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Abstract. Using the operator ©7’5(A,1), we introduce the subclasses 9375 (I, A, v) and
8575 (1, A,7) of normalized analytic functions. Among the results investigated for each of
these function classes, we derive some subordination results involving the Hadamard product
of the associated functions. The interesting consequences of some of these subordination
results are also discussed. Also, we derive integral means results for these classes.
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1. INTRODUCTION AND PRELIMINARIES

Let A represent the class of functions analytic in D = {z: z € C and |z| < 1}
satisfying the normalized condition f/(0) — 1 = f(0) = 0. Each f € A has the
following Taylor-Maclaurin series expansion of the form:

oo
(1.1) f(z):z—i—ZaKz”, z e D.
K=2
Definition 1.1. Let g(z) € A be defined by
oo
g(z) =z + Z b 2",
K=2
and f(z) be given by (1.1), the convolution or Hadamard product (f*g) is defined by
(f*9)(2) =2+ Y apbez" = (9% [)(2).
K=2
Note that (f % ¢g) is analytic and univalent in the open disc D.
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In the recent years, practical applications of g-calculus (quantum calculus) in the
fields of ¢-difference equation, optimal control, g-transform analysis and number the-
ory are an efficient area of research. Jackson (see [13], [14]) was the first to success-
fully develop ¢-integral and g-derivative in a systematic way and later geometrical in-
terpretation of the g-analysis has been recognized through studies of quantum groups.

Fractional calculus appears more and more frequently for the modelling of relevant
systems in several fields of applied sciences. Fractional g-calculus is the g-extension of
ordinary fractional calculus. Researchers have claimed to construct and investigated
several classes of analytic and bi-univalent functions and their interesting results are
extremely numerous to discuss.

We initially present various definitions and notations in g-calculus which are useful
to interpret the subject of this paper.

Definition 1.2. For g € (0, 1), the ¢g-number n is given by

1—g"
q’ n € C,
1-gq
n—1
1.2 =
a2 Ink Y =1l4+q+¢+...+¢"", neN={12..},
k=0
0, n=>0
and

lim [n], = n.
q—1-

Definition 1.3 ([24]). For v € C, n € Ny = N U {0}, the g¢-shifted factorial is
defined by

n—1

(1.3) vigo =1, (i@ =[[(1—ra®),

k=0
and in terms of the basic (or ¢-) gamma function

(1 = q)"Ty(v +n)

qu; q)n = , ne Nov
( ) Ly(v)
where the g-gamma function is defined by
1-9)'"*(¢9)=
T'y(2)= , gl < 1.
%) (0% @)oo ll
We note that -
(V;Q)oo: H(l_l/qﬁ)a |Q|<1'
k=0
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For the g-gamma function I'y(2), it is known that (see [10])
Lo(z+1) = [2]qlq(2),

where [z], denotes by (1.2). It is also known, in terms of the classical gamma
function I'(z), that
lim Ty(z) =T(2).

q—1—
Definition 1.4. Jackson in [13] defined the g-derivative of a function f(z) of the
form (1.1) as

(1.4) Dyf(z) = =F—="—= =1+ [slqae""", z#0,

where [k], given by (1.2) and

lim Dqf(z) = f'(2).

q—1—

A g¢-analog of the class of starlike functions was first introduced by Ismail et
al. in [12] by means of the g-difference operator D, f(z), f(z) € Aand 0 < ¢ < 1.

Definition 1.5. Jackson in [13] introduced the g-integral of a function f(z) of
the form (1.1) as

/ P det = 20— ) S ¢ ()
k=0

provided that the series converges and

lim f dt—/f

q—1-
where [ f(t)dt is the ordinary integral.

Definition 1.6 (Fractional ¢-integral operator, see [19], page 57, Definition 1).
The fractional g-integral operator J¢ , of a function f(z) of order g is defined by (see
also [1], page 257, Definition 1.1)

(L5)  Je.f(z)= Dy <z>=ﬁ /Oz<z—qt>g_1f<t>dqt, 050,

where f(z) is analytic in a simply connected region of the z-plane containing the
origin and the ¢-binomial function (z — ¢t),—1 is given by

1—(qt tq®
(2 = qt)o—1 = 2" 1H( dt/)q" ):zg’lﬂfo{q’g“;—;q;i]

1—(qt/z)qetr1 z

133



The series 1 Wolo; —; ¢, 2] is single valued when |arg(z)| < n and |z] < 1 (for details
see [10], pages 104-106). Therefore, the function (z — gt),—1 in (1.5) is single valued
when |arg(—q%t/2)| < 7, |¢°/z| < 1 and |arg(z)| < .

Definition 1.7 (Fractional g-derivative operator, see [19], page 58, Definition 2).
The fractional g-derivative operator D¢ , of a function f(z) of order g is defined by

(see also [1], page 257, Definition 1.2)

Y4

D3f(:) = D0 (0) = =g D | (- a-of (Dt 0< o<1,

where f(z) is suitably constrained and the multiplicity of (z — tq)_, is removed as
in Definition 1.6.

Definition 1.8 (Extended fractional ¢-derivative operator, see [19], page 58, Def-
inition 3). The fractional g-derivative operator D¢ , of a function f(z) of order ¢ is
defined by

D¢ f(2) = Dy gz ?f(2)
wheren —1 < p<n,n €Ny, Ng={0,1,2,3,...}.
Purohit and Raina (see [19], page 59) with n = 1 defined a fractional g¢-differ-
integral operator T¢  f(z): A — A as

Ig(2—0) o
3,2 (Z) = ql-(\ (2) )ZQ 1D§,zf(z)
q
o(k+1) -1
=1 E w250 2; 1; D.
+ F FH_l_Q)az 0<2;0<qg<1; z€

We note that the function T¢ _ f(z) is defined by
(1.6) Y. f(z) =208 . f(2)
and Y9 _f(2) = f(2).

Now we define a linear multiplier fractional ¢-differ-integral operator ’Dg’?’g(/\, 1) as
Do oA DF(2) = f(2),
—12Dq(T§,zf(z)) =DM 1) f(2)

1
IR VIR GRS R e V(PR VAU
BRI e s e ey e L

and
(L.7) DA D f(2) =Dy o (A D@55 A Df(2)),
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where A > 0,1 > —1, m € Ny, p < 2 and 0 < ¢ < 1. It follows from (1.1) and (1.7)
that

(1.8) D™ (A1 —z+Z@m“

where

m o2 —0oTq(k+ 1)1+ 1+ A([k]g — 1)\

00 = (Famn o i)

By virtue of (1.6) and (1.8), ©}",(A, 1) f(2) can be written in terms of convolution as
DoMWL (2) = (15 .(2) x 6 5 (2)) * .. % (Y7 . (2) * B\ (2))] xf (2)

m-times

where
q B z2—(1=X/(1+1))gz>
B =

Remark 1.1. Note that the operator D;",()\, 1) generalizes several previously

studied familiar operators, and we mention some of the interesting particular cases as
(i) For I = 0 we obtain the operator D" studied by Abelman et al. (see [1]);
(ii) For [ = 0 and ¢ = 0 we obtain the operator DY', studied by Aouf et al. (see [4]);
(iii) For [ =0, ¢ = 0 and A = 1 we obtain the operator S;" studied by Govindaraj
and Sivasubramanian (see [11]);
(iv) For ¢ — 17 we obtain the operator D;\" studied by El-Ashwah et al. with ¢ = 2,
s=1, a1 =2, a0 =1, 81 =2 — o (see [9]);
(v) For ¢ — 1~ and ¢ = 0 we obtain the operator D"} studied by Catas (see [6]);
(vi) For ¢ — 1~ and | = 0 we obtain the operator D{""* studied by Al-Oboudi and
Al-Amoudi (see [3]);
(vii) For ¢ =17, p =0 and A = 1 we obtain the operator I}, [ > 0, studied by Cho
and Srivastava (see [7]);
(viii) For ¢ =+ 17, o = 0 and [ = 0 we obtain the operator DY’ studied by Al-
Oboudi (see [2]);
(ix) For g - 17, o =0, A = 1 and [ = 0 we obtain the operator D™ studied by
Saldgean (see [20]);
(x) For ¢ = 17,1 =X =0 and m = 1 we obtain the operator D, studied by Owa
and Srivastava (see [18]).

Making use of the linear multiplier fractional g-differ-integral operator given
by (1.8), we introduce the subclass 2);",(l, A, 7) of g-starlike functions of order v in D
and the subclass R(TQ(Z, A,7) of g-convex functions of order v in D as

2Dy(D7, (N 1) f(2))
Re( o7, (D (2)

(1.9) )<7, 0<g<l,v>1,0<0<2,
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or, equivalently

(RARELDIC) _py DO 0D1)
5, DI ) DA DFG)

—(27—1))71‘ <1

and

N (Dq(qu(Qg’}g(M)f(Z)))

(1.10) Dy(®7, (XD f(2))

)<'y, 0<g<l, v>1,0<0<2,

or, equivalently

Dy(=Dy®7,(MDIE)) 1y (DalzDy @, AN (2))) .
Componer ) Cheptom D) <

respectively, where A > 0,1 > —1, m € Ny and f(z) € A. From (1.9) and (1.10), it
follows that D}",(\, 1) f(2) € &7, (1, A7) & 2D (D7, (A1) f(2)) € D7, (1A, 7).

We note that:

(1) 2](1179(0a 07 7) = Q\qug(’y) and Ré,g(ov Oa ’V) = ﬁq,@(’y) if

ZDq(quf(Z))
Re( Dq.0f(2)

)<7, 0<g<l,v>1,0<p<2,

or, equivalently

‘(ZDQ(Qq,gf(Z)) _ 1) (ZDq(:Dq,gf(z))

—1
Dyof(2) Dy.0f(2) — (27— 1)) ‘ <1

and

Re(Dq(ZDq(Qq,gf( )

)
<7, 0<g<l,v>1 0<p<2,
Dy(Dy,0f(2))

or, equivalently

Dq(ZDq(©q7gf(Z))) Dq(ZDq(©q7gf(Z)))
(G o it L v s}

-1
respectively;
(i) Vo (1, A7) = V(1 A, y) and &7 (1, A, ) = &' (L, A, ) if

(ZDQ(D(T(Av Nf(2))
DrADf(2)

)<'y, 0<g<l, v>1,

or, equivalently

2Dy (D7 (A, 1) f(2)) 2Dy (D7 (A1) f(2)) -1
( DD (2) -1)( 2 (NDIG) ~(@y-1) |<1
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and

Dy(2Dg(Dg" (N 1) £(
Re( Dyl

2)))
7N Df(2) )

<7, O0<g<l, v>1,

or, equivalently

Dy(zDy®TAMDF() (DaleDy(®F N DF(2)))
I Biopongie)

respectively, where A > 0, [ > —1 and m € Ny;

PXCRERTEN ~er-1) <1,

(iii) D770(0, A, 7) = Eg(m, A, v) and K5 (0, A, v) = G4(m, A, ) (see Aouf et al. [4]);

(iv) qlir{g 2..,(0,0,7) =,(7) and qlir{{ Ry ,(0,0,7) = Ry(y) if

2(D,f(2))
Re( Dof(2)

)<77 v>1, 0<0<2,

or, equivalently

and

or, equivalently

respectively;

(v) lim 97, A7) =9 (1, A, y) and lim &7 (1, N, y) = 87 (1, A7) if
qg—1 g—1

o220

LA>0, 1> 1, No,
SOOI ) < YT AZ0 > L meny

or, equivalently

‘(Z@m()\,l)f(Z))’ B 1) (Z(’D’”’(M)f(Z))’
oA Df(2) DA f(2)

—(27—1))71‘ <1

and

D
Re (1 + Gl
or, equivalently

‘(zg: ((/i\:ll))}f((zz))))’ )(Z((g:: ((;,’zl))f((zz))))' —20r=-1) )71‘ <L

respectively;

)<7, ¥y>1, A>0, 1> -1, m e Np,
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(vi) lim 99 ,(I,A,7) = M(y) and lim & ,(I,X,7) = N(v), v > 1 (see Nishiwaki
qg—1-— ’ g—1-— ?
and Owa [16]);
(vii) lim 99 ,(I,A\,7) = M(y) and lim R ,(I,A,7) = N(7), 1 < v < 3 (see
g—1- ¢ g1 D@
Uralegaddi et al. [26]).
Definition 1.9 (Subordination Principle, see [8], Chapter 6, page 190). For two

functions f and g, analytic in D, we say that the function f is subordinate to g in D,
and write

f<g or f(2)=<g(2), z€D,

if there exists a Schwarz function ¢(z) analytic in D with
e(0)=0 and |p(2) <1, zeD,

such that
f(z)=g(p(z)), =zeD.

In particular, if the function g(z) is univalent in D, the above subordination is equiv-
alent to

f(0)=g(0) and f(D)C g(D).

Definition 1.10 (Subordinating Factor Sequence). An infinite sequence {c, }32
of complex numbers is said to be a subordinating factor sequence if, whenever f(z)
of the form (1.1) is analytic, univalent and convex in D, we have the subordination
given by

[ee]
(1.11) Zaﬁcﬂz” < f(z), z€Db;a =1
k=1

A finite sequence {c,}7_; is said to be a subordinating factor sequence if (1.1)
implies (1.11) whenever ¢,4+1 = ¢pq2 = ... = 0. The class of such infinite sequences
will be denoted by F, and the class of sequences of length n by F,,.

Lemma 1.1 ([27], page 690, Theorem 2). The sequence {c,}22, of complex num-
bers is a subordinating factor sequence if and only if

Re(l—FZZcﬁz”) >0, zeD.

k=1

Following the technique of Owa and Nishiwaki (see [17]), we can obtain the fol-
lowing lemmas:
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Lemma 1.2. If f(z) satisfies the coefficient inequality

oo

(1.12) Y (([5lg = 1) + K]y + 1 = 29DOFM (w)law] < 2(y = 1),
K=2

AZ20,l>-1,v>1, meNy, 0<g<1, 0<2,
then f(2) € D1, (1, A, 7).

Lemma 1.3. If f(z) satisfies the coefficient inequality

oo

(1.13) Y Iklo(([Klg = 1) + [kl + 1 = 2905 (w)la] < 2(v = 1),

AZ20,l>-1,v>1, meNy, 0<g<1, 0<2
then f(z) € 8,1, A\, 7).

In view of Lemma 1.2 and Lemma 1.3, we define the subclasses ;7 (I, \,vy) C

no(l, A y) and ;70 (1, A, y) C Ry, (1, A, y) which consist of functions f € A whose
coefficients satisfy the inequality (1.12) and (1.13), respectively.

Here we investigate some subordination results for the functions in the classes

o (I, A, y) and K;70 (1, A, v) employing the technique used earlier by Attiya (see [5]);
Srivastava and Attiya (see [25]). Also, we derive integral means results for these
classes.

2. MAIN RESULTS

Theorem 2.1. Let f(z) € ;" (l, A, ) and let K be the familiar class of functions
belong to A which are univalent and convex in D. Then

(([2g = 1) +[2]q +1 — 29))©75(2)

(([2g = 1) +[2]g + 1 = 2705 (2) + 2(y — 1)
A20,l>-1,v>1, meNy, 0<g<1l,0<p0<?2

(2.1)

(f*9)(z) < g(2),

for every function g € K. Further,

(([2lg = 1) +[2]g +1 = )07 (2) +2(y = 1)
((121g = 1) +[2]q + 1 = 2905 (2)

(22)  Re(f(2) > - , z€eD.

The constant factor
(([2g = 1) + 24 + 1 —29))O7M(2)
2((([21g — 1) + |[2]g + 1 = 29)O75M (2) + 2(y — 1))

is the best estimate.
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Proof. Let f(2) €2, (l,A,7), and suppose that

(o)
g(z) =z + Zc,ﬁz"‘ ex.
K=2

Then
(2l =D +[2]g + 1 = 29))O7 M (2)
2((([2lg — 1) + 2]y + 1 — 241075 (2) + 2(y — 1))

BN ([ P VR PR F1 . o R =S

2(((12)g = D+ 2 + 1 - 29DO7(2) +2(7 - 1) ( "o )
By Definition 1.10, the subordination result holds true if

{ (([2lg = 1) +[2]g + 1 = 29)O7M(2) . }00

2((([20g — 1) + [[2]g + 1 = 2905 (2) + 2(y — 1)) =1

is a subordinating factor sequence with ¢y = 1. In view of Lemma 1.1, this is

(f*9)(2)

equivalent to the next inequality:
(2.3)
> 2], —1 2 1—2v))emAi(2
(13— D L oy
=1 (2lg = 1) + 2] +1 = 29))0g,5™(2) + 2(v

aﬁz"‘> >0, ze€D.
-1))

Since ®(r) = (([s]g — 1) + |[k]q + 1 — 29])O",M (k) is an increasing function of x
(k > 2), we have, for |z| =7 < 1

> (g -+ +1-2DOpMe)
24 RQ(H;I<<[21q—1>+|[21q+1—2v|>@2?37l<2>+2<v—1> § )

(([2lg = 1) +1[2]4 +1 = 29))O7 M (2) B
(120 = 1) + 2]y + 1= 29O (2) + 2(y — 1)
= (21 = 1) + [2)g + 1 = 29))OFM(2) E)
—1) "

:Re(1+

’ ;2 (2 = 1) +[2]g + 1 =295 (2) + 2(v

(([2lg = 1) + 2] +1 = 2907 M (2)

T DR e 20 )
—fﬁ (Rl =) +lIely £ 1= 20O )
(2 -1+ 12 +1-29DO7M @) +2(y - 1)
o (@ =D+ P+ 1-2DOEME)
(12 = 1) +1[2)g + 1 = 29)OFM (2) + 2(y — 1)
B 2(y—1) .
(121 = 1) +1[2)g + 1 = 29)O5 M (2) + 2(y - 1)

>0
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where we use the assertion (1.12) of Lemma 1.2. This evidently proves the inequal-
ity (2.3) and hence also the subordination result (2.1) asserted by Theorem 2.1. The
inequality (2.2) follows from (2.1) by taking

o0
< K
1—z:Z+EZ c K.

K=2

(2.5) 9(2) =
To prove the sharpness of the constant
(([2g = 1) +[2]q +1 = 29))©7(2)
2((([2]g = 1) +1[2)g + 1 = 29055 (2) + 2(v = 1))
we consider the function H € 9);7;(, A, ) defined by

2(y—1) 52
(121 = 1) +1[2]q + 1 = 29)O5M (2)

H(z) =2z —

Thus, from (2.1), we have

(Bl )+ 1B+ L BDORED e
2((([2]g = 1) +[[2]q + 1 = 29))Oq,57(2) + 2(y — 1)) 1—2
It is easily verified that
| (2~ 1) + 21, + 1= 22O !
|=l=r<1 {Re(g((([z]q — 1)+ 2], 4+ 1= 2907 2) + 2(y — 1))H( ))} T

This shows that the constant
amq—n+n1 1 - 29))OmM(2)
2((2lg — 1) + 112l + 1 - 2205 (2) + 2(y - 1))
cannot be replaced by any larger one. The proof of Theorem 2.1 is completed. [J

Putting [ = A = 0 and m = 1 in Theorem 2.1, we obtain the following corollary:

Corollary 2.1. Let f(z) € 9; ,(v) and let K be the familiar class of functions
belonging to A which are univalent and convex in D. Then

(121 = 1) +[[204 + 1 = 27))04.0(2) o )
2([2lg — 1) + [2g + 1 — 29O, (2 )+2(7_1))(f 9)(2) < 9(2),

v>1,0<qg<1,0< o< 2 for every function g € K. Further,

Re(f(e) > ~ (=D HIRl +1 =200, +26-1)

((2lg = 1) + [12]g + 1 = 27))04,0(2)

The constant factor

(2l =) +112]g +1 = 29))04,6(2)
2((([2)g =D +[2)g + 1 2’Y|) a.0(2) +2(y = 1))

is the best estimate.
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Putting ¢ = 0 in Theorem 2.1, we obtain the following corollary:

Corollary 2.2. Let f(z) € 9;™ (I, A,7) and let K be the familiar class of functions
belonging to A which are univalent and convex in D. Then

(([2g = 1) +[[2]g +1 = 29))O7(2)

2((2g — 1) + 1204 + 1 — 24O (2) + 2(7 — 1)) (fx9)(z) < g(2),

A>20,l>-1,v>1,meNy, 0<q<1 for every function g € K. Further,

(([2]g = 1) +1[2]g +1 = 29))OF ' (2) + 2(y = 1)

7 , z€D.
((12lg = 1) +[[2]g + 1 = 29))05(2)

Re(f(2)) > -

The constant factor

(([2lg = 1) +[2]g + 1 — 29))O5M(2)
2((([2)q = 1) + 1120 + 1 = 29)OF"(2) +2(7 - 1))

is the best estimate.

Remark 2.1.

> Putting ¢ — 17 and m = 0 in Theorem 2.1, we obtain the result which was
obtained by Srivastava and Attiya in [25], page 3, Theorem 1, with A = 1;

> Puttingg - 1", m=0and 1 <~v < % in Theorem 2.1, we obtain the result which

was obtained by Srivastava and Attiya, see [25], page 5, Corollary 2.

Theorem 2.2. Let f(z) € &7, (I,\,v) and let K be the familiar class of functions
belonging to A which are univalent and convex in D. Then

2]a(([2]g — 1) +1[2]g +1 = 2907 (2)

2([2]4((12 — 1) +1[2]q + 1 — 27055+ (2) + 2(y — 1))
A20,l>-1,v>1, meNy, 0<qg<1,0<p<2

(2.6) (fx9)(z) < g(2),

for every function g € K. Further,

2]4(([2]g — 1) +[[2]g +1 = 29O (2) +2(y — 1)
214(([2]g = 1) +[2]g + 1 = 291)07+(2)

(2.7) Re(f(2)) > - , z€D.

The constant factor

[2]4(([2]g — 1) +[2]g +1 — 29))OFM(2)
2((2]¢(([2]g — 1) + |2 + 1 = 2935~ (2) + 2(y — 1))

is the best estimate.
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Proof. Let f(2) € &;";(l,\,7), and suppose that

g(z) =z + Zcmz” e k.

Then

2]4(([2]g = 1) +[[2]g + 1 = 29)O7M(2) (% 9)(2)
2(120(([2]g = 1) +[2]g + 1 — 29O (2) + 2(v — 1)

B DR oM &

2(20(([2g — 1) +1[2g + 1= 29DOFM (2) + 2(v - ( 2 o )
By Definition 1.10, the subordination result holds true if

{ [2]4(([2]g — 1) +[[2]g + 1 — 2907 M (2) . }00
2([20o(([2lg = 1) + |2 + 1 = 29075 (2) + 2(y — 1)) /=t

is a subordinating factor sequence with a; = 1. In view of Lemma 1.1, this is

equivalent to the next inequality:
(2.8)

(B~ D+ 1Rl 1= 200N\
Re<l+z (=D + 2y +1- 2000 @)+ 20— 1) ™ )=0:eo

Since ® (k) = [k]q(([K]g — 1) + |[K]g + 1 — 27O} (k) is an increasing function of x
(k > 2), we have, for |z] =7 < 1

- 214(([2]g — 1) +[2]¢ +1 = 29))O7,(2) .
2.9) Rel(l : apz
(2 ( +§=:1 24(([2g = 1) + [[2]g + 1 = 291)O55(2) + 2(y — 1) )

oo DBl D L BORMD

210((2 = 1) +12, + 1= 29)O7 () + 26 = 1)
YT Rl TR T o M
2 B - 1)+ Bl 1 20O 2~ )

[214(([2]g = 1) +[2]g + 1 = 29))O7 M (2) .
[214(([2]g — >+ [2]q +1=29)O75" (2) +2(v = 1)
B i [k]q(([5lq = 1) +[K]q +1 = 29)OFM (x)
214(([20g = 1) + [2]q + 1 — 27055 (2) + 2(y — 1)
24(([2]g = 1) + |[2]g + 1 = 29))O7M(2) .
204(([2g = 1) + [[2]q + 1 — 24055 (2) +2(y — 1)
2(y - 1) .
214((121 = 1) + 112l + 1 = 29075 (2) + 2(y — 1)

>1-

la|r"

>0
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where we use the assertion (1.13) of Lemma 1.3. This evidently proves the inequal-
ity (2.8) and hence also the subordination result (2.6) asserted by Theorem 2.2. The
inequality (2.7) follows from (2.6) by taking

(2.10) g(z) = : —z—l—Zz" ek.
K=2

11—z
To prove the sharpness of the constant

[2]4(([2]g — 1) +[[2]g + 1 — 29))OFM(2)
2((2]4(([2lg = 1) + 112l + 1 = 29O (2) +2(v — 1))’

we consider the function G € K7™ (I, A,) defined by

2(y-1) 2

G(z)=z— z
) 214(([2]g = 1) + [[2]g + 1 — 24))05%™(2)

Thus, from (2.6), we have

22 =D Bt 100N =
2(120o(([2g — ) + 2y + 1 - 2907 (2) + 2(7 — 1)) 1=z
It is easily verified that
| 200(([2]g — 1) + 2], + 1 — 29)OmAM(2) L
o {Re(2<[21q<<[21q )+t 2oy 120 - 1) )=z

This shows that the constant

[2]4(([2]g — 1) +[2]g +1 = 29))OgM(2)
2([2]¢(([2]g — 1) + |2 + 1 = 2935~ (2) + 2(y — 1))

cannot be replaced by any larger one. The proof of Theorem 2.2 is completed. [J
Putting I = A = 0 and m = 1 in Theorem 2.2, we obtain the following corollary:

Corollary 2.3. Let f(z) € &} ,(v) and let K be the familiar class of functions
belong to A which are univalent and convex in D. Then

2l4((2lg = 1) + 1124 + 1 = 291)84,,(2)
2([214(([2lg = 1) + 12l + 1 = 29])8q,0(2) + 2(v = 1))

v>1,0<qg<1,0< p<2 for every function g € K. Further,

214((2lg =D +1[2g + 1 = 291)84,0(2) + 2(v = 1)
2lg((2lg = 1) +1[2]g +1 = 27)04,0(2) ’

(f *9)(2) < g(2),

z € D.

Re(f(2)) > -
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The constant factor

[2](1(([2](1 -1+ |[2]q +1- 2’Y|)@q79(2)
2([2]q(([2]g = 1) +[[2]g + 1 = 27))Oq,0(2) + 2(7 — 1))

is the best estimate.

Putting ¢ = 0 in Theorem 2.2, we obtain the following corollary:

Corollary 2.4. Let f(z) € & (I, A,7) and let K be the familiar class of functions
belong to A which are univalent and convex in D. Then

2]4(([2]g = 1) +[2]g +1 = 29))O7*1(2)

(e — 1)+ 2+ 1= 2300 (2) 12— 1)) o FOE) =9(2)
A20,1>-1,v>1, meNy, 0<g<1

for every function g € K. Further,

he(r(e) > - Zal(@ = D+ B+ 1-2DOp @ 420 -1)
2lal(2)y = 1) +1[2la +1 = 2405 (2)

The constant factor
2]4(([2)g — 1) + (2] + 1 —29))O7M(2)
2([2]4((121g — 1) +1[2]g + 1 = 2905 (2) + 2(y — 1))

is the best estimate.

Remark 2.2.

> Putting ¢ — 17 and m = 0 in Theorem 2.2, we obtain the result which was

obtained by Srivastava and Attiya in [25], page 5, Theorem 2, with A = 1;

3
2

was obtained by Srivastava and Attiya, see [25], page 6, Corollary 4.

> Putting ¢ - 17, m =0and 1 < v < 5 in Theorem 2.2, we obtain the result which

3. INTEGRAL MEANS INEQUALITIES

Lemma 3.1 ([15], Theorem 2, page 484). If the functions f(z) and g(z) are
analytic in D with g(z) < f(z), then

2n 2n
(3.1) / lg(re®)|” df < / ()7 g, o>0,0<r<1.
0 0

Silverman in [21] found that the function f2(z) = z — 22/2 is often extremal over
the family 7 denoting the subset of A comprising of functions

fz)=2-> lasz", z€D
K=2
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and applied this function to resolve his integral means inequality, conjectured in [22]
and settled in [23], that

2n 2n
/ |f(rel?)|7 df < / |f2(rel®)7ds, o>0,0<r<1, feT.
0 0
Applying Lemma 1.2 and Lemma 3.1, we prove the following result:

Theorem 3.1. Let f(z) € 9:70(1,A,7) N'T and fa(z) is defined by

) = 5 — 2(y—1) 52
f) (2 — 1) + 2], + 1 —2oD)05 M)

then we have

2n 2n
(3.2) / |f(z)|”dt9</ |f2(2)|]7d0, >0, z=re?, 0<r<l.
0 0

o0
Proof. For f(z) = z— > |ax|z", the inequality (3.2) is equivalent to proving

K=2

that
2n o o 2n o o
/ 1= Jaeles! d9</ 1- 20— 1) 2| a6,
0 s 0 ([2lg =D + 2l +1 = 27))0g57(2)

By Lemma 3.1, it suffices to show that

1— 0 a. P SR 2(»)/ _ 1) )
Z| | ) (([2] =) +|[2]4 + 1 _27|)@$,§)\’l(2)

K=2
Setting

2(v-1)

1-— Qr Ml =1— z),
,;2| | (([5lg = 1) + [[K]q + 1 = 24055 () 7

and using (1.12), we obtain that ¢(z) is analytic in D, ¢(0) = 0 and
i (([2]q - 1) + |[2]q +1- 27|)@;r7bb>\,l(2)
2(y—1)

= (k] — 1 Klg+1—29))0r M (k
<oy, e DIt o200 B <o,

|a’€|zn—1

o(2)| =

K=2

The proof of Theorem 3.1 is completed. O

Our proof of Theorem 3.2 below is much akin to that of Theorem 3.1. Here we
make use of Lemma 1.3.
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Theorem 3.2. Let f(z) € 8;",([,\,7) N'T and f2(z) be defined by

,0

2(v—1) 2,
214(([21, — 1) + 1[2]g + 1 — 29D (2)

fao(z) =2 —

then we have

27 27
/ |f(z)|<fd9</ ()8, >0, z=re?, 0<r<l.
0 0
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