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Abstract. Let U be a dg-A-module, B the endomorphism dg-algebra of U . We know that
if U is a good silting object, then there exist a dg-algebra C and a recollement among the
derived categoriesD(C, d) of C,D(B,d) of B andD(A,d) of A. We investigate the condition
under which the induced dg-algebra C is weak nonpositive. In order to deal with both silting
and cosilting dg-modules consistently, the notion of weak silting dg-modules is introduced.
Thus, similar results for good cosilting dg-modules are obtained. Finally, some applications
are given related to good 2-term silting complexes, good tilting complexes and modules.
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1. Introduction

Infinitely generated tilting modules over arbitrary associated rings have attracted

increasing attention towards understanding derived categories and equivalences of

general rings, see [4], [5], [6], [13], [14], [27]. It is shown in [4] that if T is a good

tilting module over a ring A, the right derived functor RHomA(T,−) induces an

equivalence between the derived category D(A) and a subcategory of the derived

category D(B), where B is the endomorphism algebra of T . Thus, in general, the

right derived functor RHomA(T,−) does not define a derived equivalence between A

and B. If we considered good tilting modules of projective dimension at most one,

in this case, Chen and Xi proved that the triangulated category Ker
(

T
L
⊗

B

−
)

is

equivalent to the derived category of a ring C, and therefore, there is a recollement

among the derived categories of rings A, B and C, see [13], Theorem 1.1. Recently,
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Theorem 1.1 of [14] gives a necessary and sufficient condition for good tilting modules

of higher projective dimension to induce recollements of derived module categories

via homological ring epimorphisms.

As an extension of tilting theory, silting theory encompasses methods for study-

ing derived equivalences which are widely employed in many areas of research,

see [1], [3]. Wei introduced in [28] the notion of semi-tilting complexes, which

is a generalization of tilting complexes, and proved that semi-tilting complexes

induce derived equivalences between dg-algebras. Compact silting objects were

also considered in abstract triangulated categories and noncompact silting ob-

jects and their associated t-structures were studied in derived module categories,

see [3], [18], [22]. In order to get the silting theorem for noncompact general silting

complexes, Breaz and Modoi in [11] defined big, small and good n-silting objects

in D(A, d), where A is a dg-algebra. Note that the notion of an n-silting object

here agrees to the notion of n-semitilting complex in [28]. Let U be a good silt-

ing dg-A-module and B = DgEndA(U). Under some fairly general appropriate

hypotheses, they proved that it induces derived equivalences between the derived

category over A and a subcategory K of the derived category of dg-endomorphism

algebra B of U , where K = Ker
(

−
L
⊗

B

U
)

, see [11], Theorem 2.4. Recently, this

result was extended by Nicolás and Saorín (see [21]) to the context of derived

categories of dg categories. Moreover, given small dg categories A and B and a

B-A-bimodule T , they expressed D(B) as a recollement of D(A) and the derived

category of another dg category.

The main purpose of this paper is to extend the interesting results (see [13],

Theorem 1.1 and [14], Theorem 1.1) to good (co)silting dg-modules over dg-algebras.

More precisely, we are going to provide answers for the following questions.

(1) Let U be a good silting dg-A-module. Is there a dg-algebra C such that the

subcategory Ker
(

−
L
⊗

B

U
)

is equivalent to the derived category of C, and is

there a recollement among the derived categories of dg-algebra A, B and C?

(2) Starting with the good silting dg-module U , then we have the recollement and

note that the dg-algebra B has to be weak nonpositive. Under what extent

does C satisfy the same property?

(3) Whether the existence of such a recollement implies goodness of silting objects?

(4) How can we get similar results for good cosilting dg-modules over dg-algebras?

Actually, answer for the question (1) is positive. According to Corollary 6.7 of [21],

such a recollement exists under the hypothesis that A belongs to the smallest thick

subcategory containing U , see also [29], Theorem 1. Note that this hypothesis is

equivalent to the one assuming that U is good silting, see Remark 3.1 (1).
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For the question (2), we give an equivalent condition for the induced dg-algebra C

to be weak nonpositive, explicitly, the dg-algebraC induced in Proposition 3.3 is weak

nonpositive if and only if Hi
(

U
L
⊗

A

RHomBop(U,B)
)

= 0 for i > 2 or, equivalently,

Hi
(

U
L
⊗

A

RHomA(U,A)
)

= 0 for i > 2, see Theorem 3.7. Moreover, we show that the

existence of such a recollement indeed implies that the given silting object U is good,

which gives a positive answer to the question (3), see Proposition 3.4. To deal with

both tilting and cotilting modules consistently, the notion of weak tilting module was

introduced, see [14], Definition 4.1. Inspired by this work, we introduce the notion of

weak tilting dg-modules and good cosilting dg-modules (see Definitions 4.1 and 4.6),

and show that a weak silting object always induces a recollement among derived

categories of dg-algebras, see Proposition 4.3. Using this result, we get an answer

to the question (4) and obtain the similar recollement induced by a good cosilting

dg-module, see Theorem 4.9.

The paper is organized as follows. We start in Section 2 with some basics about the

dg-algebras and their derived categories. In Section 3, we investigate under what ex-

tent does the induced dg-algebra C weak nonpositive. In Section 4, we introduce the

notion of weak silting dg-modules and show that there exists a recollement induced

by weak silting dg-modules. Thus, similar results for the good cosilting dg-module

are obtained. In Section 5, some applications are given related to good 2-term silting

complexes, good tilting complexes and modules.

2. Preliminaries

Now we introduce some notations and conventions used later in the paper.

2.1. Differential graded algebras and differential graded modules. A good

reference for dg-algebras and their derived categories is the book, see [30]. Let k be

a commutative ring. Recall that a dg-algebra is a Z-graded k-algebra A =
⊕

i∈Z

Ai

endowed with a differential d : A → A such that d2 = 0 which is homogeneous of

degree 1, that is d(Ai) ⊆ Ai+1 for all i ∈ Z, and satisfies the graded Leibniz rule

d(ab) = d(a)b + (−1)iad(b) for all a ∈ Ai and b ∈ A.

A (right) dg-module over A is a Z-graded module M =
⊕

i∈Z

M i endowed with

a k-linear square-zero differential d : M → M , which is homogeneous of degree 1

and satisfies the graded Leibnitz rule

d(ma) = d(m)a+ (−1)imd(a) for all m ∈ M i and a ∈ A.
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Left dg-A-modules are defined similarly. A morphism of dg-A-modules is an A-linear

map f : M → N compatible with gradings and differentials. In this way we obtain

the category Mod(A, d) of all dg-A-modules.

If A is a dg-algebra, then the dual dg-algebra Aop is defined as follows: as graded

k-modules Aop = A, the multiplication is given by ab = (−1)ijba for all a ∈ Ai

and all b ∈ Aj and the differential d : Aop → Aop is the same as in the case of A.

A dg-algebra A is called nonpositive if Ai = 0 for all i > 0. A dg-algebra A is called

weak nonpositive if Hi(A) = 0 for all i > 0 and weak positive if Hi(A) = 0 for

all i < 0.

For a dg-module X ∈ Mod(A, d) one introduces (functorially) the following

k-modules: Zn(X) = Ker(Xn → Xn+1), Bn(X) = Im(Xn−1 → Xn), and

Hn(X) = Zn(X)/Bn(X) for all n ∈ Z. We call Hn(X) the nth cohomology

group of X . A morphism of dg-modules is called quasi-isomorphism if it induces

isomorphisms in cohomologies. A dg-module X ∈ Mod(A, d) is called acyclic if

Hn(X) = 0 for all n ∈ Z. The category obtained from Mod(A, d) by identifying

homotopic morphisms is called the homotopy category of right dg-modules over A

and is denoted by K(A, d). The category obtained from Mod(A, d) by formally

inverting quasi-isomorphisms is called the derived category of right dg-modules

over A and is denoted by D(A, d). Both K(A, d) and D(A, d) are triangulated

categories.

Let now A and B be two dg-algebras and let U be a dg-B-A-bimodule. For every

X ∈ Mod(A, d), we can consider the so called dg-Hom:

Hom•
A(U,X) =

∏

n∈Z

Homn
A(U,X)

with Homn
A(U,X) =

∏

i∈Z

HomA0(U i, Xn+i), whose differentials are given by d(f)(x) =

dY f(x) − (−1)nfdX(x) for all f ∈ Homn
A(X,Y ). Then Hom•

A(U,X) becomes a dg-

B-module, so we get a functor Hom•

A(U,−) : Mod(A, d) → Mod(B, d). It induces a

triangle functor Hom•

A(U,−) : K(A, d) → K(B, d). A dg-A-module P (or I) is called

H-projective (or H-injective) if HomK(A,d)(P,N) = 0 (or HomK(A,d)(N, I) = 0,

respectively) for all acyclic dg-A-modules N . For every dg-A-module X there is an

H-projective dg-A-module pX and an H-injective dg-A-module iX such that X is

quasi-isomorphic to pX and to iX . We put

RHomA(U,−) : D(A, d) → D(B, d)

by RHomA(U,X) = Hom•

A(pU,X) ∼= Hom•

A(U, iX).

Let Y ∈ Mod(B, d). There exists a natural grading on the usual tensor product

Y
⊗

B

U , which can be described as Y
•
⊗

B

U =
⊕

n∈Z

Y
n
⊗

B

U, where Y
n
⊗

B

U is the quotient
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of
⊕

i∈Z

Y i
⊗

B0

Un−i by the submodule generated by y
⊗

bu − yb
⊗

u, where y ∈ Y i,

u ∈ U j and b ∈ Bn−i−j for all i, j ∈ Z. Together with the differential d(yu) =

d(y)u + (−1)iyd(u) for all y ∈ Y i, u ∈ U, we get a dg-A-module inducing a functor

−
•
⊗

B

U : Mod(B, d) → Mod(A, d) and further a triangle functor −
•
⊗

B

U : K(B, d) →

K(A, d). The left derived tensor product is defined by Y
L
⊗

B

U = pY
•
⊗

B

U ∼= Y
•
⊗

B

pU .

It induces a triangle functor

−
L

⊗

B

U : D(B, d) → D(A, d)

which is the left adjoint of RHomA(U,−).

2.2. Dimensions and triangulated subcategories. Let C be an additive cate-

gory. Throughout the paper, a full subcategory B of C is always assumed to be closed

under isomorphisms. We denote by add(X) the full subcategory of C consisting of

all direct summands of finite coproducts of copies of X . If C admits small coprod-

ucts, then we denote by Add(X) the full subcategory of C consisting of all direct

summands of small coproducts of copies of X . Dually, if C admits small products,

then Prod(X) denotes the full subcategory of C consisting of all direct summands of

small products of copies of X .

Let D be a triangulated category with the ith shift functor denoted by [i] and let C

be a subcategory of D. We define the full subcategories of D:

C⊥ : = {X ∈ D : HomD(C,X [i]) = 0 for all i ∈ Z and C ∈ C};

⊥C : = {X ∈ D : HomD(X,C[i]) = 0 for all i ∈ Z and C ∈ C};

C⊥>0 : = {X ∈ D : HomD(U,X [i]) = 0 for all i > 0 and C ∈ C};

⊥>0C : = {X ∈ D : HomD(X,C[i]) = 0 for all i > 0 and C ∈ C}.

Consider an object X ∈ D. Following [28], we say that X has the C-resolution

dimension (or C-coresolution dimension) not greater than n and we write dimC X 6 n

(or codimCX 6 n) provided that there is a sequence of triangles

Xi+1 → Ci → Xi  with 0 6 i 6 n

(or Xi → Ci → Xi+1  with 0 6 i 6 n, respectively)

in D, such that Ci ∈ C, X0 = X and Xn+1 = 0. We write dimC X < ∞

(or codimCX < ∞) if we can find a positive integer n such that dimC X 6 n

(or codimCX 6 n, respectively).
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Given a class of objects U in D, we denote by Tria(U) the smallest full triangulated

subcategory ofD which contains U and is closed under small coproducts. If U consists

of only one single object U , then we simply write Tria(U) for Tria({U}). Let A be

a full subcategory of D. Denote by thickD(A) the smallest thick subcategory of D

which contains A.

2.3. Recollements and TTF. In this subsection we recall the notion of a rec-

ollement of triangulated categories, see [9].

Let T , T ′ and T ′′ be triangulated categories. A recollement of T relative to T ′

and T ′′ is defined by six triangulated functors

T ′
i∗ // T

i∗oo

i!
oo

j∗
// T ′′

j!oo

j∗

oo

satisfying the conditions

(i) (i∗, i∗), (i∗, i
!), (j!, j

∗) and (j∗, j∗) are adjoint pairs;

(ii) i∗, j∗ and j! are full embeddings;

(iii) Im i∗ = Ker j∗.

3. Recollements induced by good silting dg-modules

Let A be a dg-algebra. Recall from Section 3 of [11] that an object U ∈ D(A, d) is

called (pre)silting provided that it satisfies (the first two of) the following conditions:

(S1) dimAdd(A) U < ∞;

(S2) U (I) ∈ U⊥>0 for every set I;

(S3) codimAdd(U)A < ∞.

Recall that an object X ∈ D(A, d) is called small (or compact) if HomD(A,d)(X,−)

commutes with coproducts. Let per(A) = thickD(A,d)(A), called the perfect derived

category of dg-A-modules. It is known that an objectM ofD(A, d) is compact if and

only if it belongs to per(A). A small silting object is an object which is both silting

and small. A silting object is called good if the condition (S3) can be replaced by

(s3) codimadd(U)A < ∞.

A dg-A-module U is called (good) silting if U is H-projective and as an object

in D(A, d) is a (good) silting object. Two silting objects U and U ′ are equivalent

if Add(U) = Add(U ′). Condition (s3) is not particularly restrictive, because each

n-silting object is equivalent to a good silting object, see [11], Lemma 2.3. For a silt-

ing object U and an n ∈ N, the conditions codimAdd(U)A 6 n and dimAdd(A) U 6 n

are equivalent. Call n-silting a silting object satisfying these equivalent conditions.
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Remark 3.1.

(1) Let U be a silting dg-module overA. As stated in the introduction, the condition

that A belongs to thickD(A,d)(U) is equivalent to codimadd(U)A < ∞. Indeed, if

codimAdd(U)A < ∞, one can check that A belongs to ⊥>0add(U). Therefore, by

the ‘small’ version of Corollary 2.6 (1) of [28], we see that A ∈ thickD(A,d)(U)

implies codimadd(U)A < ∞. The other direction is obvious.

(2) The notion of an n-silting object agrees to the n-semitilting complex in [28] and

to the (n+ 1)-silting complex in [3].

(3) Let B = DgEndA(U). By Section 3.3 of [11] if U is an n-silting dg-A-module,

then B is weak nonpositive.

Let k be a commutative ring and let A be a dg-algebra, U a dg-A-module. Set

B = DgEndA(U) = Hom•

A(U,U);

G := −

L
⊗

B

U : D(B, d) → D(A, d); H := RHomA(U,−) : D(A, d) → D(B, d).

In the following, we recall the definition of homological epimorphisms of dg-

algebras and its characterization at the level of derived categories.

Definition 3.2 ([23], Theorem 3.9). Let λ : C → D be a morphism between two

dg-algebras C and D. Then λ is called a homological epimorphism of dg-algebras if

the canonical map D
L
⊗

C

D → D is an isomorphism, or equivalently, if the induced

functor λ∗ : D(D, d) → D(C, d) is fully faithful.

It is known that there is a projective model structure on the category Dga(k)

of dg-algebras over k see [24], Theorem 4.1 and [8], Proposition 1.3.5 (1). Denote

by HoDga(k) the homotopy category of this model category. By [21], Corollary 6.7

and [7], Proposition 2.5, we have the following result. In order to understand functors

between derived categories better, we give a brief proof here.

Proposition 3.3. Let A be a dg-algebra, U a good silting dg-A-module and

B = DgEndA(U). Then there is a homological epimorphism λ = fσ−1 : B → C in

HoDga(k), represented by homomorphisms of dg-algebras σ : E → B and f : E → C,

such that the following is a recollement of triangulated categories:

(3.1) D(C, d)
λ∗=σ∗f∗

// D(B, d)

i∗=−
L⊗

E

C

oo

RHomE(C,−)
oo

G // D(A, d).

oo

H
oo
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P r o o f. By [21], Corollary 6.7, we have the following recollement

Ker(G)
inc // D(B, d)

oo

oo

G // D(A, d)

Loo

H
oo

,

where L is the fully faithful left adjoint of G. By [19], Proposition 4.4.3, we see

that Im(L) is a smashing localizing class, see [7], Definition 1.4 or [15], Defini-

tion 3.3.2. Applying Proposition 2.5 of [7], we obtain a homological epimorphism

g = fσ−1 : B → C in HoDga(k), represented by homomorphisms of dg-algebras

σ : E → B and f : E → C, such that σ∗f∗ : D(C, d) → Ker(G) = Im(L)⊥ is an tri-

angle equivalence, where σ is a quasi-isomorphism and induces a triangle equivalence

σ∗ : D(B, d) → D(E, d), whose quasi-inverse is σ∗ = −
L
⊗

E

B : D(E, d) → D(B, d),

see [16], Lemma 6.1 (a). Moreover, −
L
⊗

E

C and RHomE(C,−) are left and right ad-

joint of the functor σ∗f∗, respectively. Thus, we obtain the desired recollement. �

In fact, by Corollary 6.7 of [21] and Remark 3.1 (1), the existence of such a rec-

ollement implies that the given silting object U is good.

Proposition 3.4. Let A be a dg-algebra, U a dg-A-module and B = DgEndA(U).

Suppose U is a silting object in D(A, d). If the triangle functor G := −
L
⊗

B

U :

D(B, d) → D(A, d) admits a fully faithful left adjoint j! : D(A, d) → D(B, d), then

the given silting dg-module is good.

Starting with a good silting dg-module U as before, we have a recollement in

Proposition 3.3 and note that the dg-algebra B has to be weak nonpositive. In the

following, we consider under what extent does the induced dg-algebra C satisfy the

same property.

First, we have the following easy observation.

Lemma 3.5. Adopt the notations from Proposition 3.3. Then the dg-algebra C

is weak nonpositive if and only if Hi(i∗(B)) = 0 for every i > 1.

P r o o f. We only need to prove that i∗(B) ∼= C. In fact, i∗(B) ∼= σ∗(B)
L
⊗

E

C ∼=

E
L
⊗

E

C ∼= C, where σ∗ : D(B, d) → D(E, d) is a triangle equivalence. �

The following useful theorem is well-known.
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Lemma 3.6. Let R and S be dg-algebras and suppose that PR is compact

in D(R, d). Suppose that M and K are dg-S-R-bimodules, N is a dg-S-module

and L is a dg-Sop-module. Then we have the following canonical isomorphisms:

NS

L
⊗

S

RHomR(PR, SMR) ∼= RHomR

(

PR, NS

L
⊗

S

SMR

)

,(†)

PR

L
⊗

R

RHomSop(SKR, SL) ∼= RHomSop(RHomR(PR, SKR), SL)).(‡)

The following is the main result in this section.

Theorem 3.7. Let A be a dg-algebra, U a good n-silting dg-A-module, and

B = DgEndA(U). Then the dg-algebra C induced in Proposition 3.3 is weak non-

positive if and only if Hi
(

U
L
⊗

A

RHomBop(U,B)
)

= 0 for i > 2, or equivalently,

Hi
(

U
L
⊗

A

RHomA(U,A)
)

= 0 for i > 2.

P r o o f. We define a dg-A-B-bimodule U∗ = RHomBop(U,B). From the proof of

Proposition 3.3, we know that BU ∈ per(Bop). Hence, U∗ = RHomBop(U,B) ∈

per(B) and we have an isomorphism −
L
⊗

B

RHomB(U
∗, B) ∼= RHomB(U

∗,−)

by Lemma 3.6 (†). On the other hand, since BU ∈ per(Bop), we know from

Lemma 3.6 (‡) that

U∗∗ := RHomB(RHomBop(U,B), B) ∼= RHomB(BBB, BB)

L
⊗

B

U ∼= BU.

Then we get that −
L
⊗

B

U ∼= −
L
⊗

B

U∗∗ ∼= RHomB(U
∗,−) as triangle functors from

D(B, d) to D(A, d). It follows that
(

−
L
⊗

A

U∗,−
L
⊗

B

U
)

is an adjoint pair. Therefore,

the functor L induced in the proof of Proposition 3.3 is isomorphic to −
L
⊗

A

U∗.

Note that λ : B → C is a homological epimorphism of dg-algebras. Hence, D(C, d)

can be regarded as a full triangulated subcategory of D(B, d). Since LG(B)) ∼=

B
L
⊗

B

U
L
⊗

A

U∗ ∼= U
L
⊗

A

RHomBop(U,B), we have a triangle

U

L
⊗

A

RHomBop(U,B) → B → i∗(B) 

in D(B, d) induced by the recollement (3.1). Applying the cohomology func-

tor Hj to this triangle, since B is weak nonpositive, we have Hj(i∗(B)) ∼=

Hj+1
(

U
L
⊗

A

RHomBop(U,B)
)

for j > 1.
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In the following we show that RHomA(U,A) ≃ RHomBop(U,B) in D(Aop, d). In

fact, since U is a good n-silting dg-A-module, there is a sequence of triangles

Ai → Ui → Ai+1  with 0 6 i 6 n

in D(A, d) such that Ui ∈ add(U), A0 = A and An+1 = 0. Applying the func-

tor Φ: RHomA(−, UA) to these triangles, we obtain another sequence of triangles

Φ(Ai+1) → Φ(Ui) → Φ(Ai)  with 0 6 i 6 n. Therefore, for any X ∈ D(A, d), we

can construct the commutative diagram:

RHomA(X,An−1)

��

// RHomA(X,Un−1)

≃

��

// RHomA(X,Un)

≃

��

///o/o/o/o

RHomBop(Φ(An−1),Φ(X)) // RHomBop(Φ(Un−1),Φ(X)) // RHomBop(Φ(Un),Φ(X)) ///o/o ,

where the isomorphisms in the second and third columns are due to Ui ∈ add(U)

for 0 6 i 6 n. Consequently, RHomA(X,An−1) → RHomBop(Φ(An−1),Φ(X))

in the first column is an isomorphism. Proceeding similarly, we obtain that

RHomA(X,A) ∼= RHomBop(Φ(A),Φ(X)). This implies that RHomA(−, A)
≃
→

RHomBop(Φ(A),Φ(−))
≃
→ RHomBop(BU,RHomA(−, UA)) : D(A, d) → D(Aop, d).

Thus, RHomA(U,A) ∼= RHomBop(Φ(A),Φ(U)) = RHomBop(U,B). The result fol-

lows by Lemma 3.5. �

If we specialize Theorem 3.7 to the case that U is a good 1-silting object, then it

is easy to check that Hi
(

U
L
⊗

A

RHomBop(U,B)
)

= 0 for i > 2. Then we obtain the

following corollary.

Corollary 3.8. Let A be a dg-algebra, U a good 1-silting dg-A-module, and

let B = DgEndA(U). Then the dg-algebra C induced in Proposition 3.3 is weak

nonpositive.

4. Recollements induced by good cosilting dg-modules

Let A be a ring. From [14], Lemma 5.5, if a left A-module T is a good n-tilting

module, then T as a right B-module is an n-weak tilting module (see [14], Defini-

tion 4.1), where B is the endomorphism ring of T . Similarly, we introduce here the

notion of n-weak silting dg-module and show that if UA is a good n-silting dg-module,

then BU is n-weak silting whenever A is weak nonpositive, where B = DgEndA(U).
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Definition 4.1. Let B be a dg-algebra. A dg-Bop-module M is called n-weak

silting if it, considered as an object in D(Bop, d), satisfies the following conditions:

(w1) dimadd(B)(M) 6 n,

(w2) M (I) ∈ M⊥>0 for every set I, and

(w3) codimProd(M)B 6 n.

Remark 4.2. If we regarded a ring R as a dg-algebra, then by Definition 4.1

of [14], an n-weak tilting R-module is an n-weak silting object in D(Rop). However,

we have to warn the reader that the converse may not be true. The main reason is

that an n-weak tilting module RM should satisfies the condition (R4): MS is strongly

S-Mittag-Leffler as a right S-module (see [14], Definition 2.3), where S = End(RM).

Notice that an analog of condition (R4) is not present in our definition. The prob-

lem is that, in general, it is difficult to character the Mittag-Leffler conditions on

dg-modules since many properties of silting dg-modules in this paper are defined at

the level of derived categories.

If an n-weak silting dg-Bop-moduleM satisfies Prod(BM) = Add(BM), then BM

is a small n-silting object. Indeed, the condition dimadd(B)(M) 6 n implies thatM ∈

per(B). On the other hand, small n-silting dg-modules are always n-weak silting. Let

A := DgEndBop(M),

Y := {Y ∈ D(Bop, d) : HomD(Rop,d)(M,Y [i]) = 0 for all i ∈ Z},

G := BM
L

⊗

A

− : D(Aop, d) → D(Bop, d),

H := RHomBop(M,−) : D(Bop, d) → D(Aop, d).

If BM satisfies (w1), then BM is compact in D(Bop, d). It follows that there exists

a TTF-triple (Tria(BM),Y,Z) in D(Bop, d) by [13], Lemma 2.8 or [10], Chapter III,

Theorem 2.3; Chapter IV, Proposition 1.1, where Z := Ker(HomD(Bop,d)(Y,−)).

Hence, the inclusion Y → D(Bop, d)) admits both a left adjoint and a right adjoint.

If BM satisfies both (w1) and (w2), then A is weak nonpositive and the pair (G,H)

induces a triangle equivalence: D(Aop, d)
≃
→ Tria(BM), see [17], Chapter 5, The-

orem 8.5. On the other hand, by [19], Proposition 4.4.3, we see that Tria(RM)

is a smashing localizing class. Using Proposition 2.5 of [7], there is a homological

epimorphism µ : B → C of dg-algebras such that µ∗ induces a triangle equivalence

fromD(Cop, d) to Y. Thus, we have the following result which shows that an n-weak

silting object in D(Bop, d) always induces a recollement among derived categories of

dg-algebras.

Proposition 4.3. Suppose the dg-Bop-module M satisfies (w1) and (w2). Then

there is a homological epimorphism µ = gε−1 : B → C in HoDga(k), represented by
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homomorphisms of dg-algebras ε : F → B and g : F → C, such that the following is

a recollement of triangulated categories:

D(Cop, d)
µ∗=ε∗g∗ // D(Bop, d)

p=C
L⊗

F

−

oo

BHomFop (C,−)
oo

H // D(Aop, d)

Goo

oo

.

Now we point out that each good silting dg-module can produce a weak silting

dg-module over weak nonpositive dg-algebras.

Lemma 4.4. Let A be a dg-algebra, U a good n-silting dg-A-module, and let

B = DgEndA(U). If the dg-algebra A is weak nonpositive, then U as a dg-Bop-

module is n-weak silting.

P r o o f. By the definition, codimadd(U)A 6 n. Then from Lemma 1.1 of [11], we

have dimadd(B) U 6 n. By assumption, A is weak nonpositive, hence

HomD(Bop,d)(U,U [i]) ∼= HiA = 0 for i > 1.

So (w1) and (w2) hold for U . Now, we check (w3) for U . Since dimAdd(A) U 6 n,

there is a sequence of triangles in D(A, d)

Vi+1 → Pi → Vi  with 0 6 i 6 n

such that Pi ∈ Add(A), V0 = U and Vn+1 = 0. In fact, applying the functor

RHomA(−, U) to these triangles, we get triangles in D(Bop, d) of the form

Bi → Qi → Bi+1  with 0 6 i 6 n

such that Qi = RHomA(Pi, U) ∈ Prod(U), B0 = B and Bn+1 = 0. Thus, U

satisfies (w3). �

Proposition 4.5. Let A be a weak nonpositive dg-algebra, U a good n-silting dg-

A-module, and B = DgEndA(U). Then there exist a dg-algebraD and a recollement

of triangulated categories

D(Dop, d)
µ∗ // D(Bop, d)

δoo

oo

H // D(Aop, d)

Goo

oo

such that µ : B → D is a homological epimorphism, where G = BU
L
⊗

A

− and H =

RHomBop(U,−). Moreover, D is weak nonpositive if and only if Hi(δ(B)) = 0 for

every i > 1, if and only if Hi
(

U
L
⊗

A

RHomBop(U,B)
)

= 0 for i > 2.
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P r o o f. From Lemma 4.4, BU is an n-weak silting dg-module. By Theorem 1.4

of [11], there is a quasi-isomorphism RHomBop(U,U) ≃ A. Therefore, we get the

desired recollement and homological epimorphism µ : B → D from Proposition 4.3.

Hence, there is a triangle in D(Bop, d),

U

L
⊗

A

RHomBop(U,B) → B → δ(B) .

Applying the cohomology functor Hj to this triangle, we get an exact sequence

. . . → Hi(δ(B)) → Hi+1(GH(B)) → Hi+1(B) → Hi+1(δ(B)) → . . .

Since B is weak nonpositive, we have Hj(δ(B)) ∼= Hj+1
(

U
L
⊗

A

RHomBop(U,B)
)

for

j > 0. By an argument similar to that in Lemma 3.5, we have δ(B) ∼= D. Thus, the

equivalence follows. �

In the following, we apply the above results to deal with good cosilting dg-modules.

First, we construct n-weak silting objects from good n-cosilting objects, and then

use Proposition 4.3 to construct the recollement.

Let (A, d) be a weak nonpositive dg-k-algebra. We fix a faithfully injective

k-module k∨. If M is a dg right A-module we set M∨ =
⊕

n∈Z

Homk(M
−n, k∨) as

a graded k-module. Then we endow M∨ with a left dg-module structure by setting

dM∨ = (−1)nf ◦ d−n−1
M . One can check we have dM∨(af) = d(a)f + (−1)madM∨(f)

for a ∈ Am, x ∈ M−n−m−1 and f ∈ (M∨)n. Therefore, there exists a functor

∨ : Mod(A, d)op → Mod(Aop, d), see [25], Tag 04JD. Set W := A∨
A. Note that W is

an H-injective dg-Aop module by [26], Tag 09KS.

Definition 4.6. A dg-Aop-module N is called n-cosilting if it, considered as an

object in D(Aop, d), satisfies the following conditions:

(C1) codimProd(W )(AN) 6 n,

(C2) N I ∈ ⊥>0N for every set I, and

(C3) dimProd(N)W 6 n.

An n-cosilting dg-Aop-module N is said to be good if it, considered as an object

in D(Aop, d), satisfies (C1), (C2) and

(c3) dimadd(N) W 6 n.

We say that AN is a (good) cosilting dg-module if AN is (good) n-cosilting for some

n ∈ N. If N1 and N2 are cotilting objects, then N1 is equivalent to N2, provided that

Prod(N1) = Prod(N2). Similarly, we show that each n-cosilting object is equivalent

to a good cosilting object.
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Lemma 4.7. If N is an n-cosilting object then there is a good n-silting object N ′

such that N and N ′ are equivalent.

P r o o f. Let N be an n-cosilting object. Since dimProd(N) W 6 n, there are

triangles

Wi+1 → Ni → Wi  with 0 6 i 6 n

such that Ni ∈ Prod(N), W0 = W and Wn+1 = 0. By an argument similar to that

in [28], Proposition 3.8, N ′ =
n
∏

i=0

Ni =
n
⊕

i=0

Ni is an n-cosilting object and Prod(N
′) =

Prod(N). It is clear that N ′ is good since all Ni are direct summand of N
′. �

From now on, we assume that N is a good n-cosilting dg-Aop-module with con-

ditions (C1), (C2) and (c3), and call AN a good n-cosilting dg-module with respect

to W .

Lemma 4.8. Let A be a weak nonpositive dg-algebra, N a good n-cosilting

dg-Aop-module, and let B = RHomAop(N,N), M = RHomAop(N,W ) and Λ :=

DgEndAop(W ). The following hold true.

(1) dimadd(B) M 6 n.

(2) The functor RHomA(N,−) : D(Aop, d) → D(Bop, d) induces an quasi-isomor-

phism of dg-algebras Λ ≃ RHomBop(M,M) and HomD(Bop,d)(M,M [i]) = 0 for

all i > 1.

(3) The dg-Bop-module M satisfies (w1)–(w3) in Definition 4.1.

P r o o f. (1) Since dimadd(N)W 6 n, there is a sequence of triangles in D(Aop,d)

(4.1) Ki+1 → Ni → Ki  with 0 6 i 6 n

such that Ni ∈ add(N), K0 = W and Kn+1 = 0. Applying RHomAop(N,−) to these

triangles, we get a sequence of triangles in D(Bop, d) of the form

Vi+1 → Bi → Vi  with 0 6 i 6 n

such that Bi = RHomAop(N,Ni) ∈ add(B), V0 = M and Vn+1 = 0. Thus,

dimadd(B) M 6 n.

(2) Let Ψ be the functor RHomAop(N,−) : D(Aop, d) → D(Bop, d). Then

Ψ(N) = B, Ψ(W ) = M and RHomA(X,W )
∼
→ RHomB(Ψ(X),Ψ(W )) for any

X ∈ add(AN).

If n = 0, then W = N0 ∈ add(AN). In this case, we have

RHomBop(M,M) = RHomB(Ψ(W ), Ψ(W ))
∼
→ RHomA(W,W ) = Λ

and HomD(Bop,d)(M,M [i]) = 0 for all i > 1 by (C2).
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Suppose n > 1. By (1), there is a sequence of triangles in D(Bop, d) of the form

Vi+1 → Bi → Vi  with 0 6 i 6 n

such that Bi = RHomAop(N,Ni) ∈ add(B), V0 = M and Vn+1 = 0. Applying

RHomAop(−,W ) to the triangles (4.1), we get a sequence of triangles

RHomAop(Ki,W ) → RHomAop(Ni,W ) → RHomAop(Ki+1,W ) with 0 6 i 6 n.

We can construct the commutative diagram:

RHomAop(Kn−1,W )

��

// RHomAop(Nn−1,W )

≃

��

// RHomAop(Nn,W )

≃

��

///o/o/o/o

RHomBop(Ψ(Kn−1),Ψ(W )) // RHomBop(Ψ(Nn−1),Ψ(W )) // RHomBop(Ψ(Nn),Ψ(W )) ///o/o .

This implies that RHomAop(Kn−1,W ) ∼= RHomBop(Ψ(Kn−1),Ψ(W )). Proceed-

ing similarly, we obtain that Λ = RHomAop(W,W ) → RHomBop(Ψ(W ),Ψ(W )) =

RHomBop(M,M) is actually a quasi-isomorphism.

It remains to prove that HomD(Bop,d)(M,M [i]) = 0 for all i > 1. We claim

that if A is weak nonpositive, then so is Λ. Recall that for any dg-Aop-module X ,

dg-A-module Y and dg-A-A-bimodule Z, we have the swap isomorphism:

Hom•
Aop(X,Hom•

A(Y, Z)) ∼= Hom•
A(Y,Hom

•
Aop(X,Z)).

It follows that there are isomorphisms Λ=Hom•

Aop(A∨, A∨)∼=Hom•

A(A,A
∨∨)∼=A∨∨.

Therefore, the claim follows from the isomorphism Hi(A∨∨) ∼= Hi(A)∨∨ by the fact

that ∨ is an exact functor, see [25], Tag 04JD.

(3) Clearly, (w1) and (w2) follow from (1) and (2), respectively. It remains to

show (w3) for M . In fact, by (C1), there exists a sequence of triangles

Ui → Ii → Ui+1  with 0 6 i 6 n

such that Ii ∈ Prod(W ), U0 = N and Un+1 = 0. Applying RHomAop(N,−) to these

triangles, we get a sequence of triangles

RHomAop(N,Ui) → RHomAop(N, Ii) → RHomAop(N,Ui+1) with 0 6 i 6 n.

Since RHomAop(N,−) commutes with arbitrary direct products, it follows from

Ii ∈ Prod(W ) that RHomAop(N, Ii) ∈ Prod(RHomAop(N,W )) = Prod(M) and

that AM satisfies (w3). �
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By Lemma 4.8 (2), we have a quasi-isomorphism h : Λ → DgEndBop(M). Hence,

every dg-DgEndBop(M)-module becomes a dg-Λ-module via the map h. As in [30],

Section 12.7 we do not distinguish notationally between such a dg-module seen as

dg-DgEndBop(M)-module or a Λ-module. Now, we put

G := BMΛ

L
⊗

Λ

− : D(Λop, d) → D(Bop, d)

and H := RHomB(M,−) : D(Bop, d) → D(Λop, d). Since BM satisfies both (w1)

and (w2) of Definition 4.1, by Proposition 4.3 and the proof of Proposition 4.5, we

have the following result.

Theorem 4.9. Let A be a weak nonpositive dg-algebra, N a good n-cosilting

dg-Aop-module, and let B = RHomAop(N,N), M = RHomAop(N,W ) and Λ :=

DgEndAop(W ). Then there exist a dg-algebra C and a recollement of triangulated

categories

D(Cop, d)
λ∗ // D(Bop, d)

oo

oo

H // D(Λop, d)

Goo

oo

such that λ : B → C is a homological epimorphism. Moreover, C is weak nonpositive

if and only if Hi
(

M
L
⊗

Λ

RHomBop(M,B)
)

= 0 for i > 2.

In the end of this section, we show that there exists an isomorphism in HoDga(k)

from the dg-algebra C induced in Proposition 3.3 to the dg-algebra D induced in

Theorem 4.5.

Proposition 4.10. Let A be a weak nonpositive dg-algebra, U ∈ D(A, d) a good

n-silting object, and let B = DgEndA(U). Then the dg-algebra C in Proposition 3.3

is isomorphic to the dg-algebra D in Proposition 4.5 in HoDga(k).

P r o o f. In fact, we notice that λ : B → C is a morphism of dg-B-B-bimodules.

By the proof of Theorem 3.7, together with the fact that i∗(B) ∼= C, one has a triangle

of B-B-bimodules

U

L
⊗

A

RHomBop(U,B) → B
λ
→ C  ,

see also the last paragraph of Section 4 of [20]. Similarly, by the proof of Proposi-

tion 4.5, since δ(B) ∼= D, we have a triangle of B-B-bimodules

U
L

⊗

A

RHomBop(U,B) → B
µ
→ D  .

Therefore, one can check that there exists an isomorphism ϕ : C → D in HoDga(k).

�
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5. Applications

In this section, we will be concerned with some applications of the results of

Section 4.

5.1. Applications to good 2-term silting complexes. In this subsection, we

show that there exists a recollement induced by good 2-term silting complexes.

Let R be an ordinary ring, P the complex

. . . → 0 → P−1 σ
→ P 0 → 0 → . . .

with P−1, P 0 projective. From [12], Section 3.2, P is called a 2-term silting complex if

(S1) P
(I) ∈ P

⊥>0 for all sets I, where

P
⊥>0 = {Y ∈ D(R) : HomD(R)(P, Y [n]) = 0 for all positive integers n},

(S2) the homotopy categoryKb(ProjR) of bounded complexes of projective modules

is the smallest triangulated subcategory of D(R) containing Add(P).

A torsion theory (T ,F) in Mod−R is called silting torsion theory if there exists

a silting module S such that T = Gen(S). By Corollary 3.2.1 of [12] we know that

there exists a 2-term silting complex P such that the silting module S = H0(P)

generates the class T and there exists a triangle

R → P
n → P

′  

in D(R) such that P′ ∈ add(P). Such a complex will be called a good silting complex.

Let B be the smart truncation of DgEndR(P), that is

B =
⊕

i∈Z

Bi, where Bi =











DgEndR(P) if i < 0,

Z0(DgEndR(P)) if i = 0,

0 if i > 0.

Then B is a nonpositive dg-algebra and we have a quasi-isomorphism B →

DgEndR(P). Note that P ∈ K
b(ProjR) = 〈Add(R)〉 and P ∈ R⊥>0 . Hence,

dimAdd(R) P < ∞ by [28], Corollary 2.6 (2). Furthermore, from Proposition 3.9

of [28], we see that the good 2-term silting complex is a 1-silting object in D(R, d).

Thus, as a consequence of Proposition 3.3 and Corollary 3.8, we obtain the following

recollement.
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Corollary 5.1. Let R be a k-algebra, P a good 2-term silting complex in D(R).

Then there is a homological epimorphism g = fσ−1 : B → C in HoDga(k), repre-

sented by homomorphisms of dg-algebras σ : E → B and f : E → C such that

D(C, d)
σ∗f∗

// D(B, d)

C
L⊗

E

−

oo

RHomE(C,−)
oo

−
L⊗

B

P

// D(R)

oo

oo

is a recollement of triangulated categories. Moreover, C is weak nonpositive.

5.2. Applications to good tilting complexes and modules. In this subsec-

tion, we want to show that our results generalize those of [13], [14]. In order to do

that, let R be a ring and T an R-complex. Then R can be seen as a dg-algebra

concentrated in degree 0. Recall that Kb(ProjR) denotes the homotopy category of

bounded complexes of projective modules. The complex T is called a good tilting

complex if it satisfies the following conditions:

(T1) T ∈ K
b(ProjR),

(T2) HomD(R)(T, T
(α)[n]) = 0 for every set α and n 6= 0,

(t3) codimadd(T )R < ∞.

One can check that Kb(ProjR) = 〈Add(R)〉. Hence, the good tilting complexes

are good silting objects in D(R). From the condition (T2), Hn(DgEndR(U)) =

Hn(RHomR(U,U)) ∼= HomD(R)(T, T [n]) = 0 for n 6= 0. Since H0(DgEndR(U)) ∼= B,

we have an equivalence between D(DgEndR(U), d) and D(B). As a consequence of

Proposition 3.3 and Theorem 3.7, we obtain the folllowing recollement.

Corollary 5.2. LetR be a ring and T a good tilting complex, and letB = End(T ).

Then there exist a dg-algebra C and a recollement of triangulated categories

D(C, d)
λ∗ // D(B)

oo

oo

G // D(R)

oo

oo

such that λ : B → C is a homological epimorphism. Moreover, C is weak nonpositive

if and only if Hi
(

T
•
⊗

R

Hom•

R(T,R)
)

= 0 for all i > 2.

Let R be a ring and T an R-module. Consider the following conditions on T :

(T1) The projective dimension of T is finite.

(T2) The module T has no self-extensions, that is ExtiR(T, T
(α)) = 0 for every i > 1

and every set α.
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(t3) There is an exact sequence of R-modules

0 → R → T0 → T1 → . . . → Tn → 0

such that Ti is isomorphic to a direct summand of a finite direct sum of copies

of T for all 0 6 i 6 n.

Then T is called a good n-tilting module, if it satisfies (T1), (T2), (t3) and the

projective dimension of T is at most n. Let B be the endomorphism ring of T . We

obtain the following recollement. One can compare it with Theorem 1.1 of [14].

Theorem 5.3. Let R be an ordinary algebra, TR a good tilting module, and let B

be the endomorphism ring of T . Then there exist a dg-algebra C and a recollement

of triangulated categories

D(C, d)
λ∗

// D(B)

oo

oo

−
L⊗

B

T

// D(R)

oo

oo

such that λ : B → C is a homological epimorphism. Moreover, Hi(C) = 0 for i 6= 0

if and only if Hi
(

B
T
⊗

R

Hom•

R(U,R)
)

= 0 for all i > 2, where the complex U is

a deleted projective resolution of T .

P r o o f. Denote by U a deleted projective resolution of T . Then T = H0(U) and

U ∈ D(R) is a good silting object. It is easy to see that D(DgEndR(U), d) = D(B)

and then the recollement follows by Proposition 3.3.

On the other hand, since U ∈ D(R) is a good silting object, it is shown in

Lemma 4.4 that U ∈ D(Bop) is weak silting. Therefore, by Theorem 4.5, there

exist a dg-algebra D, such that λ : B → D is a homological epimorphism. Note that

Theorem 3.7, Proposition 4.5 and [14], Remark 5.6 (1), imply that C is weak nonpos-

itive if and only if D is weak nonpositive if and only if Hi
(

B
U

L
⊗

R

Hom•

Bop(U,B)
)

∼=

Hi
(

T
⊗

R

Hom•

R(U,R)
)

= 0 for all i > 2.

In the following, we will show that in this case, the dg-algebra C is always weak

positive. By Proposition 4.10, we only need to prove that the dg-algebra D is weak

positive. From [14], Definition 4.1 (3) there exists a quasi-isomorphism BB → M

in K(Bop), where M = 0 → M0 → M1 → . . . → Mn → 0 with Mi ∈ Prod(BT )

for all 0 6 i 6 n. From [14], Lemma 5.5, T is a strongly R-Mittag-Leffler module,

see [14], Definition 4.1 or [2], Definition 1.1. Therefore, by the proof of Lemma 4.3 (2)

of [14] we obtain a short exact sequence of complexes

0 → T
⊗

R

Hom•
Bop(T,M) → M → L → 0,
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where all terms of the complex L are concentrated in degrees not less than 0. Hence,

we can construct the commutative diagram in D(Bop):

T
L
⊗

R

RHomBop(T,B)

≃

��

// B

≃

��

// δ(B)

≃

��

///o/o/o

T
⊗

R

Hom•
Bop(T,M) // M // L ///o/o/o/o .

In particular,Hj(δ(B)) ∼= Hj(L) = 0 for all j < 0. Hence, by the fact that δ(B) ∼= D,

we deduce that D is weak positive. �

If we specialize Theorem 5.3 to the case that T is a good 1-tilting module, then

it is easy to check that Hi
(

T
⊗

R

Hom•

R(U,R)
)

= 0 for all i > 2, and we get the

following corollary. One can compare it with Theorem 1.1 of [13].

Corollary 5.4. LetR be a ring, TR a good 1-tiltingR-module andB the endomor-

phism ring of T . Then there is a ring C, a homological ring epimorphism λ : B → C

and a recollement among the unbounded derived categories of the rings R, B and C

D(C)
λ∗ // D(B)

oo

oo

j∗
// D(R)

oo

oo

such that the triangle functor j∗ is isomorphic to the total left-derived functor −
L
⊗

B

T .
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