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Abstract. For a simple connected graph G of order n having distance Laplacian eigenval-
ues ̺L1 > ̺L2 > . . . > ̺Ln , the distance Laplacian energy DLE(G) is defined as DLE(G) =
n∑

i=1

|̺Li − 2W (G)/n|, where W (G) is the Wiener index of G. We obtain a relationship be-

tween the Laplacian energy and the distance Laplacian energy for graphs with diameter 2.
We obtain lower bounds for the distance Laplacian energy DLE(G) in terms of the order n,
the Wiener index W (G), the independence number, the vertex connectivity number and
other given parameters. We characterize the extremal graphs attaining these bounds. We
show that the complete bipartite graph has the minimum distance Laplacian energy among
all connected bipartite graphs and the complete split graph has the minimum distance
Laplacian energy among all connected graphs with a given independence number. Further,
we obtain the distance Laplacian spectrum of the join of a graph with the union of two
other graphs. We show that the graph Kk ▽ (Kt ∪Kn−k−t), 1 6 t 6 ⌊n−k

2
⌋, has the mini-

mum distance Laplacian energy among all connected graphs with vertex connectivity k. We
conclude this paper with a discussion on the trace norm of a matrix and the importance of
our results in the theory of the trace norm of the matrix DL(G)− (2W (G)/n)In.

Keywords: distance matrix; energy; distance Laplacian matrix; distance Laplacian energy

MSC 2020 : 05C50, 05C12, 15A18

1. Introduction

A graph is denoted by G(V (G), E(G)), where V (G) = {v1, v2, . . . , vn} is its ver-
tex set and E(G) is its edge set. Throughout, G is connected, simple and finite.

|V (G)| = n is the order and |E(G)| = m is the size of G. The set of vertices ad-
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jacent to v ∈ V (G), denoted by N(v), refers to the neighborhood of v. The degree

of v, denoted by dG(v) (we simply write dv if it is clear from the context) means

the cardinality of N(v). A graph is regular if each of its vertices has the same de-

gree. The adjacency matrix A = (aij) of G is a (0, 1)-square matrix of order n

whose (i, j)-entry is equal to 1 if vi is adjacent to vj , and equal to 0 otherwise. Let

Deg(G) = diag(d1, d2, . . . , dn) be the diagonal matrix of vertex degrees di = dG(vi),

i = 1, 2, . . . , n associated to G. Matrix L(G) = Deg(G) − A(G) is the Laplacian

matrix and its spectrum is the Laplacian spectrum of G. This matrix is real sym-

metric and positive semi-definite. We take 0 = µn 6 µn−1 6 . . . 6 µ1 to be

the Laplacian eigenvalues of G. The Laplacian energy of a graph (see [12]), de-

noted by LE(G), is defined as LE(G) =
n
∑

i=1

|µi − 2m/n|. For some recent papers
and related results on Laplacian energy, we refer to [10], [17] and the references

therein. For other undefined notations and terminology, the readers are referred

to [5], [14], [16].

The distance between two vertices u, v ∈ V (G), denoted by duv, is defined as

the length of a shortest path between u and v. The diameter of G is the maxi-

mum distance between any two vertices of G. The distance matrix of G, denoted

by D(G), is defined as D(G) = (duv)u,v∈V (G). The transmission TrG(v) of a ver-

tex v is defined to be the sum of the distances from v to all other vertices in G, i.e.,

TrG(v) =
∑

u∈V (G)

duv. A graph G is said to be k-transmission regular if TrG(v) = k

for each v ∈ V (G). The transmission number or Wiener index of a graph G, de-

noted by W (G), is the sum of distances between all unordered pairs of vertices

in G. Clearly, W (G) = 1
2

∑

v∈V (G)

TrG(v). For any vertex vi ∈ V (G), the transmis-

sion TrG(vi) is called the transmission degree, shortly denoted by Tri and the se-

quence {Tr1,Tr2, . . . ,Trn} is called the transmission degree sequence of the graph G.
Let Tr(G) = diag(Tr1,Tr2, . . . ,Trn) be the diagonal matrix of vertex transmissions

of G. Aouchiche and Hansen in [1] defined the distance Laplacian matrix of G as

DL(G) = Tr(G)−D(G).

Let ̺D1 > ̺D2 > . . . > ̺Dn and ̺L1 > ̺L2 > . . . > ̺Ln be respectively the distance

and distance Laplacian eigenvalues of the graph G. The distance energy (see [13])

of G is the sum of the absolute values of the distance eigenvalues of G, that is,

DE(G) =
n
∑

i=1

|̺Di |. For some recent works on distance energy we refer to [2], [6], [7]
and the references therein.

The distance Laplacian energy DLE(G) (see [18]) of a connected graph G is de-

fined as

DLE(G) =

n
∑

i=1

∣

∣

∣̺Li − 2W (G)

n

∣

∣

∣.
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Let σ be the largest positive integer such that ̺Lσ > 2W (G)/n and let UL
k (G) =

k
∑

i=1

̺Li

be the sum of k largest distance Laplacian eigenvalues of G. Using
n
∑

i=1

̺Li = 2W (G),

it can be seen that

DLE(G) = 2
(

UL
σ (G)− 2σW (G)

n

)

= 2 max
16j6n

( j
∑

i=1

̺Li (G)− 2jW (G)

n

)

= 2 max
16j6n

(

UL
j (G) − 2jW (G)

n

)

.

For some recent works on DLE(G), see [6], [7], [8], [9].

The rest of the paper is organized as follows. In Section 2, we obtain a relationship

between the Laplacian energy and the distance Laplacian energy for graphs with di-

ameter 2. We also obtain a lower bound for the distance Laplacian energy DLE(G)

in terms of the order n, the Wiener index W (G), etc. and characterize the extremal

graphs. In Section 3, we study the distance Laplacian energy of connected bipartite

graphs and connected graphs with a given independence number. We show that the

complete bipartite graph has the minimum distance Laplacian energy among all con-

nected bipartite graphs and that the complete split graph has the minimum distance

Laplacian energy among all connected graphs with a given independence number.

In Section 4, we study the distance Laplacian spectrum of the join of a graph with

the union of two other graphs. We show that the graph Kk ▽ (Kt ∪ Kn−k−t),

1 6 t 6 ⌊n−k
2 ⌋, has the minimum distance Laplacian energy among all connected

graphs with vertex connectivity k. We conclude the paper with a conclusion high-

lighting the importance of our results.

2. Bounds for the distance Laplacian energy of a graph

We begin with the lemma, which gives the relation between the distance Laplacian

spectrum of a graph and its connected spanning subgraph.

Lemma 2.1 ([1]). Let G be a connected graph of order n and size m, where

m > n and let G′ = G − e be a connected graph obtained from G by deleting an

edge. Let ̺L1 (G) > ̺L2 (G) > . . . > ̺Ln(G) and ̺L1 (G
′) > ̺L2 (G

′) > . . . > ̺Ln(G
′) be

respectively the distance Laplacian eigenvalues of G and G′. Then ̺Li (G
′) > ̺Li (G)

holds for all 1 6 i 6 n.

The following lemma shows that the distance Laplacian eigenvalues of a connected

graph G of diameter 2 are completely determined by the Laplacian eigenvalues of

the graph G.
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Lemma 2.2 ([1]). Let G be a connected graph of order n > 2 having diameter

d = 2. Let µ1 > µ2 > . . . > µn−1 > µn = 0 be the Laplacian eigenvalues and

̺L1 (G) > ̺L2 (G) > . . . > ̺Ln−1(G) > ̺Ln(G) = 0 be the distance Laplacian eigenvalues

of G. Then ̺Li (G) = 2n− µn−i for i = 1, 2, . . . , n− 1.

As the complete graphKn is the only graph of diameter 1, so DLE(Kn) = 2(n−1).

Therefore, in the rest of the paper we will deal with the graphs of diameter greater

or equal to 2. The following result gives the distance Laplacian energy of a graph of

diameter 2 in terms of sum of the Laplacian eigenvalues of G.

Theorem 2.1. Let G be a connected graph of order n > 3 and size m having

diameter 2. Then

DLE(G) = 2
(

σ
(2m

n
+ 2

)

− 2m+ Sn−σ−1(G)
)

,

where Sn−σ−1(G) =
n−σ−1
∑

i=1

µi is the sum of the n−σ−1 largest Laplacian eigenvalues

of G and σ, 1 6 σ 6 n − 2, is the number of distance Laplacian eigenvalues of G

which are greater than or equal to 2W (G)/n.

P r o o f. Let G be a connected graph of order n having m edges. Since diameter

of G is two, it follows that Tr(vi) = di +2(n− 1− di) = 2n− 2− di for all vi ∈ V (G)

and so 2W (G) = 2n(n − 1) − 2m. Let σ be the number of distance Laplacian

eigenvalues of G which are greater than or equal to 2W (G)/n. Using Lemma 2.2

and the definition of Laplacian energy, we have

DLE(G) = 2

( σ
∑

i=1

̺Li (G)− 2σW (G)

n

)

= 2

( σ
∑

i=1

(2n− µn−i)− σ
(

2n− 2− 2m

n

)

)

= 2

(

σ
(2m

n
+ 2

)

−
σ
∑

i=1

µn−i

)

= 2
(

σ
(2m

n
+ 2

)

− 2m+ Sn−σ−1(G)
)

,

where Sn−σ−1(G) =
n−σ−1
∑

i=1

µi is the sum of the n−σ−1 largest Laplacian eigenvalues

of G. �

From Theorem 2.1, it is clear that any lower bound or upper bound for the graph

invariant Sk(G), the sum of k largest Laplacian eigenvalues of G gives a lower bound

or upper bound for DLE(G). In fact, there is a conjecture by Brouwer (see [4],

page 60) for the graph invariant Sk(G), which is stated as follows.
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Conjecture 2.1. If G is any graph with order n and size m, then

Sk(G) =

k
∑

i=1

µi 6 m+

(

k + 1

2

)

for any k ∈ {1, 2, . . . , n}.

This conjecture has been shown to be true for various families of graphs, but as

a whole, this conjecture is still open. For some recent developments on Brouwer’s

conjecture, we refer to [11] and the references therein.

The following theorem gives a relation between the distance Laplacian energy and

the Laplacian energy of a graph of diameter 2.

Theorem 2.2. Let G be a connected graph of order n > 3 and size m having

diameter 2. Let σ and t, 1 6 σ, t 6 n − 2, be respectively the number of distance

Laplacian eigenvalues and the number of Laplacian eigenvalues ofG which are greater

than or equal to 2W (G)/n and 2m/n. Then

LE(G)− 2
(2m

n
− 2(n− 1) + 2t

)

6 DLE(G) 6 LE(G) + 4
(

σ − m

n

)

.

P r o o f. Let σ be the number of distance Laplacian eigenvalues of G which are

greater than or equal to 2W (G)/n. Then, by definition of distance Laplacian energy,

we have

(2.1) DLE(G) = 2
(

UL
σ (G)− 2σW (G)

n

)

= 2 max
16j6n−1

(

UL
j (G) − 2jW (G)

n

)

.

Also, if t is the number of Laplacian eigenvalues of G which are greater than or equal

to 2m/n, then by definition of Laplacian energy, we have

(2.2) LE(G) = 2
(

St(G) − 2tm

n

)

= 2 max
16j6n−1

(

Sj(G)− 2jm

n

)

.

Using Theorem 2.1 and the second equality of (2.2), we have

DLE(G) = 2
(

σ
(2m

n
+ 2

)

− 2m+ Sn−σ−1(G)
)

= 2
(

2σ − 2m

n

)

+ 2
(

Sn−σ−1(G) − 2m(n− σ − 1)

n

)

6 LE(G) + 4
(

σ − m

n

)

,
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as 1 6 n− σ − 1 6 n− 1. Using Lemma 2.2 and (2.1), we have

LE(G) = 2
(

St(G) − 2tm

n

)

= 2

(

(

2n− 2m

n

)

t−
t

∑

i=1

̺Ln−i

)

= 2

(

(

2n− 2m

n

)

t− 2W (G) +
n−t−1
∑

i=1

̺Li

)

= 2
(2m

n
− 2(n− 1) + 2t

)

+ 2

(n−t−1
∑

i=1

̺Li − 2(n− t− 1)W (G)

n

)

6 2
(2m

n
− 2(n− 1) + 2t

)

+DLE(G),

as 2W (G) = 2n(n−1)−2m and 1 6 n− t−1 6 n−1. This completes the proof. �

From Theorem 2.2, the following observation is immediate.

Corollary 2.1. Let G be a connected graph of order n > 3 and size m having

diameter 2. Let σ and t, 1 6 σ, t 6 n − 2, be respectively the number of distance

Laplacian eigenvalues and the number of Laplacian eigenvalues ofG which are greater

than or equal to 2W (G)/n and 2m/n. Then LE(G) > DLE(G), provided that

m > σn and LE(G) < DLE(G), provided that t < n−m/n− 2.

For the star graph K1,n−1, the Laplacian spectrum is {n, 1[n−2], 0} and m = n−1.

It is easy to see that t = 1 for K1,n−1 and so the inequality LE(K1,n−1) <

DLE(K1,n−1) is valid for n > 4.

The following observation also follows from Theorem 2.2.

Corollary 2.2. Let G be a connected graph of order n > 3 and size m having

diameter 2. Let σ and t, 1 6 σ, t 6 n − 2, be respectively the number of distance

Laplacian eigenvalues and number of Laplacian eigenvalues of G which are greater

than 2W (G)/n and 2m/n. Then σ > n− (t+ 1).

The following lemma (see [6]) gives an upper bound for the second smallest distance

Laplacian eigenvalue ̺Ln−1(G) in terms of order n and the minimum transmission

degree Trmin of the graph G.

Lemma 2.3. Let G be a connected graph of order n > 3 having minimum trans-

mission Trmin and the second smallest distance Laplacian eigenvalue ̺
L
n−1(G). Then

(2.3) ̺Ln−1(G) 6
n

n− 1
Trmin,

with equality if and only if G is a graph containing a vertex of transmission de-

gree n− 1.
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Next, we obtain a lower bound for the distance Laplacian energy in terms of the or-

der n, the Wiener index W (G) and the minimum transmission Trmin of the graph G.

Theorem 2.3. Let G be a connected graph of order n > 3 having minimum

transmission degree Trmin and Wiener index W (G). Then

(2.4) DLE(G) >
8W (G)

n
− 2nTrmin

n− 1
,

equality occurs if and only if σ(G) = n− 2 and G contains a vertex of transmission

degree n− 1.

P r o o f. Let G be a connected graph of order n > 3 having distance Laplacian

eigenvalues ̺L1 (G) > ̺L2 (G) > . . . > ̺Ln−1(G) > ̺Ln(G) = 0. Let σ be the number

of distance Laplacian eigenvalues of G which are greater than or equal to 2W (G)/n.

Using
n
∑

i=1

̺Li (G) = 2W (G) and the definition of Laplacian energy (see [6]), we have

DLE(G) = 2 max
16j6n−1

( j
∑

i=1

̺Li (G)− 2jW (G)

n

)

> 2

(n−2
∑

i=1

̺Li (G) − 2(n− 2)W (G)

n

)

= 2
(

2W (G)− ̺Ln−1(G)− 2(n− 2)W (G)

n

)

=
8W (G)

n
− 2̺Ln−1(G)

>
8W (G)

n
− 2nTrmin

n− 1
.

Equality occurs in (2.4) if and only if equality occurs in

(2.5) max
16j6n−1

( j
∑

i=1

̺Li (G)− 2jW (G)

n

)

=

(n−2
∑

i=1

̺Li (G)− 2(n− 2)W (G)

n

)

and equality occurs in ̺Ln−1(G) 6 (n/(n− 1))Trmin. Equality occurs in (2.5) if and

only if σ = n− 2 and by Lemma 2.3 equality occurs in ̺Ln−1(G) 6 (n/(n− 1))Trmin

if and only if G contains a vertex having transmission degree n− 1. This shows that

equality occurs in (2.4) if and only if σ = n − 2 and G contains a vertex having

transmission degree n− 1. This completes the proof. �

The parameter t gives the number of Laplacian eigenvalues of a graph G which

are in the interval [2m/n, n]. This parameter has been studied for various families

of graphs and is presently an active topic of research in spectral study of graphs.

Like the parameter t, the parameter σ is concerned with the distribution of distance

Laplacian eigenvalues of a connected graph G. In fact, the value of σ gives the

number of distance Laplacian eigenvalues which are in the interval [2W (G)/n,∞).

It will be of interest to discuss the following problem for the parameter σ.
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Problem 2.1. Characterize the connected graphs with σ = 1, σ = n − 2 and

σ = n − 1. Establish relations between σ and the different parameters associated

with the structure of G.

For the transmission regular graphs G, it can be seen that σ = n− γ, where γ is

the positive inertia of the distance matrix of the graph G.

3. Distance Laplacian energy of bipartite graphs and graphs

with given independence number

In this section, we study the distance Laplacian energy of bipartite graphs and the

distance Laplacian energy of graphs with a given independence number t. Among all

connected bipartite graphs the complete bipartite graph has the minimum distance

Laplacian energy. This can be seen as follows.

Theorem 3.1. Let G be a connected bipartite graph of order n > 3 with partite

sets of cardinality a and b such that a 6 b and a+ b = n.

(1) If a < b, then

DLE(G) >















4n2 − 6n− 4ab− 4(n− 2)W (G)

n
if 2ab > n(b− 2),

2(b− 1)
(

2n− a− 2W (G)

n

)

if 2ab < n(b− 2),

with equality if and only if G ∼= Ka,b.

(2) If n = 2a and n > 5, then DLE(G) > 12a(a − 1) − 4(n− 2)W (G)/n =

12b(b− 1)− 4(n− 2)W (G)/n, with equality if and only if G ∼= Ka,a.

P r o o f. Let G be a connected bipartite graph of order n with vertex set V (G).

Let V (G) = V1∪V2 with |V1| = a, |V2| = b being a bipartition of the vertex set V (G)

of G. Since G is a connected bipartite graph with partite sets of cardinality a

and b, it follows that G is a spanning subgraph of the complete bipartite graph Ka,b.

Therefore, by Lemma 2.1, we have ∂L
i (G) > ∂L

i (Ka,b) for all i = 1, 2, . . . , n. With

this and the definition of distance Laplacian energy DLE(G), we have

(3.1) DLE(G) = 2

( σ
∑

i=1

̺Li (G)− 2σW (G)

n

)

= 2 max
16j6n

( j
∑

i=1

̺Li (G)− 2jW (G)

n

)

> 2 max
16j6n

( j
∑

i=1

̺Li (Ka,b)−
2jW (G)

n

)

,

where σ is the largest positive integer such that ̺Lσ (G) > 2W (G)/n.
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In [3], it can be seen that the distance Laplacian spectrum ofKa,b is {(2n− a)[b−1],

(2n − b)[a−1], n, 0} and 2W (Ka,b) = 2n2 − 2n − 2ab. Since a and b are positive

integers, we assume that a 6 b. We first prove the result for a < b. If a < b,

then 2n − a > 2n − b. Also 2n − a > n holds as n > a. Likewise, if n > b,

then 2n − b > n. These observations imply that 2n − a is the distance Laplacian

spectral radius of Ka,b and so we always have 2n − a > 2W (Ka,b)/n. For the

eigenvalue n, we have n < 2W (Ka,b)/n implying that n
2 − 2n − 2ab > 0, which

further gives

(3.2) 2a2 − 2an+ n2 − 2n > 0 as a+ b = n.

Consider the polynomial f(a) = 2a2−2an+n2−2n for 1 6 a < n. The discriminant

of this polynomial is d = 4n(4 − n). Clearly, for n > 4 we have d < 0 and so for

this n we always have f(a) > 0. For n = 3, 4 it can be seen by direct calculation that

inequality (3.2) holds. This shows that n < 2W (Ka,b)/n holds for all a < b. For

the eigenvalue 2n − b we have 2n− b > 2W (Ka,b)/n implying that 2ab > n(b − 2).

This shows that if 2ab > n(b − 2), then 2W (G)/n 6 2n − b and if 2ab < n(b − 2),

we have 2W (G)/n > 2n − b. In other words, if 2ab > n(b − 2), then σ = n − 2

while if 2ab < n(b − 2), then σ = b − 1. Therefore, we have the following cases to

consider.

Case (i): If 2ab > n(b − 2), then the number of eigenvalues which are greater

or equal to 2W (G)/n are n − 2, that is, σ = n − 2. Since 1 6 σ 6 n − 1, from

inequality (3.1), it follows that

DLE(G) > 2

(n−2
∑

i=1

̺Li (Ka,b)−
2(n− 2)W (G)

n

)

= 2
(

(b− 1)(2n− a) + (a− 1)(2n− b)− 2(n− 2)W (G)

n

)

= 4n2 − 6n− 4ab− 4(n− 2)W (G)

n
.

Case (ii): If 2ab < n(b − 2), then the number of eigenvalues which are greater

or equal to 2W (G)/n is b − 1, that is, σ = b − 1. Since 1 6 σ 6 n − 1, from

inequality (3.1), it follows that

DLE(G) > 2

(b−1
∑

i=1

̺Li (Ka,b)−
2(b− 1)W (G)

n

)

= 2(b− 1)
(

2n− a− 2W (G)

n

)

.

Equality occurs in each of the inequalities above if and only if equality occurs in (3.1).

It is clear that equality occurs in (3.1) if and only if G ∼= Ka,b. This implies that

equality occurs if and only if G ∼= Ka,b. This completes the proof in this case.
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If a = b, then n = 2a and so the distance Laplacian spectrum of Ka,a is

{(2n − a)[n−2], n, 0} and 2W (Ka,a)/n = (2n2 − an− 3n+ 2a)/n. Since 2n − a >

2W (Ka,a)/n holds for all a and for n > 5, we have 2W (Ka,a)/n > n, from which it

follows that σ = n− 2. Therefore, from (3.1) we have

DLE(G) > 2

(n−2
∑

i=1

̺Li (Ka,b)−
2(n− 2)W (G)

2

)

= 12a(a− 1)− 4(n− 2)W (G)

n
.

Equality case can be discussed similarly to the case a < b. This completes the proof.

�

For the complete bipartite graphKa,b with a+b = n and n > 3, using Theorem 3.1,

we have the following:

For 2ab > n(b− 2) with a < b we have

4n2 − 6n− 4ab− 4(n− 2)W (Ka,b)

n
> 12a(a− 1)− 4(n− 2)W (Ka,b)

n

implying that 8a2 + (4n − 12)a − (4n2 − 6n) < 0. The zeros of the polynomial

f(a) = 8a2 + (4n − 12)a − (4n2 − 6n) are −n + 3
2 ,

1
2n. This implies that f(a) < 0

for all a ∈ (−n + 3
2 ,

1
2n). This shows that 4n

2 − 6n − 4ab − 4(n− 2)W (Ka,b)/n >

12a(a− 1) − 4(n− 2)W (G)/n holds for all a < 1
2n. For 2ab < n(b − 2) with a < b

we have

2(b− 1)
(

2n− a− 2W (Ka,b)

n

)

> 12a(b− 1)− 4(2b− 2)W (Ka,b)

n

giving that 2n− a+ 2W (Ka,b)/n > 6a. Using 2W (Ka,b) = 2n2 − 2n− 2an+ 2a2 =

(n−1)2+(n−a)2+a2−1, we get 2a2−9an+4n2−2n > 0. The zeros of the polynomial

g(a) = 2a2−9an+4n2−2n are y1 = 1
4 (9n+

√
49n2 + 16n), y2 = 1

4 (9n−
√
49n2 + 16n).

This shows that g(a) > 0 for all a > y1 and for all a < y2. Since y1 > n, it follows that

g(a) > 0 for all a < y2. For n > 3 it is easy to see that y2 > 1
2 (n − 1), implying

that g(a) > 0 for all a < 1
2 (n− 1). This shows that

2(b− 1)
(

2n− a− 2W (Ka,b)

n

)

> 12a(b− 1)− 4(2b− 2)W (Ka,b)

n

holds for all a < 1
2 (n−1). Now, using Theorem 3.1 and the fact that a and b = n−a

are positive integers, we have the following observation.

Corollary 3.1. Among all bipartite graphs of order n > 3, the complete bipartite

graph K⌊n
2
⌋,⌈n

2
⌉ has the minimum distance Laplacian energy.
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The next observation follows from Lemma 2.1 and Theorem 3.1.

Corollary 3.2. Let G be a connected bipartite graph with partite sets of cardi-

nality a and b, such that a 6 b and a+ b = n. Let ̺L1 (G) > ̺L2 (G) . . . > ̺Ln−1(G) >

̺Ln(G) = 0 be the distance Laplacian eigenvalues of G. Then ̺Li (G) > 2n− a for all

1 6 i 6 b− 1, ̺Li (G) > 2n− b for all b 6 i 6 a+ b− 2, ̺Ln−1(G) > n. Equality occurs

in each of these inequalities if and only if G ∼= Ka,b.

A complete split graph, denoted by CSt,n−t, is the graph consisting of a clique

on t vertices and an independent set (a subset of vertices of a graph is said to be

an independent set if the subgraph induced by them is an empty graph) on the

remaining n − t vertices, such that each vertex of the clique is adjacent to every

vertex of the independent set.

The following theorem shows that among all connected graphs with given inde-

pendence number n − t, 1 6 t 6 n − 1, the complete split graph CSt,n−t has the

minimum distance Laplacian energy.

Theorem 3.2. Let G be a connected graph of order n > 3 having independence

number n− t, 1 6 t 6 n− 1. Then

DLE(G) >















2(n− t− 1)
(

2n− t− 2W (G)

n

)

if t < n− 1
2 −

√

n+ 1
4 ,

4n2 − 2nt− 4n+ 2t(t+ 1)− 4(n− 1)W (G)

n
if t > n− 1

2 −
√

n+ 1
4 ,

equality occurs in each case if and only if G ∼= CSt,n−t, 1 6 t 6 n− 1.

P r o o f. Let G be a connected graph of order n > 3 having the independence

number n − t. Let CSt,n−t be the complete split graph having the independence

number n − t. It is clear that G is a spanning subgraph of CSt,n−t. Therefore, by

Lemma 2.1, we have ̺Li (G) > ̺Li (CSt,n−t). Let σ be the largest positive integer such

that ̺Lσ (G) > 2W (G)/n. With this information, it follows that

(3.3) DLE(G) = 2

( σ
∑

i=1

̺Li (G)− 2σW (G)

n

)

= 2 max
16j6n

( j
∑

i=1

̺Li (G)− 2jW (G)

n

)

> 2 max
16j6n

( j
∑

i=1

̺Li (CSt,n−t)−
2jW (G)

n

)

.

The distance Laplacian spectrum (see [3]) of the complete split graph CSt,n−t is

{(2n − t)[n−t−1], n[t], 0} with 2W (CSt,n−t)/n = (2n(n− t− 1) + t(t+ 1))/n. Since

n− t > 1, it follows that 2n− t is the distance Laplacian spectral radius of CSt,n−t.

345



For the eigenvalue n, we have n < 2W (CSt,n−t)/n = (2n(n− t− 1) + t(t+ 1))/n,

which after simplification gives

(3.4) t2 − (2n− 1)t+ n2 − 2n > 0.

Consider the polynomial f(t) = t2−(2n−1)t+n2−2n for 1 6 t 6 n−1. The roots of

this polynomial are x1 = n− 1
2−

√

n+ 1
4 and x2 = n− 1

2+
√

n+ 1
4 . This implies that

f(t) > 0 for all t < x1 and f(t) > 0 for all t > x2. Since x2 > n and t 6 n−1, it follows

that inequality (3.4) holds for all t < n− 1
2−

√

n+ 1
4 . From this, it follows that for t <

n− 1
2−

√

n+ 1
4 we have σ = n−t−1 and for t > n− 1

2−
√

n+ 1
4 we have σ = n−1. The

rest of the proof is omitted and follows on similar lines as done in Theorem 3.1. �

We characterized the extremal graphs which attain the minimum value for the

distance Laplacian energy among all connected bipartite graphs and among all con-

nected graphs with a given independence number. The following problems will be of

interest for the future research.

Problem 3.1. Characterize the extremal graphs which attain the maximum

value for the distance Laplacian energy among all connected bipartite graphs of

order n.

Problem 3.2. Characterize the extremal graphs which attain the maximum

value for the distance Laplacian energy among all connected graphs of order n with

independence number α.

4. Distance Laplacian energy of graphs with given connectivity

In this section, we obtain the distance Laplacian spectrum of the join of a con-

nected graph G0 with the union of two connected graphs G1 and G2. We show the

existence of some new families of graphs having all the distance Laplacian eigenval-

ues as integers. We also determine the graph with the minimum distance Laplacian

energy among all the connected graphs with given vertex connectivity.

The vertex connectivity of a graph G, denoted by κ(G), is the minimum number of

vertices of G whose deletion disconnects G. Let Fn be the family of simple connected

graphs on n vertices and let Vk
n = {G ∈ Fn : κ(G) 6 k}.

Let G1(V1, E1) and G2(V2, E2) be two graphs on disjoint vertex sets V1 and V2 of

order n1 and n2, respectively. The union of graphsG1 and G2, is the graphG1∪G2 =

(V1 ∪ V2, E1 ∪E2). The join of graphs G1 and G2, denoted by G1 ▽G2, is the graph

consisting of G1 ∪G2 and all edges joining the vertices in V1 and the vertices in V2.

In other words, the join of two graphs G1 and G2, denoted by G1 ▽G2, is the graph

obtained from G1 and G2 by joining each vertex of G1 to every vertex of G2.
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In the following theorem, we find the distance Laplacian spectrum of the join of

a connected graph G0 with the union of two connected graphs G1 and G2 in terms

of the distance Laplacian spectrum of the graphs G0, G1 and G2.

Theorem 4.1. Let G0, G1 and G2 be the connected graphs of order n0, n1

and n2, respectively. The distance Laplacian spectrum of G0 ▽ (G1 ∪ G2) consists

of eigenvalues (λ + n1 + n2), (µ + n0 + 2n2), (ζ + n0 + 2n1), 2n − n0, n, 0, where

n = n0 + n1 + n2 and λ, µ, ζ varies over the nonzero distance Laplacian eigenvalues

of G0, G1, G2, respectively.

P r o o f. Let Gi, i = 0, 1, 2, be the connected graphs of order ni. Let G = G0 ▽
(G1 ∪G2) be the join of graphs G0 and G1 ∪G2. Clearly, G is a graph of diameter 2.

Let DL(G0), D
L(G1) and DL(G2) be respectively the distance Laplacian matrices

of the graphs G0, G1 and G2. By suitably labelling the vertices of G, it can be seen

that the distance Laplacian matrix of G is

DL(G) =





b0 −Jn0×n1
−Jn0×n2

−Jn1×n0
b1 −2Jn1×n2

−Jn2×n0
−2Jn2×n1

b2



 ,

where b0 = (2n− n1 − n2)In0
− 2Jn0

−DL(G0), bi = (2n− n0)Ini
− 2Jni

−DL(Gi),

for i = 1, 2, Jni×nj
is the all one matrix of order ni × nj , Ink

is the identity matrix

of order nk. Let eni
= (1, 1, . . . , 1) be the all 1-vector of order ni, i = 0, 1, 2. It is

well known that eni
is an eigenvector of Gi for the distance Laplacian eigenvalue 0

and any other eigenvector x of Gi is orthogonal to eni
. Let x be any eigenvector

of G0 for the nonzero distance Laplacian eigenvalue λ. Then x ⊥ en0
. Consider the

column vector X = (x⊤ 0⊤n1×1 0⊤n2×1 )
⊤
. We have

DL(G)X =





(2n− n1 − n2)In0
− 2Jn0

−DL(G0)x

0

0



 = (2n− n1 − n2 − λ)X,

which implies that 2n−n1−n2−λ is an eigenvalue ofDL(G) for each nonzero distance

Laplacian eigenvalue λ ofG0. In this way, we get n0−1 distance Laplacian eigenvalues

of G. Similarly, if 0 6= µ is a distance Laplacian eigenvalue of G1 with eigenvector y,

y ⊥ en1
, then it can be seen that the column vector Y = ( 0⊤n0×1 y⊤ 0⊤n2×1 )

⊤
is

an eigenvector of DL(G) for the eigenvalue 2n−n0−µ. This implies that 2n−n0−µ

is an eigenvalue of DL(G) for each nonzero distance Laplacian eigenvalue µ of G1. In

this way, we get other n1−1 distance Laplacian eigenvalues of G. Lastly, if 0 6= ζ is a

distance Laplacian eigenvalue of G2 with eigenvector z, z ⊥ en2
, then it can be seen

that the column vector Z = ( 0⊤n0×1 0⊤n1×1 z⊤ )⊤ is an eigenvector of DL(G) for
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the eigenvalue 2n−n0−ζ. This implies that 2n−n0−ζ is an eigenvalue ofDL(G) for

each nonzero distance Laplacian eigenvalue ζ of G2. In this way, we get another n2−1

distance Laplacian eigenvalues of G. Thus, we get a total of n0−1+n1−1+n2−1 =

n− 3 distance Laplacian eigenvalues of G. The remaining three distance Laplacian

eigenvalues of G are given by the quotient matrix of DL(G), which is

M =





n1 + n2 −n1 −n2

−n0 n0 + 2n2 −2n2

−n0 −2n1 n0 + 2n1



 .

Since each row sum of matrix M is zero, it follows that one of the eigenvalues

of this matrix is 0. The other two eigenvalues of M are given by the roots of

x2 − (3n− n0)x + n(2n− n0) = 0. This completes the proof. �

A graphG is said to be an adjacency integral (Laplacian integral, distance integral)

graph if all its adjacency eigenvalues (Laplacian eigenvalues, distance eigenvalues)

are integers. Likewise, a graph G is called a distance Laplacian integral graph if all

its distance Laplacian eigenvalues are integers. From Theorem 4.1 it is clear that

if all the graphs G0, G1 and G2 are distance Laplacian integrals, then the graph

G = G0▽(G1∪G2) is also a distance Laplacian integral graph. It is well known that

the complete graph Kn, the complete bipartite graph Ka,n−a, the complete split

graph CSa,n−a, the pineapple graph PAn,p (the graph obtained from a clique Kn−p

by adding p pendent edges to a vertex of Kn−p) and the graph S+ (the graph

obtained from the star graph K1,n−1 by adding an edge between two pendent ver-

tices) are all Laplacian integral graphs. Therefore, using Theorem 4.1, we have the

following observation.

Theorem 4.2. Let n = n0+n1+n2. Then each of the graphsKn0
▽(Kn1

∪Kn2
),

Kn0
▽ (Kn1−a,a ∪ Kn2

), Kn0−a,a ▽ (Kn1
∪ Kn2

), Kn0−a,a ▽ (Kn1−b,b ∪ Kn2
),

Kn0−a,a▽(Kn1−b,b∪Kn2−c,c), CSa,n0−a▽(Kn1
∪Kn2

), CSa,n0−a▽(CSb,n1−b∪Kn2
),

CSa,n0−a▽(CSb,n1−b∪CSc,n2−c, Kn0−a,a▽(CSb,n1−b∪Kn2
), PAn0,p▽(Kn1

∪Kn2
),

CSa,n0−a▽ (PAn1,p∪Kn2
), CSa,n0−a▽ (PAn1,p∪Kn2−c,c), etc. are distance Lapla-

cian integral graphs.

The following theorem shows that among all connected graphs with a given vertex

connectivity k the graph Kk ▽ (Kt ∪Kn−k−t) has the minimum distance Laplacian

energy.

Theorem 4.3. Let G ∈ Vk
n be a connected graph of order n > 4 having vertex

connectivity number k. Then DLE(G) > t(2n− k − t+ 1)− 2tW (G)/n for 1 6 k <
1
2 (n−2t)−n/(2t); DLE(G) > t(3n−2k−2t)+n(n−t−k−1)−2(n− k − 1)W (G)/n
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for 1
2 (n− 2t)−n/(2t) 6 k < n− t−n/(2t) and DLE(G) > n(n− 1)+2t(n− k− t)−

2(n− 1)W (G)/n for n − t − n/(2t) 6 k 6 n − 2; if k = n − 1, then G ∼= Kn and

so DLE(G) = 2n − 2. Equality occurs in each of these inequalities if and only if

G ∼= Kk ▽ (Kt ∪Kn−k−t), 1 6 t 6 ⌊n−k
2 ⌋.

P r o o f. Let G be a connected graph of order n with vertex connectivity k,

1 6 k 6 n − 1. We first show that UL
i (G) > UL

i (Kk ▽ (Kt ∪ Kn−t−k)) for all

i = 1, 2, . . . , n. If k = n − 1, then G ∼= Kn and Kk ▽ (Kt ∪Kn−t−k) = Kn and so

equality holds in this case. Assume that 1 6 k 6 n− 2, that is, G is not a complete

graph. Suppose that G is the connected graph of order n with vertex connectivity k

for which the spectral parameter UL
i (G) has the minimum possible value. Then it

is clear that G ∈ Vk
n and UL

i (G) attains the minimum value for G. Let S be a ver-

tex cut set of G with |S| = k. Let G1, G2, . . . , Gr be the connected components

of the graph G − S. We will show the number of components of graph G − S is

two, that is, r = 2. For if r > 2, then adding an edge between any two compo-

nents, say G1 and G2 of G − S, gives the graph G′ = G + e, which is such that

the vertex connectivity of G′ is k. Clearly, G′ ∈ Vk
n , also by Lemma 2.1, we have

UL
i (G) > UL

i (G
′). This is a contradiction to the fact UL

i (G) attains the minimum

possible value for G. Therefore, we must have r = 2. Further, we claim that each

of the components G1, G2 and the vertex induced subgraph 〈S〉 are cliques. For
if one among them, say G1, is not a clique, then adding an edge between the two

non adjacent vertices of G1 gives a graph H having vertex connectivity the same

as the vertex connectivity of G. Clearly, H ∈ Vk
n and by Lemma 2.1, we have

UL
i (G) > UL

i (H), which is a contradiction as UL
i (G) attains the minimum possible

value for G. Thus, G must be of the form G = Kk ▽ (Kt ∪Kn−k−t), 1 6 t 6 ⌊n−k
2 ⌋.

This shows that for all G ∈ Vk
n , the spectral parameter U

L
i (G) has the minimum

possible value for the graph Kk ▽ (Kt ∪ Kn−k−t). That is, for all G ∈ Vk
n we

have UL
i (G) > UL

i (Kk ▽ (Kt ∪Kn−t−k)). With this, from the definition of distance

Laplacian energy, it follows that

(4.1) DLE(G) = 2
(

UL
σ (G)− 2σW (G)

n

)

= 2 max
16j6n

( j
∑

i=1

̺Li (G)− 2jW (G)

n

)

> 2 max
16j6n

( j
∑

i=1

̺Li (Kk ▽ (Kt ∪Kn−t−k))−
2jW (G)

n

)

.

Taking Gn0
= Kk, Gn1

= Kt, Gn2
= Kn−k−t, n0 = k, n1 = t and n2 = n − t − k

in Theorem 4.1, we find that the distance Laplacian spectrum of the graph

Kk▽(Kt∪Kn−t−k) is {2n−k, (2n−t−k)[t−1], (n+t)[n−t−k−1], n[k], 0}. Let σ be the
number of distance Laplacian eigenvalues of Kk ▽ (Kt ∪Kn−t−k) which are greater

than or equal to that 2W (Kk ▽ (Kt ∪Kn−t−k))/n = (n2 − n+ 2nt− 2t2 − 2kt)/n.
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It is easy to see that 2n − k is the distance Laplacian spectral radius of the

graph Kk ▽ (Kt ∪ Kn−t−k) and for this eigenvalue we always have 2n − k >

2W (Kk ▽ (Kt ∪Kn−t−k))/n. For the eigenvalue 2n − k − t we have 2n − k − t >

2W (Kk ▽ (Kt ∪Kn−t−k))/n = (n2 − n+ 2nt− 2t2 − 2kt)/n, which gives

(4.2) 2t2 − (3n− 2k)t+ (n2 + n− kn) > 0.

The zeros of the polynomial g1(t) = 2t2 − (3n − 2k)t + (n2 + n − kn) are y1 =
1
2 (3n− 2k+

√

(n− 2k)2 − 8n) and y2 = 1
2 (3n− 2k−

√

(n− 2k)2 − 8n). This shows

that g1(t) > 0 for all t 6 y2 and t > y1. Since

n− k

2
<

3n− 2k −
√

(n− 2k)2 − 8n

2
= y2

always holds, it follows that g1(t) > 0 for all t 6 1
2 (n− k). For the eigenvalue n+ t

we have n+ t > 2W (Kk ▽ (Kt ∪Kn−t−k))/n = (n2 − n+ 2nt− 2t2 − 2kt)/n giving

that 2t2 − (n− 2k)t+ n > 0, which in turn gives k > 1
2 (n− 2t)− n/(2t). This shows

that n+ t > 2W (Kk ▽ (Kt ∪Kn−t−k))/n for all k > 1
2 (n− 2t)− n/(2t) and n+ t <

2W (Kk ▽ (Kt ∪Kn−t−k))/n for all k < 1
2 (n − 2t) − n/(2t). Lastly, for the eigen-

value n we have n > 2W (Kk ▽ (Kt ∪Kn−t−k))/n = (n2 − n+ 2nt− 2t2 − 2kt)/n

giving that 2t2 − (2n − 2k)t + n > 0, which in turn gives that k > n − t − n/(2t).

This shows that n > 2W (Kk ▽ (Kt ∪Kn−t−k))/n for all k > n − t − n/(2t) and

n < 2W (Kk ▽ (Kt ∪Kn−t−k))/n for all k < n− t− n/(2t). From this discussion it

follows that if 1 6 k < 1
2 (n − 2t)− n/(2t), then σ = t, if 1

2 (n − 2t)− n/(2t) 6 k <

n − t − n/(2t), then σ = n − k − 1 and if k > n − t − n/(2t), then σ = n − 1. If

1 6 k < 1
2 (n− 2t)− n/(2t), then from (4.1) it follows that

DLE(G) > 2 max
16j6n

( j
∑

i=1

̺Li (Kk ▽ (Kt ∪Kn−t−k))−
2jW (G)

n

)

> 2

( t
∑

i=1

̺Li (Kk ▽ (Kt ∪Kn−t−k))−
2tW (G)

n

)

= t(2n− k − t+ 1)− 2tW (G)

n
.

If 1
2 (n− 2t)− n/(2t) 6 k < n− t− n/(2t), then from (4.1) it follows that

DLE(G) > 2 max
16j6n

( j
∑

i=1

̺Li (Kk ▽ (Kt ∪Kn−t−k))−
2jW (G)

n

)

> 2

(n−k−1
∑

i=1

̺Li (Kk ▽ (Kt ∪Kn−t−k)) −
2(n− k − 1)W (G)

n

)

= t(3n− 2k − 2t) + n(n− t− k − 1)− 2(n− k − 1)W (G)

n
.
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If n− t− n/(2t) 6 k 6 n− 1, then from (4.1) it follows that

DLE(G) > 2 max
16j6n

( j
∑

i=1

̺Li (Kk ▽ (Kt ∪Kn−t−k))−
2jW (G)

n

)

> 2

(n−1
∑

i=1

̺Li (Kk ▽ (Kt ∪Kn−t−k))−
2(n− 1)W (G)

n

)

= n(n− 1) + 2t(n− k − t)− 2(n− 1)W (G)

n
.

This completes the proof. �

The next observation follows from Lemma 2.1 and the proof of Theorem 4.3.

Corollary 4.1. Let G be a connected graph of order n > 4 having vertex con-

nectivity κ 6 k. Let ̺L1 (G) > ̺L2 (G) > . . . > ̺Ln−1(G) > ̺Ln(G) = 0 be the distance

Laplacian eigenvalues of G. Then ̺L1 (G) > 2n−k, ̺Li (G) > 2n− t−k, for 2 6 i 6 t,

̺Li (G) > n + t, for t + 1 6 i 6 n − k − 1 and ̺Li (G) > n for n − k 6 i 6 n − 1.

Equality occurs in each of these inequalities if and only if G ∼= Kk ▽ (Kt ∪Kn−t−k).

In the latter part of this section, we characterized the extremal graphs which

attain the minimum value for the distance Laplacian energy among all connected

graphs with given vertex connectivity. The following problem will be of interest for

the future research.

Problem 4.1. Characterize the extremal graphs which attain the maximum

value for the distance Laplacian energy among all connected graphs of order n with

given vertex connectivity.

5. Conclusion

Let Mn(C) be the set of all square matrices of order n with complex entries.

The trace norm of a matrix M ∈ Mn(C) is defined as ‖M‖∗ =
n
∑

i=1

σi(M), where

σ1(M) > σ2(M) > . . . > σn(M) are the singular values of M . It is well known that

for a symmetric matrix M , if σi(M) is the ith singular value and λi(M) is the ith

eigenvalue, then σi(M) = |λi(M)|. In the light of this definition, it follows that the
distance Laplacian energy DLE(G) of a connected graph G is the trace norm of the

matrix DL(G) − (2W (G)/n)In, where In is the identity matrix of order n. It is an

interesting problem in matrix theory to determine among a given class of matrices

the matrix (or the matrices) which attains the maximum value and the minimum
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value for the trace norm. The trace norm of matrices associated with the graphs and

digraphs are extensively studied. For some recent papers in this direction, see [15]

and the references therein.

Therefore, in this language, Theorem 2.2 gives a relation between the trace norm

of the matrices DL(G) − (2W (G)/n)In and L(G) − (2m/n)In when G is a con-

nected graph of diameter two; Theorem 2.3 gives a lower bound for the trace norm

of DL(G)− (2W (G)/n)In in terms of the order and the trace of the matrix D
L(G);

Theorem 3.1 gives that among all connected bipartite graphs G, the complete bipar-

tite Ka,b attains the minimum trace norm for the matrix DL(G) − (2W (G)/n)In;

Theorem 3.2 gives that among all connected graphs G with given independence num-

ber n− t, 1 6 t 6 n−1, the complete split graph CSt,n−t attains the minimum trace

norm for the matrix DL(G) − (2W (G)/n)In and Theorem 4.3 gives that among all

connected graphs G with given vertex connectivity k, the graph Kk▽ (Kt∪Kn−k−t)

attains the minimum trace norm for the matrix DL(G)− (2W (G)/n)In.
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