noether-

ian assumption between V [Gi] and V [Gj ], there is a set B ⊂ A semialgebraic
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over R ∩ V such that aay ∈ B. Let C = {u ∈ B : u(m) is the farthest point of

Bu↾m from xk(y)}. This is a semialgebraic set in parameters from supp(pk). By

Fact 3.7 (2) and the Noetherian assumption on V [Gi] and V [Gk], there is a set

D ⊆ C semialgebraic over R ∩ V such that aay ∈ D. Clearly, Da = {y}. It

follows that y is algebraic over (R ∩ V ) ∪ a as desired. �

Now, define the set f(x) ⊂ ω of forbidden colors by setting it to the union of

p′′i (α(x, i, j) ∪ β(x, i, j) ∪ γ(x, i, j)) for all choices of distinct indices i, j ∈ 3. By

the claims and Definition 3.1 (4) applied to pi ≤ c, f(x) ∈ I. Let b ⊂ ω be a set

in the ideal I which cannot be covered by finitely many sets of the form f(x) for

x ∈ d, and finitely many singletons. Let q : Fn → ω be any map extending
⋃

i pi
and such that q ↾ d is an injection such that q(x) ∈ b \ f(x) holds for every x ∈ d.

We claim that q is the requested common lower bound of the conditions pi for

i ∈ 3.

Claim 3.12. We have that q is a Γn-coloring.

Proof: Let R ⊂ Fn be a rectangle; we must show that q is not constant on it.

The proof breaks into numerous cases and subcases.

Case 1. Let R contain no elements of the set d. Let a ⊂ 3 be an inclusion

minimal set such that R ⊂
⋃

i∈a dom(pi).

Case 1.1. Let |a| = 1. Here, R is not monochromatic because pi is a Γn-coloring

where i is the unique element of a.

Case 1.2. Let |a| = 2, containing indices i, j ∈ 3. The closure properties of the

domains of pi and pj imply that each set dom(pi \ c) and dom(pj \ c) contains

exactly two points of R.

Case 1.2.1. The two points in dom(pi \ c)∩R are adjacent in R. Then the hyper-

planes containing the two respective points and perpendicular to their connector

are algebraic over both V [Gi] and V [Gj ], so in V by Proposition 3.7 (4). The two

points are opposite on these planes and therefore they receive distinct pi colors

by Definition 3.1 (3). Therefore, R is not monochromatic.

Case 1.2.2. The two points in dom(pi \ c) ∩ R are opposite in R. Then both

the center of the rectangle R and the real number which is half of the length

of the rectangle diagonal belong to both V [Gi] and V [Gj ], so to V by Propo-

sition 3.7 (4). The hypersphere S they determine is visible from V , and the

two points of dom(pi \ c) ∩ R are opposite on S. Applying Definition 3.1 (2)

to pi ≤ c, it is clear that the two points receive distinct pi colors and R is not

monochromatic.

Case 1.3. Let |a| = 3. Then there must be index i ∈ 3 such that dom(pi)

contains exactly two points of R and dom(pj \c) contains exactly one point of R

for each index j 6= i. We will show that this case cannot occur regardless of the
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colors on the rectangle R. For an index j 6= i, write xj for the unique point in

R ∩ dom(pj \ c).

Case 1.3.1. The two points in dom(pi) ∩ R are adjacent in R. Consider the two

hyperplanes Qj, Qk containing these two points, respectively, and perpendicular

to their connecting segment, indexed by j, k 6= i. Reindexing if necessary, xj ∈ Qj

and xk ∈ Qk holds. By Proposition 3.7 (1), there must be algebraic sets Q′

j ⊆ Qj

and Q′

k ⊆ Qk visible from the ground model and still containing xj and xk. This

means that xk can be recovered in V [Gj ] as the closest point to xj in Q′

k. This

is impossible as R ∩ V [Gj ] ∩ V [Gk] = R ∩ V .

Case 1.3.2. The two points in dom(pi) ∩ R are opposite in R. Consider the

hypersphere S in which these two points are opposite. S then contains xj and xk

and these two points are opposite in S. By Fact 3.7, there must be algebraic sets

Sj ⊆ S and Sk ⊆ S visible from the ground model and still containing xj and xk.

This means that xk can be recovered in V [Gj ] as the farthest point to xj in Sk.

This is impossible as R ∩ V [Gj ] ∩ V [Gk] = R ∩ V .

Case 2. Let R contain exactly one point in the set d; call this unique point x.

Let a ⊂ 3 be an inclusion minimal set such that R \ {x} ⊂
⋃

i∈a dom(pi).

Case 2.1. Let |a| = 1. This cannot occur since dom(pi) would contain x with the

other three vertices of R, where i ∈ 3 is the only element of a.

Case 2.2. Let |a| = 2, containing indices i, j ∈ 3. Here, for one of the indices

(say j) dom(pj) has to contain two elements of R while dom(pi \ c) contains just

one; denote the latter point by xi.

Case 2.2.1. The points xi and x are opposite on the rectangle R. Then xi ∈

α(x, i, j) as the hypersphere on which xi, x are opposite points is the same as

the one on which the other two points are opposite, and therefore is algebraic

over supp(pj). The choice of the map q shows that q(x) 6= pi(xi), so R is not

monochromatic.

Case 2.2.2. The points xi and x are adjacent on the rectangle R. Then xi ∈

β(x, i, j) as xi, x are opposite points on the hyperplanes passing through the

other two points and perpendicular to their connecting segment, and these are

algebraic over supp(pj). The choice of the map q shows that q(x) 6= pi(xi), so R

is not monochromatic.

Case 2.3. Let |a| = 3. For each index i ∈ 3 let xi ∈ R be the unique point

in dom(pi \ c). Let i, j, k ∈ 3 be indices such that the sequence x, xi, xj , xk goes

around the rectangle R. Then xi ∈ γ(x, i, j) holds. The choice of the map q shows

that q(x) 6= pi(xi), so R is not monochromatic.

Case 3. Let R contain more than one point in the set d. Then R is not monochro-

matic as q ↾ d is an injection. �
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Finally, let i ∈ 3 be an index; we must prove that q ≤ pi holds. It is clear

that pi ⊂ q holds. The following claims verify the other items of Definition 3.1.

Claim 3.13. If S ⊂ R
n is a hypersphere algebraic over supp(pi) and x, y ∈

dom(q \ pi) are opposite points on it, then q(x) 6= q(y).

Proof: The argument splits into cases.

Case 1. If x, y both belong to the set d, then q(x) 6= q(y) as q ↾ d is an injection.

Case 2. If x ∈ d and y /∈ d, let j ∈ 3 be an index distinct from i such that

y ∈ dom(pj \ c). Then, y ∈ α(x, j, i) holds and therefore q(x) 6= pj(y) as q(x) /∈

p′′jα(x, j, i).

Case 3. If neither of the points x, y belongs to d, then there are two subcases.

Case 3.1. There is j ∈ 3 such that both x, y belong to dom(pj)\c. In such a case,

the hypersphere S is also algebraic over supp(pj). By the Noetherian assumption

on the models V [Gi] and V [Gj ] and Proposition 3.7 (4), the hypersphere S is

algebraic over the ground model. It follows that q(x) = pj(x) 6= pj(y) = q(y) by

Definition 3.1 (2) applied to pj ≤ c.

Case 3.2. Let x ∈ dom(pj\c) and y ∈ dom(pk\c) for distinct indices j, k. By the

Noetherian assumption on the models V [Gi] and V [Gj ] and Proposition 3.7 (1),

there is a set T ⊆ S algebraic over the ground model such that x ∈ T . Then x

can be recovered in V [Gk] as the point on T farthest away from y, contradicting

the fact that V [Gj ] ∩ V [Gk] = 0. �

Claim 3.14. If P,Q ⊂ R
n are parallel hyperplanes algebraic over supp(pi) and

x, y ∈ dom(q \ pi) are opposite points on them, then q(x) 6= q(y).

Proof: The argument is similar to that for Claim 3.13. �

Claim 3.15. If a ⊂ Fn is a finite set, then q′′δ(pi, q, a) ∈ I.

Proof: For each index j ∈ 3 distinct from i, let aj ⊂ δ(pi, q, a) ∩ dom(pj)

be an inclusion-maximal set which is algebraically free over supp(pi). Since

sets algebraically free over supp(pi) form a matroid, |aj | ≤ |a|. By Proposi-

tion 3.7 (3), δ(pi, q, a) ∩ dom(pj) = δ(c, pj , aj) holds. This means that δ(pi, q, a) =

δ(c, pj , aj) ∪ δ(c, pk, ak) ∪ d where j, k ∈ 3 are the two indices distinct from i.

Now, p′′j (c, pj, aj) ∈ I by Definition 3.1 (4) applied to pj ≤ c, p′′k(c, pk, aj) ∈ I by

Definition 3.1 (4) applied to pk ≤ c, and q′′d ∈ I as this set is a subset of b. As

the ideal I is closed under unions and subsets, q′′δ(pi, q, a) ∈ I as desired. �

This concludes the proof of item (1) of the theorem. For item (2), if CH holds

and p ∈ Pn is a condition, by (1) it is enough to produce a total Γn-coloring c

such that Coll(ω,R)  č ≤ p̌. To this end, choose an enumeration 〈xα : α ∈ ω1〉

of R
n and by recursion on α ∈ ω1 build conditions pα ∈ Pn so that
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◦ p = p0 ≥ p1 ≥ . . . ;

◦ xα ∈ dom(pα+1);

◦ pα =
⋃

β∈α pβ for limit ordinals α.

The successor step is possible by Corollary 3.6 and the limit step by Proposi-

tion 3.2. In the end, let c =
⋃

α pα and observe that c is a total Γn-coloring and

Coll(ω,R)  č ≤ p̌. �

Finally, we can complete the proof of Theorem 1.2. Let n ≥ 2 be a number.

Let κ be an inaccessible cardinal. Let W be the choiceless Solovay model derived

from κ. Let Pn be the Suslin poset of Definition 3.1, and let G ⊂ Pn be a filter

generic overW . Then W [G] is a model of ZF + DC since it is a σ-closed extension

of a model of ZF + DC. In W [G], the chromatic number of Γn is countable by

Corollary 3.6. In W [G], every non-null subset of the plane contains an equilat-

eral triangle by the conjunction of Theorem 2.3 and Theorem 3.8. The proof is

complete.
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