
Archivum Mathematicum

Ali Akbar Estaji; Ahmad Mahmoudi Darghadam
Some properties of algebras of real-valued measurable functions

Archivum Mathematicum, Vol. 59 (2023), No. 5, 383–395

Persistent URL: http://dml.cz/dmlcz/151795

Terms of use:
© Masaryk University, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/151795
http://dml.cz


ARCHIVUM MATHEMATICUM (BRNO)
Tomus 59 (2023), 383–395

SOME PROPERTIES OF ALGEBRAS OF REAL-VALUED
MEASURABLE FUNCTIONS

Ali Akbar Estaji and Ahmad Mahmoudi Darghadam

Abstract. LetM(X,A ) (M∗(X,A )) be the f -ring of all (bounded) real-mea-
surable functions on a T -measurable space (X,A ), letMK(X,A ) be the family
of all f ∈ M(X,A ) such that coz(f) is compact, and let M∞(X,A ) be all
f ∈ M(X,A ) that {x ∈ X : |f(x)| ≥ 1

n
} is compact for any n ∈ N. We

introduce realcompact subrings of M(X,A ), we show that M∗(X,A ) is a
realcompact subring of M(X,A ), and also M(X,A ) is a realcompact if and
only if (X,A ) is a compact measurable space. For every nonzero real Riesz
map ϕ :M(X,A )→ R, we prove that there is an element x0 ∈ X such that
ϕ(f) = f(x0) for every f ∈M(X,A ) if (X,A ) is a compact measurable space.
We confirm that M∞(X,A ) is equal to the intersection of all free maximal
ideals of M∗(X,A ), and also MK(X,A ) is equal to the intersection of all free
ideals of M(X,A ) (or M∗(X,A )). We show that M∞(X,A ) and MK(X,A )
do not have free ideal.

1. Introduction

For any nonempty completely regular Hausdorff space X, C(X) (C∗(X)) stands
for the set of all (bounded) real-valued continuous functions defined on X, with
pointwise operations of addition and multiplication (see [14, 12]). Recall that a real
bounded Riesz map φ : C(X)→ R is a linear map preserving lattice operations with
φ(1) = 1 (see [6]). By a classical representation theorem, for every such φ there is
an x ∈ X such that φ(f) = f(x) for every f ∈ C(X), whose proof is in [6]. Karimi
Feizabadi and Ebrahimi represent the pointfree version of this representation see
[4]. In this paper, we present representation of bounded Riesz map for the f -ring
of all real-measurable functions on a T -measurable space (X,A ), i.e., M(X,A ).
We replace a realcompact Hausdorff space X by realcompact T -measurable space.
We show that if T -measurable space (X,A ) is compact if and only if M(X,A )
is realcompact (see Proposition 4.7). Also, if (X,A ) is a compact T -measurable
space, we prove that for any nonzero f -ring homomorphism φ : M(X,A ) → R,
there is a unique x ∈ X such that φ(f) = f(x) for every f ∈ M(X,A ) (see
Proposition 4.10). Therefore, there is a one-to-one correspondence between bounded
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Riesz maps (nonzero f -ring homomorphism) from M(X,A ) to R with elements of
X if T -measurable space (X,A ) is compact (finite).

In [15] Kohls introduced the subring C∞(X) of all functions C(X) which vanish
at infinity, and showed that

C∞(X) =
⋂
{I : I is a free maximal ideal of C∗(X)} .

Also he showed

CK(X) =
⋂
{I : I is a free ideal of C∗(X) or C(X)}

see [12, 7.E and 7.F].
Let L be a completely regular frame, let RL be the ring of real-valued continuous

functions on L, and let R∞L be the family of all functions ϕ ∈ RL for which the
set ↑ϕ(−1

n
,

1
n

), ordered by relation of L, is a compact frame for any n ∈ N. R∞L
was introduced by Dube in [3]. Estaji and Mahmoudi Darghadam in [8] proved
that R∞L is precisely the intersection of all the free maximal ideals of R∗L (also,
[10, 9]).

In Section 5, we introduce M∞(X,A ) and MK(X,A ) for every T -measurable
space (X,A ), and we give an answer to a question which was posted by Acharyya
et al. [1, Question 4.11]. In fact, we show that

M∞(X,A ) =
⋂
{M : M is a free maximal ideal of M∗(X,A )} ,

and

MK(X,A ) =
⋂
{I : I is a free ideal of M∗(X,A ) or M(X,A )}.

In [2] it was showed that C∞(X) and CK(X) do not have free ideal. In this paper,
we show that M∞(X,A ) and MK(X,A ) do not have free ideal (see Corollary 5.9
and Corollary 5.10).

2. Preliminaries

In this section, we introduce the concepts of measurable space and commutative
ring which is used in this paper.

Let us recall some general notation from [16]. Let A be a collection of subsets
of a nonempty set X. It is well known that (X,A ) is called a measurable space if
A has the following three properties:

(i) X ∈ A .
(ii) If A ∈ A , then Ac ∈ A , where Ac is the complement of A relative to X.
(iii) If {An}n∈N ⊆ A , then

⋃
n∈N An ∈ A .

Also, the members of A are called the measurable sets in X. If X is a measurable
space, Y is a topological space, and f is a mapping of X into Y , then f is said
to be measurable provided that f−1(V ) is a measurable set in X for every open
set V in Y . If X is a measurable space, then the set of all measurable maps from
X into R is denoted M(X,A ), and the members of M(X,A ) are called the real
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measurable functions on X, where R denotes the set of all real numbers with the
ordinary topology.

Addition, multiplication, joint, and meet in RX are defined by the formulas
(f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x), (f ∨ g)(x) = max{f(x), g(x)}, and
(f ∧ g)(x) = min{f(x), g(x)}. (RX ; +, ·,∨,∧) is proved an f -ring, this conclusion
is the immediate consequence of the corresponding statements about the field R.
Also, if (X,A ) is a measurable space, then (M(X,A ); +, ·,∨,∧) is a sub-f -ring
of RX . The subset M∗(X,A ) of M(X,A ), consisting of all bounded functions in
M(X,A ), is also closed under the algebraic and order operations. A measurable
space (X,A ) is said to be pseudocompact if M∗(X,A ) = M(X,A ).

An element a of a lattice L is said to be compact if a =
∨
S, S ⊆ L, implies

a =
∨
F for some finite subset F of S. A bounded lattice L is said to be compact

whenever its top element > is compact (see [5]). A measurable space (X,A ) is called
a compact measurable space if A is a compact lattice (see [7, 11]). A measurable
space (X,A ) is said to be T -measurable if whenever x and y are distinct points in
X, there is a measurable set containing one and not the other (see [11]). In [11]
proved that if (X,A ) is not a T -measurable space, we can find a T -measurable
space (Y,A ′) for which M(X,A ) ∼= M(Y,A ′). Therefore, throughout this paper,
(X,A ) denotes a T -measurable space.

We recall from [11] that an ideal I of M(X,A ) is called fixed if the set
⋂
f∈I Z(f)

is nonempty; otherwise, I is called free. In [11] it showed that a compact measurable
(X,A ) is determined by fixed maximal ideals of M(X,A ). Also, the following
proposition that was proved in [7] is needed in this paper.
Proposition 2.1. The following statements are equivalent.

(1) The measurable space (X,A ) is a compact measurable space.
(2) The set X is a finite set and A = P(X).
(3) The measurable space (X,A ) is a pseudocompact measurable space.

Throughout this paper, we put
Mx := {f ∈M(X,A ) : f(x) = 0} ,

for every x ∈ X. It is evident that Mx is a fixed maximal ideal of M(X,A ) for
every x ∈ X.

Recall that a totally ordered field F is said to be archimedean if for every element
a ∈ F , there exists an element n in N such that n ≥ a. Thus, a nonarchimedean
field is characterized (among all totally ordered fields) by the presence of infinitely
large elements, that is, elements a such that a > n for every n ∈ N. An element
b is infinitely small if it is positive but smaller than 1

n for every n ∈ N. Hence
b is infinitely small if and only if 1

b is infinitely large. Therefore, the presence
of infinitely small elements also characterizes the nonarchimedean fields. Every
archimedean field is embeddable in R (see [12, page 70]).

3. Quotient lattice-ordered and totally-ordered rings of M(X,A )

In this section, we show that every quotient ring of M(X,A ) and M∗(X,A )
is a lattice-ordered ring and we obtain several equivalent conditions for ideal I
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of M(X,A ) such that the quotient ring M(X,A )
I is a totally-ordered ring. The

concepts as well as the results of this section are counterparts of the results in the
text book [12].

Definition 3.1. Let (X,A ) be a measurable space. A subset U of X is called
relatively pseudocompact if f(U) is a bounded subset of R for all f ∈M(X,A ).

As usual, if f ∈M(X,A ), then z(f) := {x ∈ X : f(x) = 0 } and coz := X \z(f)
are called zero set and cozero set of f , respectively. Also, for every f, g ∈M(X,A ),
we have z(fg) = z(f) ∪ z(g), z(f2 + g2) = z(|f |+ |g|) = z(f) ∩ z(g), and z(f) =
z(|f |) = z(fn) for every n ∈ N. Also, for every subset H of M(X,A ), we put
Z[H] := { z(f) : f ∈ H }.

Lemma 3.2. Let (X,A ) be a measurable space. For every f, g ∈ M(X,A ), the
following statements hold.

(1) If coz(f) ≤ coz(g), then there is an element h of M(X,A ) such that
f = gh.

(2) If 0 ≤ f ≤ g, then there is an element h of M(X,A ) such that f = gh.
(3) If 0 ≤ f ≤ g and g ∈M∗(X,A ), then there is an element h of M∗(X,A )

such that f = gh.

Proof. Consider the h : X → R given by

h(x) =
{
f(x)
g(x) if x ∈ coz(g)
0 if x 6∈ coz(g).

�

We recall that an ideal I of an f -ring A is called an `-ideal or an absolutely
convex ideal if |x| ≤ |y|, and y ∈ I imply x ∈ I. Also, I is called a convex ideal if
whenever 0 ≤ x ≤ y, and y ∈ I, then x ∈ I.

As an immediate consequence of Lemma 3.2, we now have the following proposi-
tion:

Proposition 3.3. The following statements hold.
(1) For every ideal I of M(X,A ), f ∈ I if and only if |f | ∈ I.
(2) Every ideal of M(X,A ) is a convex ideal of M(X,A ).
(3) Every ideal of M(X,A ) is an absolutely convex ideal of M(X,A ).

Remark 3.4. For every ideal I of M(X,A ), by Theorem 5.2 in [12], M(X,A )
I is a

partially ordered ring, according to the definition:
f + I ≥ 0 if there exists an element g in M(X,A ) such that g ≥ 0 and f − g ∈ I.
Throughout this paper, this notation will be used. Also, by Theorem 5.3 in [12], the
following statements hold for every ideal I of M(X,A ) and every f, g ∈M(X,A ).

(1) f, g ∈ I implies f ∨ g ∈ I.
(2) (f ∨ g) + I = f + I ∨ g + I.
(3) f + I ≥ 0 if and only if f − |f | ∈ I.
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The above results are true for M∗(X).

Proposition 3.5. For every proper ideal I of M(X,A ) (M∗(X,A )), the following
statements hold.

(1) For every f ∈M(X,A ), f + I ≥ 0 if and only if f is nonnegative on an
element Z of Z[I].

(2) For every f ∈ M(X,A ), if f is positive on at least one Z of Z[I], then
f + I > 0.

(3) Let I be a maximal ideal of M(X,A ) (M∗(X,A )). For every f ∈M(X,A ),
f is positive on at least one Z of Z[I] if and only if f + I > 0.

Proof. (1) Necessity. Let f ∈M(X,A ) with f + I ≥ 0 be given. By Remark 3.4,
f − |f | ∈ I. Since f and |f | have the same sing on z(f − |f |), we conclude that f
is nonnegative on z(f − |f |).

Sufficiency. Let f ∈ M(X,A ) and g ∈ I with f |z(g) ≥ 0 be given. Since
z(g) ≤ f−1([0,+∞)) = z(f − |f |), we conclude from Lemma 3.2 that there
is an element h of M(X,A ) such that f − |f | = gh ∈ I, which implies that
f + I = |f |+ I ≥ 0.

(2) Let f ∈M(X,A ) and g ∈ I with f |z(g) > 0 be given. Since z(f) ∩ z(g) = ∅,
we conclude that f 6∈ I. Hence, by the first statement, f + I > 0.

(3) Let f ∈M(X,A ) with f + I > 0 be given. Hence, by the first statement, if
g = f − |f |, then f |z(g) ≥ 0 and g ∈ I. By [11, Proposition 3.7], there is an element
h of I such that z(h) ∩ z(f) = ∅, and so f |z(g2+h2) > 0 which g2 + h2 ∈ I. �

The following example shows that the maximal condition on I in Proposition
3.5 is necessary.

Example 3.6. Let I and J be proper ideals of M(X,A ) such that I ( J and
f ∈ J \ I. By Lemma 3.2, f2 6∈ I. Since z(f2) ∈ Z[J ], we infer that z(f2) ∩ Z 6= ∅
for any Z ∈ Z[I] ⊆ Z[J ]. Hence f2 + I > 0 and f2|Z 6> 0 for any Z ∈ Z[I].

Proposition 3.7. Let I be a proper ideal of M(X,A ). Then the following state-
ments are equivalent.

(1) M(X,A )
I is a totally ordered ring.

(2) For every f ∈ M(X,A ), there is a zero set of Z[I] on which f does not
change sign.

(3) The ideal I is a prime ideal of M(X,A ).

Proof. (1) ⇒ (2) For a given element f of M(X,A ), since M(X,A )
I is a totally

ordered ring, we infer that f + I ≤ 0 or f + I ≥ 0, which from Proposition 3.5
implies that there is a zero set of Z[I] on which f does not change sign.

(2)⇒ (3) Given gh ∈ I, consider the function |g|−|h|. By hypothesis, there is an
element f of I such that z(f)∩(|g|−|h|)−1(−∞, 0) = ∅. Hence Z(f)∩Z(g) ⊆ Z(h).
Since

Z((hg)2 + f2) = Z(hg) ∩ Z(f) = [Z(h) ∩ Z(f)] ∪ [Z(g) ∩ Z(f)] ⊆ Z(h)
and (hg)2 + f2 ∈ I, we conclude from Lemma 3.2 that h ∈ I. Thus, I is prime.
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(3)⇒ (1) Observe that for every f ∈M(X,A ), (f ∨ 0)(f ∧ 0) = 0 ∈ I. Since,
by hypothesis, either f ∨ 0 ∈ I or f ∧ 0 ∈ I, we conclude that Z(f ∨ 0) ∈ Z[I] or
Z(f ∧ 0) ∈ Z[I], which implies that f does not change sign on them. Therefore, by
Proposition 3.5, M(X,A )

I is a totally ordered ring. �

Similar to the proof of Proposition 3.7, M∗(X,A )/I is a totally ordered ring if
and only if I is a prime ideal of M∗(X) for every proper ideal I of M∗(X,A ).

Definition 3.8. A subring R′ of a partial order ring R is called absolutely convex,
if f ∈ R′ and g ∈ R such that |g| ≤ |f |, then g ∈ R′.

It is clear that M∗(X,A ) is an absolutely convex subring of M(X,A ).

Proposition 3.9. Let R be an absolutely convex subring of M(X,A ). If P is a
prime ideal of R, then P is an absolutely convex ideal of R.

Proof. Let g ∈ P and f ∈ R such that |f | ≤ |g|. Then the function h : X → R
given by

h(x) =
{
f2(x)
g(x) if x 6∈ z(g)

0 if x ∈ z(g)
belongs to M(X,A ), and, by hypothesis, h ∈ R, because |h| ≤ |f |. Since f2 =
gh ∈ P , we infer that f ∈ P . �

We recall from [13] that M(X,A ) is a regular reduced ring, which implies that
every prime ideal of M(X,A ) is a maximal ideal of M(X,A ). Then for every
prime ideal P of M(X,A ), M(X,A )

P is a totally ordered filed.

4. Real compact T -measurable space and Real Riesz map on M(X,A ).

In this section, we introduce realcompact T -measurable space and prove that
realcompact T -measurable spaces are the same compact T -measurable spaces.
Also we show that for every realcompact T -measurable space (X,A ) and nonzero
homomorphism ϕ : M(X,A ) → R there exists an element x0 in X such that
ϕ(f) = f(x0) for every f ∈M(X,A ).

For every proper ideal P of M(X,A ), it is clear that θ : R→ M(X,A )
P given by

r 7→ r + P is a monomorphism, which implies that M(X,A )
P has a copy of R. This

fact leads to the following definition. Except for Proposition 4.10, the concepts as
well as the other results of this section are counterparts of the results in the text
book [12].

Definition 4.1. Let R be a subring of M(X,A ). A maximal ideal M of R is
called real if RM ∼= R, otherwise it is called hyper-real.

Recall that a totally ordered field F is said to be archimedean if for every element
a ∈ F , there exists an element n in N such that n ≥ a. Hence, by [12, Theorem
0.21], we have:

Proposition 4.2. A maximal ideal M of M(X,A ) (resp., M∗(X,A )) is real if
and only if M(X,A )

M (resp., M
∗(X,A )
M ) is archimedean.
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Proposition 4.3. Let M be a maximal ideal of M(X,A ) and f ∈ M(X,A ).
Then the following statements are equivalent.

(1) |f +M | is an infinitely large element of M(X,A )
M .

(2) f |Z is unbounded for every Z ∈ Z[M ].
(3) The zero set Zn := {x ∈ X : |f(x)| ≥ n} belongs to Z[M ] for every n ∈ N.

Proof. (1) ⇔ (2) Let n ∈ N be given. Then, by Proposition 3.5, |f +M | ≤ n if
and only if |f ||Z ≤ n for some Z ∈ Z[M ].

(1)⇔ (3) Let n ∈ N be given. Then, by Proposition 3.5, |f+M | ≥ n if and only if
|f ||Z ≥ n for some Z ∈ Z[M ], and since Z ⊆ Zn, we conclude that Zn ∈ Z[M ]. �

The following corollary relates unbounded functions on X with infinitely large
elements modulo maximal ideals.

Corollary 4.4. Let f ∈ M(X,A ) be given. Then f ∈ M(X,A ) \M∗(X,A ) if
and only if there exists a maximal ideal M of M(X,A ) such that |f +M | is an
infinitely large element of M(X,A )

M .

Proof. Necessity. We put Zn := {x ∈ X : |f(x)| ≥ n} for any n ∈ N. Because
{Zn : n ∈ N} has the finite intersection property, we conclude that there is an
ultrafilter F of A such that {Zn : n ∈ N} ⊆ F . Since, by [11, Proposition 3.6.],
M := Z−1[F ] is a maximal ideal of M(X,A ), we conclude from Proposition 4.3
that |f +M | is an infinitely large element of M(X,A )

M .
Sufficiency. It is obvious. �

Lemma 4.5. Let Z ∈ A be given. Z is a compact element of A if and only if
Z 6∈ F for every free ultrafilter F of A .

Proof. Necessity. Let Z ∈ F for some free ultrafilter F of A . Then

Z = coz(χ
Z

) ∩X = coz(χ
Z

) ∩
⋃
F∈F

(X \ F ) =
⋃
F∈F

(
coz(χ

Z
) ∩ coz(χ

X\F )
)
,

which implies that there are F1, F2, · · · , Fn ∈ F such that

Z =
n⋃
i=1

(
coz(χ

Z
) ∩ coz(χ

X\Fi
)
)

= Z ∩
n⋃
i=1

(X \ Fi) ∈ F ,

and so ∅ = Z ∩
⋂n
i=1 Fi ∈ F , which is a contradiction.

Sufficiency. Let Z be not compact. Since (Z,ZA ) is not a compact measurable
space, we conclude from Proposition 2.1 that there is an element f of M(Z) such
that f 6∈M∗(Z). Then the function g : X → R given by

g(x) =
{
|f(x)|+ 1 if x ∈ Z
0 if x ∈ X \ Z

belongs to M(X,A ) \M∗(X,A ). We put Zn := {x ∈ X : |g(x)| ≥ n} for every
n ∈ N. Then there exists a free ultrafilter F of A such that {Zn : n ∈ N} ⊆ F ,
because {Zn : n ∈ N} has the finite intersection property. Since Z ∈ F , we obtain
a contradiction, by Lemma 4.5. �
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Proposition 4.6. Let f ∈ M(X,A ) be given. |f + M | is an infinitely large
element of M(X,A )

M for every free maximal ideal M of M(X,A ) if and only if f |Z
is unbounded for every noncompact measurable set Z ∈ A .

Proof. Necessity. Let Z ∈ A be not compact, and let f |Z be bounded. By Lemma
4.5, Z ∈ F for some free ZA -ultrafilter F of A . If we put M := Z−1(F), then
|f +M | is bounded, which is a contradiction.

Sufficiency. Let M be a free maximal ideal of M(X,A ), then, by [11, Proposition
3.6], F := Z(M) is a free ultrafilter of A . Since, by Lemma 4.5, no element of Z(M)
is compact, we conclude from our hypothesis and Proposition 4.3 that |f +M | is
an infinitely large element of M(X,A )

M . �

The following proposition relates compactness of X with the real maximal ideals
of M(X,A ).

Proposition 4.7. The following statements hold.
(1) Every maximal ideal of M∗(X,A ) is real.
(2) Every maximal ideal of M(X,A ) is real if and only if X is compact.

Proof. (1) Let M be a maximal ideal of M∗(X). If f ∈M∗(X,A ), then |f | ≤ n
for some n ∈ N, and hence |f +M | ≤ n. Therefore, M

∗(X,A )
M is archimedean, and

so, by Corollary 4.2, M is a real maximal ideal of M∗(X,A ).
(2) Necessity. We argue by contradiction. Let us assume that X is not compact.

By Proposition 2.1, there exists an element f of M(X,A ) such that f 6∈M∗(X,A ).
Hence, by Corollary 4.4, a maximal ideal M of M(X,A ) such that |f +M | is an
infinitely large element of M(X,A )

M , which implies that there is a maximal ideal
M of M(X,A ) which is not real. This is a contradiction to the fact that every
maximal ideal of M(X,A ) is real.

Sufficiency. Since, by Proposition 2.1, M(X,A ) = M∗(X,A ), we conclude from
the first statement that every maximal ideal of M(X,A ) is real. �

Definition 4.8. Let A be a Q-algebra (or a R-algebra). A function φ : A→ R is
called a real Riesz map if φ(ra+ bc) = rφ(a) + φ(b)φ(c) for every a, b, c ∈ A and
r ∈ Q (r ∈ R). Also, a nonzero real Riesz map is called a real bounded Riesz map.

Remark 4.9. Let ϕ : M(X,A )→ R be a ring homomorphism, i.e., ϕ(f + gh) =
ϕ(f) + ϕ(g)ϕ(h) for every f , g, h ∈M(X,A ), then the following statements hold.

(1) If f ≥ g, then ϕ(f) ≥ ϕ(g) for every f, g ∈M(X,A ).
(2) If ϕ 6= 0, then ϕ(r) = r for every r ∈ R.
(3) If ϕ 6= 0, then ϕ is a real bounded Riesz map.

The next proposition contains a complete description of the real bounded Riesz
map on M(X,A ).

Proposition 4.10. Let ϕ : M(X,A )→ R be a nonzero homomorphism. If every
maximal ideal of M(X,A ) is real, then there exists an element x0 of X such that
ϕ(f) = f(x0) for every f ∈M(X,A ).
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Proof. By Proposition 4.7, (X,A ) is compact and so, by [11, Proposition 4.11],
every proper ideal of M(X,A ) is fixed. Since, by Remark 4.9, ϕ is an f -ring
epimorphism, we infer that the canonic map ϕ : M(X,A )

ker(ϕ) → R given by f+ker(ϕ) 7→
ϕ(f) is an isomorphism. Therefore, ker(ϕ) is a maximal ideal of M(X,A ), then
there exists an element x0 of X such that ker(ϕ) = Mx0 . We claim that ϕ(f) =
f(x0) for every f ∈ M(X,A ). We have ϕ(g) = 0 = g(x0) for every g ∈ ker(ϕ).
If g ∈ M(X,A ) \ ker(ϕ) with ϕ(g) = r 6= g(x0) for some r ∈ R \ {0}, then
ϕ(1 + ker(ϕ)) = 1 = ϕ( 1

r g + ker(ϕ)), and this is a contradiction, which proves the
claim. �

5. The intersection of free ideals

In this section, we show that M∞(X,A ) is equal to the intersection of free
maximal ideals of M∗(X,A ) and MK(X,A ) is equal to the intersection of free
ideals of M∗(X,A ) (M(X,A )), also we prove that M∞(X,A ) and MK(X,A ) do
not have free ideal.

Lemma 5.1. Let {fn}n∈N ⊆ M(X,A ) such that 0 ≤ fn(x) ≤ fn+1(x) for every
n ∈ N and every x ∈ X. If the sequence {fn}n∈N converges to f pointwise on X,
then f ∈M(X,A ).

Proof. Consider r ∈ R. Since 0 ≤ fn(x) ≤ fn+1(x) for every (x, n) ∈ X × N, we
conclude from limn→∞ fn(x) = f(x) for every x ∈ X that

{x ∈ X : f(x) > r} =
⋃
n∈N
{x ∈ X : fn(x) > r} ∈ A

for every r ∈ R, which implies that f ∈M(X,A ). �

We can now state the counterpart of [12, Theorem 5.14] for M(X,A ). Also,
the next proposition provides a complete description of the real maximal ideals of
M(X,A ).

Proposition 5.2. Let M be a maximal ideal of M(X,A ). Then the following
statements are equivalent.

(1) M is real.
(2) Z[M ] closed under countable intersection.
(3) Z[M ] has countable intersection property.

Proof. (1)⇒ (2) Let {z(fn) : n ∈ N} ⊆ Z[M ] with
⋂
n∈N z(fn) 6∈ Z[M ]. We define

gn = |fn|∧ 1
2n for every n ∈ N and g = Σn∈Ngn. By Lemma 5.1, g ∈M(X,A ). Since

z(g) =
⋂
n∈N z(fn) 6∈ Z[M ], we conclude from [11, Proposition 3.13] that g 6∈ M .

For every m ∈ N and every x ∈
⋂m
i=1 z(fi), we have g(x) ≤ Σm<n∈N2−n = 2−m.

Hence, by Proposition 3.5, g+M ≤ 2−m for each m ∈ N, i.e, g+M is infinitely small,
and hence M(X,A )

M is nonarchimedean and M is not real, which is a contradiction.
(2)⇒ (3) It is clear, because ∅ 6∈ Z[M ].
(3)⇒ (1) By way of contradiction assume that M is not a real ideal of M(X,A ),

then there is an element f of M(X,A ) such that f + M is an infinitely large
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element of M(X,A )
M , and by Proposition 4.3, Zn := {x ∈ X : |f(x)| ≥ n} ∈ Z[M ]

for every n ∈ N. It is clear that
⋂
n∈N Zn = ∅, which is a contradiction. �

Definition 5.3. Let (X,A ) be a measurable space. An ultrafilter F of A is called
real if Z−1(F) is a real maximal ideal of M(X,A ).

Proposition 5.4. Let F be an ultrafilter of A , then the following statements hold.

(1) F is a real ultrafilter of A if and only if F is closed under countable
intersection.

(2) If F is a real ultrafilter of A and {fn : n ∈ N} ⊆ M(X,A ) such that⋂
n∈N z(fn) ∈ F , then z(fn) ∈ F for some n ∈ N.

Proof. (1) It follows from Proposition 5.2.
(2) We argue by contradiction. Let us assume that z(fn) 6∈ F for every n ∈ N.

Then, by [11, Proposition 3.7], there is an element z(gn) of F such that z(fn) ∩
z(gn) = ∅ for every n ∈ N. By the first statement,

⋂
n∈N z(gn) ∈ F and by

hypothesis

∅ =
( ⋂
n∈N

z(gn)
)
∩
( ⋂
n∈N

z(fn)
)
∈ F ,

which is a contradiction. �

We say that f ∈ M(X,A ) vanish at infinity if the set {x ∈ X : |f(x)| ≥ 1
n }

is compact for every n ∈ N. Let M∞(X,A ) denote the family of all functions of
M(X,A ) that vanish at infinity. It is clear that M∞(X,A ) is an absolutely convex
subring of M(X,A ).

We can now give an answer to a question which was posted by Acharyya et al.
[1, Question 4.11].

Theorem 5.5. The subset M∞(X,A ) of M∗(X,A ) is equal to the intersection
of all free maximal ideals of M∗(X,A ).

Proof. Let f ∈
⋂
{M : M is a free maximal ideal of M∗(X,A )} be given. We

argue by contradiction. Let us assume that f 6∈M∞(X,A ). Then there exists an
element n ∈ N such that Zn := {x ∈ X : |f(x)| ≥ 1

n} is not a compact element of
A . By Lemma 4.5, there exists a free ultrafilter F in A such that Zn ∈ F . On the
other hand, note that z(f) ∈ F , hence ∅ = Zn ∩ z(f) ∈ F , which is a contradiction.
Therefore,⋂

{M : M is a free maximal ideal of M∗(X,A )} ⊆M∞(X,A ) .

Let M be a free maximal ideal of M∗(X,A ) and f ∈ M∞(X,A ). Then, by
Proposition 4.7, M is a real maximal ideal of M∗(X,A ), and so, by Proposition 5.2,
Z[M ] is closed under countable intersection. We put Zn := {x ∈ X : |f(x)| ≥ 1

n}
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for every n ∈ N. Then
f ∈M∞(X,A )⇒ Zn is compact for every n ∈ N

⇒ Zn 6∈ Z[M ] for every n ∈ N, by Lemma 4.5
⇒ X \ Zn ∈ Z[M ] for every n ∈ N

⇒ z(f) =
⋂
n∈N

(X \ Zn) ∈ Z[M ]

⇒ f ∈M .

Hence,

M∞(X,A ) ⊆
⋂
{M : M is a free maximal ideal of M∗(X,A )} .

Therefore, M∞(X,A ) is equal to the intersection of all free maximal ideals of
M∗(X,A ). �

Lemma 5.6. If I is a free ideal of M(X,A ) or M∗(X,A ), then for any compact
(finite) measurable subset A of X, there exists an element fA of I such that
A ⊆ coz(fA).

Proof. Let I be a free ideal of M(X,A ) or M∗(X,A ), and let A be a compact
element of A . Since I is a free ideal of M(X,A ), we conclude that for any
x ∈ A, there exists an element fx of I such that x ∈ coz(fx), which implies that
A ⊆

⋃
x∈A coz(fx), and so there exists a finite subset A′ of A such that A ⊆⋃

x∈A′ coz(fx) = coz(
∑
x∈A′ f

2
x) and

∑
x∈A′ f

2
x ∈ I, because A is compact. �

Let MK(X) denote the family of all functions in M(X,A ) having compact
cozero set. It is clear that MK(X,A ) is an absolutely convex subring of M(X,A ),
and also, MK(X,A ) ⊆M∞(X,A ).

Proposition 5.7. Let (X,A ) be a T - measurable space, then the following state-
ments hold.

(1) MK(X) ⊆
⋂
{I : I is a free ideal of M∗(X,A )}.

(2) MK(X) ⊆
⋂
{I : I is a free ideal of M(X,A )}.

Proof. (1) Let I be an arbitrary free ideal of M∗(X,A ) and f ∈MK(X). Since
coz(f) is compact and I is a free ideal of M∗(X,A ), we conclude from Lemma 5.6
that there exists an element g of I such that coz(f) ⊆ coz(g), and so, by Lemma
3.2, there exists an element h of M∗(X,A ) such that f = gh ∈ I. Therefore,
MK(X) ⊆

⋂
{I : I is a free ideal of M∗(X,A )}.

The proof of the second statement is similar to the proof of the first statement.
�

The following theorem relates the intersection of all free ideals of M(X,A ) with
MK(X,A ).

Theorem 5.8. The following statements hold.
(1) The subset MK(X,A ) of M(X,A ) is equal to the intersection of all free

ideals of M(X,A ).
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(2) The subset MK(X,A ) of M∗(X,A ) is equal to the intersection of all free
ideals of M∗(X,A ).

Proof. (1) Let f 6∈ MK(X,A ) be given. Then coz(f) is not compact, which
from Lemma 4.5 implies that coz(f) ∈ F for some free ultrafilter F of A , i.e.,
f 6∈ Z−1[F ]. Hence,

f 6∈
⋂
{I : I is a free ideal of M(X,A )}.

Therefore, by Proposition 5.7, the proof is now complete.
(2) The proof of the second statement is similar to the proof of the first statement.

�

In the following corollaries, we show that M∞(X,A ) and MK(X,A ) do not
have free ideal.

Corollary 5.9. Every proper ideal of M∞(X,A ) is fixed.

Proof. Let Q be a free maximal ideal of M∞(X,A ), then there exists a maximal
ideal M of M∗(X,A ) such that M∞(X,A ) 6⊆M and Q = M ∩M∞(X,A ), which
implies that M is a free ideal of M∗(X,A ) such that M∞(X,A ) 6⊆M , but this is
a contradiction to the fact that M∞(X,A ) is equal to the intersection of all free
maximal ideals of M∗(X,A ). On the other hand, note that every proper ideal of
M∞(X,A ) is contained in a maximal ideal of M∞(X,A ), and so every proper
ideal of M∞(X,A ) is fixed. �

Corollary 5.10. Every proper ideal of MK(X,A ) is fixed.

Proof. The proof is similar to the proof of Corollary 5.9. �
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