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Abstract. We deal with the steady Stokes problem, associated with a flow of a viscous
incompressible fluid through a spatially periodic profile cascade. Using the reduction to
domain Ω, which represents one spatial period, the problem is formulated by means of
boundary conditions of three types: the conditions of periodicity on curves Γ− and Γ+
(lower and upper parts of ∂Ω), the Dirichlet boundary conditions on Γin (the inflow) and Γ0
(boundary of the profile) and an artificial “do nothing”-type boundary condition on Γout
(the outflow). We show that the considered problem has a strong solution with the L

r-
maximum regularity property for appropriately integrable given data. From this we deduce
a series of properties of the corresponding strong Stokes operator.
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1. Introduction

One spatial period: domain Ω. Mathematical models of a flow through a three-

dimensional turbine wheel often use the reduction to two space dimensions, where the

flow is studied as a flow through an infinite planar profile cascade. In an appropriately

chosen Cartesian coordinate system, the cascade consists of an infinite sequence of

profiles Pk (for k ∈ Z), which periodically repeat with the period τ in the x2-

direction. The profiles are supposed to be pairwise disjoint compact sets inside the

stripe R2
(0,d) := {x = (x1, x2) ∈ R2; 0 < x1 < d}. Denote by O the domain R2

(0,d) \
∞⋃

k=−∞

Pk. Due to the spatial periodicity of O, one can naturally assume that the flow
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is spatially periodic, too, with the same spatial period τe2. (Here and further on, we

denote by e2 the unit vector in the x2-direction.) This enables one to study the flow

through one spatial period, which contains just one profile P0, see domain Ω on Fig. 1.

This approach is used e.g. in [12], [23], [38], where the authors present the numerical

analysis of the models or corresponding numerical simulations, and in papers [13]–[15]

and [32]–[34], devoted to theoretical analysis of the mathematical models.
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Figure 1. Domain Ω.

We assume that a viscous incompressible fluid flows into domain O through the

straight line γin (the x2-axis, the inflow) and essentially leaves the cascade through

the straight line γout, whose equation is x1 = d (the outflow). By “essentially” we

mean that we do not exclude possible reverse flows on the line γout. The parts of ∂Ω

(the boundary of Ω), lying on the straight lines γin and γout are the line segments

Γin ≡ A−A+ and Γout ≡ B−B+ of length τ , respectively. The other parts of ∂Ω are

denoted by Γ0 (the boundary of profile P0), Γ− and Γ+ ≡ Γ−+τe2, see Fig. 1. We as-

sume that domain Ω is Lipschitzian and the curves Γ0, Γ− and Γ+ are of the class C
2.

The Stokes boundary-value problem on one spatial period. The fluid

flow is described by the Navier-Stokes equations. An important role in theoretical

studies of these equations is played by the properties of solutions to the steady Stokes

problem. The steady Stokes equation, which comes from the momentum equation in

the Navier-Stokes system if one neglects the derivative with respect to time and the

nonlinear “convective” term, has the form

(1.1) −ν∆u+∇p = f .

It is studied together with the equation of continuity (= condition of incompress-

ibility)

(1.2) divu = 0.
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The unknowns are u = (u1, u2) (the velocity) and p (the pressure). The positive

constant ν is the kinematic coefficient of viscosity and f denotes the external body

force. The density of the fluid can be without loss of generality supposed to be equal

to one. System (1.1), (1.2) is completed by appropriate boundary conditions on ∂Ω.

One can naturally assume that the velocity profile on Γin is known, which leads to

the inhomogeneous Dirichlet boundary condition

(1.3) u = g on Γin.

Further, we consider the homogeneous Dirichlet boundary condition

(1.4) u = 0 on Γ0

and the conditions of periodicity on Γ− and Γ+

u(x1, x2 + τ) = u(x1, x2) for x ≡ (x1, x2) ∈ Γ−,(1.5)

∂u

∂n
(x1, x2 + τ) = −

∂u

∂n
(x1, x2) for x ≡ (x1, x2) ∈ Γ−,(1.6)

p(x1, x2 + τ) = p(x1, x2) for x ≡ (x1, x2) ∈ Γ−.(1.7)

Finally, we consider the artificial boundary condition

(1.8) −ν
∂u

∂n
+ pn = h on Γout,

where h is a given vector-function on Γout and n denotes the unit outer normal

vector, which is equal to e1 ≡ (1, 0) on Γout. The boundary condition (1.8) (with

h = 0) is often called the “do nothing” condition, because it naturally follows from

an appropriate weak formulation of the boundary-value problem, see [17] and [20].

On some previous related results. In studies of the Navier-Stokes equations in

channels or profile cascades with artificial boundary conditions on the outflow, many

authors use various modifications of condition (1.8), see, e.g., [8], [13], [14], [15], [32],

[33], [34]. The reason is that while condition (1.8) does not enable one to control the

amount of kinetic energy in Ω in the case of a reverse flow on Γout, the modifications

are suggested so that one can derive an energy inequality, and consequently prove the

existence of weak solutions. In papers [28] and [27], the authors use the boundary

condition on an outflow in connection with a flow in a channel, and they prove

the existence of weak solutions of the Navier-Stokes equations for “small data”.

Possible reverse flows (again on an “outflow” of a channel) are controlled by means

of additional conditions in [24], [25], [26], where the Navier-Stokes equations are

replaced by the Navier-Stokes variational inequalities.
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The regularity up to the boundary of existing weak solutions (stationary or time-

dependent) to the Navier-Stokes equations with the boundary condition (1.8) on

a part of the boundary has not been studied in literature yet. This is mainly because

one at first needs the information on regularity of solutions of the corresponding

steady Stokes problem. However, to our best knowledge, there are only two papers

which bring this information: (1) paper [7], where the authors studied a flow in a 2D

channel D of a special geometry, considering the homogeneous Dirichlet boundary

condition on the walls and condition (1.8) on the outflow, and proved that the velocity

is in W2−β,2(D) for certain β > 0 depending on the geometry of D, provided that

f ∈ L2(D), and (2) paper [36], where the inclusion of the solution (u, p) of the Stokes

problem (1.1)–(1.8) to W2,2(Ω) ×W 1,2(Ω) has been recently proven under natural

assumptions on f , g and h.

Some authors studied the Stokes system with boundary conditions of a similar

nature to (1.8). The so-called Neumann condition T(u, p) · n = h, where T(u, p) =

−pI+ 2ν(∇u)sym is the stress tensor, has been considered in [1] in connection with

the Stokes resolvent problem in an infinite layer Ω = {0 < xn < h} in Rn with

the no slip boundary condition u = 0 on the hyper-plane {xn = 0} and Neumann’s

condition on the hyper-plane {xn = h}. The author obtained estimates of the W 2,r-

norm of u and W 1,r-norm of the pressure p for the range of resolvent parameters,

including a “small” neighborhood of zero. The used procedure is based on the Fourier

transform in the whole space Rn and then an appropriate reduction to Ω. The Stokes

problem in a bounded simply connected domain Ω in R2 with three types of boundary

conditions on ∂Ω, prescribing the normal component of velocity plus the tangential

component of vorticity, or the tangential component of ∂u/∂n − pn + bu, or the

tangential component of T(u, p) · n + bu, where b is a given function, was studied

in [31]. Applying the theory of hydrodynamical potentials and writing the studied

problem in the form of appropriate integral equations, the author derived necessary

and sufficient conditions for the existence of a solution in Ws,r(Ω) ×W s−1,r(Ω) or

in Besov spaces or in the class of classical solutions. A similar method in a planar

bounded simply connected domain has also been applied to the Stokes problem with

the boundary conditions, prescribing p and the tangential component of u, in [30].

One usually says that the Stokes problem has the maximum regularity property

if the solution u, or p, has respectively two or one, spatial derivatives more than

function f , integrable with the same power as f . It should be noted that the maxi-

mum regularity property of solutions of the steady Stokes problem is well known if

domain Ω is sufficiently smooth, see, e.g., [39], Proposition I.2.2, [29], Theorem III.3,

[16], Theorem IV.6.1 and [37], Theorem III.2.1.1 for problems with inhomogeneous

Dirichlet boundary conditions, [4], [9] for problems with the Navier-type boundary

condition and [2], [5], [10] for problems with Navier’s boundary condition on the
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whole boundary. Concerning non-smooth domains, we can cite [18], [22] and [11],

where the authors considered the Stokes problem in a 2D polygonal domain with

the Dirichlet boundary conditions, and the aforementioned paper [36], where the

maximum regularity property of the Stokes problem (1.1)–(1.8) has been proven in

the L2-framework.

On the results of this paper. The main purpose of this paper is to prove

the Lr-maximum regularity property of the steady Stokes problem (1.1)–(1.8) for

r ∈ (1,∞) (see Theorem 3.1). In contrast to [1], [31] and [30], we use the advantage

of having the weak solution u ∈ W1,r(Ω) due to [35], and we can therefore focus

just on the higher regularity and W 2,r-estimates (or W 1,r-estimates) of u (or p). In

the case r > 2, we apply Theorem 2 from [36] in order to obtain the inclusion (u, p)

in W2,2(Ω) ×W 1,2(Ω) and then, using Lemma 2.1 (on properties of the associated

Stokes-type operator Ar), Lemma 2.3 (on a weak solution of the considered Stokes

problem inW1,r(Ω)×Lr(Ω)) and Lemmas 3.2–3.4 (on local regularity properties of

the solution (u, p) in various parts of Ω), we show that (u, p) belongs toW2,r(Ω)×

W 1,r(Ω). In the case 1 < r < 2, we approximate the given data by sequences of data

which yield solutions inW2,2(Ω)×W 1,2(Ω), and afterwards we obtain a solution in

W2,r(Ω)×W 1,r(Ω) by means of an appropriate limit procedure. We also sketch how

Theorem 3.1 can be generalized so that it yields (u, p) ∈ Wn+2,r(Ω)×Wn+1,r(Ω) for

n ∈ {0} ∪ N. The results do not directly follow from the previously cited papers on

the Stokes problem due to the variety of used boundary conditions. In comparison

to [36] (L2-maximum regularity property), the proof of Theorem 3.1 requires a series

of different and subtler tools and arguments. Theorem 3.1 directly implies a series

of properties of the so-called strong Stokes operator Ar, see Remark 3.4.

Finally, note that the presented results on the Lr-maximum regularity property

of the considered Stokes-type problem and the strong Stokes operator Ar play a fun-

damental role in further studies of regularity and the structure of the set of weak

and strong solutions to the corresponding Navier-Stokes problem. (Here, the L2-

maximum regularity property is not sufficient.)

2. Notation and auxiliary results

Notation. We assume that 1 < r <∞ throughout the paper.

⊲ Recall that Ω is a Lipschitzian domain in R2 which represents one spatial period

of an unbounded spatially periodic domain O. (See Section 1 and Fig. 1.) The

boundary of Ω consists of the line segments Γin, Γout and of the C
2-curves Γ−,

Γ+ and Γ0. We denote by n = (n1, n2) the outer normal vector field on ∂Ω.
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⊲ Γ0
in and Γ

0
out denote the open line segment with the end points A−, A+ and B−,

B+, respectively. Similarly, Γ
0
− and Γ0

+ denote the curve Γ− and Γ+ without

the end points A−, B− and A+, B+, respectively.

⊲ We denote by ‖·‖r the norm in Lr(Ω) or in Lr(Ω) or in Lr(Ω)2×2. Similarly,

‖·‖s,r is the norm in W s,r(Ω) or inWs,r(Ω) or in W s,r(Ω)2×2.

⊲ For k ∈ N we denote by W k,r
per (O) the space of functions from W k,r

loc (O), τ -

periodic in variable x2, whose restriction to Ω is in W
k,r(Ω).

⊲ W k,r
per (Ω) is the space of functions that can be extended from Ω to O as functions

in W k,r
per (O). (The traces of these functions on Γ− and Γ+ satisfy the condition

of periodicity, analogous to (1.5).)

⊲ W
k−1/r,r
per (γout) (for k ∈ N) denotes the space of τ -periodic functions in

W
k−1/r,r
loc (γout).

⊲ W
k−1/r,r
per (Γout) is the space of functions from W k−1/r,r(Γout) that can be ex-

tended from Γout to γout as functions in W
k−1/r,r
per (γout).

⊲ The space W
k−1/r,r
per (Γin) is defined by analogy with W

k−1/r,r
per (Γout).

⊲ Vector functions and spaces of vector functions are denoted by boldface letters.

Spaces of 2nd-order tensor functions are denoted by the superscript 2× 2.

⊲ C∞
σ (Ω) denotes the linear space of all infinitely differentiable divergence-free

vector functions in Ω, whose support is disjoint with Γin ∪ Γ0 and that sat-

isfy, together with all their derivatives (of all orders), the condition of peri-

odicity (1.5). Note that each w ∈ C∞
σ (Ω) automatically satisfies the outflow

condition
∫
Γout

w · n dl = 0.

⊲ V1,r
σ (Ω) is the closure of C∞

σ (Ω) in W1,r(Ω). It is a space of divergence-free

vector functions from W1,r(Ω), whose traces on Γin ∪ Γ0 are equal to zero

and the traces on Γ− and Γ+ satisfy the condition of periodicity (1.5). Since

functions from V1,r
σ (Ω) are equal to zero on Γin∪Γ0 (in the sense of traces) and

domain Ω is bounded, the norm in V1,r
σ (Ω) is equivalent to ‖∇·‖r.

⊲ The conjugate exponent to r is denoted by r′, the dual space to W
1,r′

0 (Ω) is

denoted byW−1,r(Ω) and the dual space toW1,r′(Ω) is denoted byW−1,r
0 (Ω).

The corresponding norms are denoted by ‖·‖W−1,r and ‖·‖
W

−1,r
0

.

⊲ V−1,r
σ (Ω) denotes the dual space to V1,r′

σ (Ω). The duality pairing between

V−1,r
σ (Ω) and V1,r′

σ (Ω) is denoted by 〈·, ·〉
(V−1,r

σ ,V1,r′
σ )
. The norm in V−1,r

σ (Ω)

is denoted by ‖·‖
V

−1,r
σ
.

⊲ Denote by Ar the linear mapping V
1,r
σ (Ω) → V−1,r

σ (Ω) defined by the equation

(2.1) 〈Arv,w〉
(V−1,r

σ ,V1,r′
σ )

= (∇v,∇w) for v ∈ V1,r
σ (Ω) and w ∈ V1,r′

σ (Ω),

where (∇v,∇w) represents the integral
∫
Ω∇v : ∇w dx.

⊲ R2
d− denotes the half-plane {(x1, x2) ∈ R2; x1 < d}.
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⊲ We use c as a generic constant, i.e., a constant whose values may change through-

out the text.

Further, we cite some auxiliary results from previous papers. They all concern in

a certain sense the equation Arv = f , which can be interpreted as the weak Stokes

problem.

Lemma 2.1. Ar is a bounded, closed and one-to-one operator from V1,r
σ (Ω) to

V−1,r
σ (Ω) with D(Ar) = V1,r

σ (Ω) and R(Ar) = V−1,r
σ (Ω). The adjoint operator

to Ar is Ar′ .

Lemma 2.1 comes from [35], Theorem 1.

For F ∈ Lr(Ω)2×2, define F ∈ V−1,r
σ (Ω) by the formula

(2.2) 〈F,w〉
(V−1,r

σ ,V1,r′
σ )

:= −

∫

Ω

F : ∇w dx

for all w ∈ V1,r′

σ (Ω). Obviously, div F = F in the sense of distributions and

‖F‖
V

−1,r
σ

6 c‖F‖r.

Lemma 2.2. Let g ∈ W
1−1/r,r
per (Γin) be a given function on Γin. There exists

a divergence-free extension g∗ ∈ W1,r
per(Ω) of g from Γin to Ω and a constant c1 > 0,

independent of g, such that

(a) ‖g∗‖1,r 6 c1‖g‖1−1/r,r;Γin
,

(b) g∗ = (Φ/τ)e1 in a neighborhood of Γout, where Φ = −
∫
Γin

g · n dl,

(c) g∗ = 0 in the sense of traces on Γ0.

Lemma 2.2 is a slight modification of Lemma 2 in [35] in the sense that the

function g is supposed to be in W
1−1/r,r
per (Γin) instead of W

s,r(Γin) (for s > 1/r if

1 < r 6 2 and s = 1 − 1/r if r > 2), as in [35]. It can be proven by means of the

same arguments as Lemma 2 in [35].

Define G ∈ V−1,r
σ (Ω) by the formula

(2.3) 〈G,w〉
(V−1,r

σ ,V1,r′
σ )

:=

∫

Ω

∇g∗ : ∇w dx.

The norm of G in V−1,r
σ (Ω) satisfies ‖G‖

V
−1,r
σ

6 c‖∇g∗‖r. Finally, the next

Lemma 2.3 follows from [35], Theorem 2.

Lemma 2.3. Let the elements F and G of V−1,r
σ (Ω) be defined by formulas (2.2)

and (2.3), respectively. Then there exists a unique solution v ∈ V1,r
σ (Ω) of the

equation νArv = F + νG. Moreover, there exists an associated pressure p ∈ Lr(Ω)

such that u := g∗ + v and p satisfy the equation

(2.4) −ν∆u+∇p = div F
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in the sense of distributions in Ω,

(2.5) (−ν∇u− pI− F) · n = 0

holds as an equality inW
−1/r,r
per (Γout) (the dual toW

1−1/r′,r′

per (Γout)) and

(2.6) ‖u‖1,r + ‖p‖r 6 c2(‖F‖r + ‖∇g∗‖r),

where c2 = c2(Ω, ν).

3. The strong Stokes problem

Lemma 3.1. Let f ∈ Lr(Ω) and h ∈ W
1−1/r,r
per (Γout) be given. Then there exists

F ∈ W 1,r
per(Ω)

2×2 such that div F = f a.e. in Ω, F = O on Γ0, F · n = h a.e. on Γout

in the sense of traces and

(3.1) ‖F‖1,r 6 c(‖f‖r + ‖h‖1−1/r,r;Γout
),

where c = c(Ω, r).

We present only main ideas of the proof of Lemma 3.1, because there exists a series

of analogous results in literature. The authors typically show that to given func-

tions f in Ω and g on ∂Ω (satisfying
∫
Ω g ·n dx = 0), there exists a vector function v

in Ω, satisfying div v = f in Ω and v = g on ∂Ω. See, e.g., [6], Lemma 3.3 or [16],

Theorem III.3.3, where f and g are supposed to be in Lr(Ω) and W1−1/r,r(∂Ω),

respectively, and v is constructed inW1,r(Ω), satisfying appropriate estimates.

Principles of the p r o o f. (1) Denote by Ω− the mirror image of Ω in the half-

plane x1 < 0 with respect to the line x1 = 0. Hence,

Ω− = {x = (x1, x2) ∈ R
2; (−x1, x2) ∈ Ω}.

Put Ω̃ := Ω ∪ Γ0
in ∪ Ω−.

(2) Extend f from Ω to Ω̃ as an odd function in variable x1. Then
∫
Ω̃
f dx = 0.

Hence, there exists H0 ∈ W 1,r
0 (Ω̃)2×2 such that divH0 = f in Ω̃ andH0‖1,r;Ω̃ 6 c‖f‖r.

(3) Put h ≡ (h1, h2) := τ−1
∫ B+

B−

h(d, ϑ) dϑ. Let H be the 2 × 2 matrix whose

1st column is (h1, h2)
T and the second column is (0, 0)T . Then divH = 0 and

H · n = h on Γout.

(4) Let ζ = ζ(x1) be an infinitely differentiable even function in [−d, d], supported

in [−d,−d + δ] ∪ [d − δ, d], satisfying ζ(−d) = ζ(d) = 1. (Suppose that δ > 0 is

chosen so small that the profile P0 lies on the left from the line x1 = d − δ.) Put

H1 := ζ(x1)H. Then divH1 = ζ′(x1)h in Ω̃, H1 = O in Γin∪Γ0 andH1·n = h on Γout.
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(5) As
∫
Ω̃
ζ′(x1)h dx = 0, we deduce that there exists H2 ∈W 1,r

0 (Ω̃)2×2, satisfying

divH2 = −ζ′(x1)h in Ω̃ and ‖H2‖1,r;Ω̃ 6 c‖ζ′(x1)h‖r;Ω̃ 6 c‖h‖1−1/r,r;Γout
.

(6) We construct a vector function = (ψ1, ψ2) in W2,r
per(Ω), supported just in the

neighborhood of Γout, satisfying the condition ∂2 = h − h on Γout, and we put

H3 := ∇⊥. (Hence, the ith row in H3 is ∇
⊥ψi = (∂2ψi,−∂1ψi), i = 1, 2.) Then

H3 ∈W 1,r
per(Ω)

2×2, H3 = O on Γin ∪ Γ0, divH3 = 0 in Ω and H3 · n = h− h on Γout.

(7) The sum F := H0 +H1 +H2 +H3 has all the required properties. �

R em a r k 3.1. Let the function g in the assumptions of Lemma 2.2 be in

W
2−1/r,r
per (Γin). Then the extension g∗ of g from Γin to Ω can be constructed so that

in addition to the properties (a)–(c) listed in Lemma 2.2, it is inW2,r(Ω) and

(d) ‖g∗‖2,r 6 c‖g‖2−1/r,r;Γin
, where c is independent of g,

(e) g∗ satisfies the condition of periodicity (1.6) on Γ− ∪ Γ+.

The possibility of the construction of g∗ with the properties (d) and (e) follows,

similarly as Lemma 2.2, from an appropriate modification of the proof of Lemma 2

in [35]. Using the higher regularity of g, one can in principle apply the same argu-

ments so that one obtains the extension g∗ with all the properties (a)–(e).

Theorem 3.1 (On a strong solution of the Stokes problem (1.1)–(1.8)). Let the

closed curve Γ0 (which is the boundary of the profile) be of the class C
2, f ∈ Lr(Ω),

h ∈ W
1−1/r,r
per (Γout), g ∈ W

2−1/r,r
per (Γin) be given. Let F and g∗ be the functions

given by Lemma 3.1 and Remark 3.1. Let the functionals F and G be defined by

formulas (2.2) and (2.3), respectively. Then

(1) the unique solution v of the equation νArv = F + νG belongs to V1,r
σ (Ω) ∩

W2,r(Ω),

(2) there exists an associated pressure p ∈W 1,r(Ω) so that the functions u := g∗+v

and p satisfy equations (1.1) (with f = div F) and (1.2) a.e. in Ω,

(3) u, p satisfy boundary conditions (1.3), (1.4) and (1.8) in the sense of traces on

Γin, Γ0 and Γout, respectively,

(4) u, p satisfy the conditions of periodicity (1.5)–(1.7) in the sense of traces on Γ−

and Γ+,

(5) there exists a constant c3 = c3(ν,Ω) such that

(3.2) ‖u‖2,r + ‖∇p‖r 6 c3(‖f‖r + ‖g‖2−1/r,r;Γin
+ ‖h‖1−1/r,r;Γout

).

R em a r k 3.2. The conclusions u ∈ W2,r(Ω) and p ∈ W 1,r(Ω), following from

Theorem 3.1, together with inequality (3.2), represent the maximum regularity prop-

erty of the Stokes problem (1.1)–(1.8).
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P r o o f of Theorem 3.1. The existence and uniqueness of the solution v∈V1,r
σ (Ω)

of the equation νArv = F+νG and an associated pressure p ∈ Lr(Ω) are guaranteed

by Lemma 2.3. It also follows from Lemma 4 that the functions u := g∗ + v and p

satisfy (2.4)–(2.6). The proof can be split in two cases with respect to value of r.

Case 1: r > 2. Then, due to [36], Theorem 2, v ∈ W2,2
per(Ω) and p ∈ W 1,2

per(Ω),

u and p satisfy equations (2.4), (1.2) a.e. in Ω and the boundary conditions (1.3),

(1.4), (1.8) in the sense of traces on Γin, Γ0 and Γout, respectively. Moreover,

(3.3) ‖u‖2,2 + ‖∇p‖2 6 c(‖f‖2 + ‖g‖3/2,2;Γin
+ ‖h‖1/2,2;Γout

).

This implies the validity of statements (2) and (3). The validity of statement (4)

follows from the fact that v ∈ W2,2
per(Ω) and the extended function g∗ satisfies the

conditions of periodicity (1.5), (1.6). Thus, we only need to prove items (1) and (5).

We split the proof into three lemmas, where we successively show that v ∈ W2,r

and p ∈ W 1,r in the interior of Ω plus the neighborhood of Γ0 and the neighborhood

of any closed subset of Γ0
in (Lemma 3.2), in the neighborhood of Γ

0
out (Lemma 3.3)

and in the neighborhoods of Γ− and Γ+ (Lemma 3.4). Lemmas 3.2–3.4 also provide

estimates which finally imply (3.2).

Lemma 3.2. Let Ω′ be a sub-domain of Ω such that Ω′ ⊂ Ω ∪ Γ0
in ∪ Γ0. Then

v ∈ W2,r(Ω′), p ∈ W 1,r(Ω′) and

(3.4) ‖v‖2,r;Ω′ + ‖∇p‖r;Ω′ 6 c(‖div F‖r + ‖g∗‖2,r + ‖v‖1,r),

where c = c(ν,Ω,Ω′).

P r o o f. Let Ω′′ be a smooth sub-domain of Ω such that Ω′ ⊂ Ω′′ ⊂ Ω, Ω′′ ⊂

Ω ∪ Γ0
in ∪ Γ0 and dist(∂Ω′′ ∩ Ω; ∂Ω′ ∩ Ω) > 0. Let η be an infinitely differentiable

cut-off function in Ω such that supp η ⊂ Ω′′ and η = 1 in Ω′. Put ṽ := ηv and

p̃ := ηp. The functions ṽ, p̃ represent a strong solution of the problem

−ν∆ṽ +∇p̃ = f̃ in Ω′′,(3.5)

div ṽ = h̃ in Ω′′,(3.6)

ṽ = 0 on ∂Ω′′,(3.7)

where

f̃ := ηdiv F− 2ν∇η · ∇v − ν(∆η)v − (∇η)p+ νη∆g∗ and h̃ := ∇η · v.
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As div F ∈ Lr(Ω) and u ∈ W1,r(Ω), v ∈ V1,r
σ (Ω) and p ∈ Lr(Ω) (satisfying (2.6)),

we have f̃ ∈ Lr(Ω), h̃ ∈W 1,r(Ω) and

‖f̃‖r 6 c(‖divF‖r + ‖g∗‖2,r + ‖v‖1,r),(3.8)

‖h̃‖1,r 6 c‖v‖r 6 c‖v‖1,r,(3.9)

where c = c(ν, η). Due to [39], Proposition I.2.3, p. 35, ṽ ∈ W2,r(Ω′′), p̃ ∈ W 1,r(Ω′′)

and

‖ṽ‖2,r;Ω′′ + ‖∇p̃‖r;Ω′′ 6 c(‖f̃‖r;Ω′′ + ‖h̃‖1,r;Ω′′),

where c = c(Ω′′). Consequently, v ∈ W2,r(Ω′), p ∈W 1,r(Ω′) and (3.4) holds. �

Recall that Γ0
out is the open line segment with the end points B− and B+.

Lemma 3.3. Let Ω′ be a sub-domain of Ω such that Ω′ ⊂ Ω ∪ Γ0
out. Then

v ∈ W2,r(Ω′), p ∈ W 1,r(Ω′) and inequality (3.4) holds.

P r o o f. Here, we must use a different method than in the proof of Lemma 3.2.

The reason is that we cannot apply Proposition I.2.3 from [39], because it con-

cerns the Stokes problem with the Dirichlet boundary condition, which we do not

have on Γout.

x1

B0

B1

Γout

Γ
′

out

Γ−

Γ+

Ω
′

γout

x1 = d

U1

U2

Figure 2. The sets Ω′, Γ′out, U1 and U2.

Denote by Γ′
out the intersection of Ω

′ with Γ0
out. We may assume, without loss of

generality, that Γ′
out 6= ∅ and it is a line segment.

Let ̺2 > ̺1 > 0. Denote U1 := {x ∈ R2 ; dist(x,Γ′
out) < ̺1} and U2 := {x ∈ R2 ;

dist(x,Γ′
out) < ̺2}. Suppose that ̺2 is so small that U2 ∩ R2

d− ⊂ Ω. (See Fig. 2.)
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Step 1. We will construct a divergence-free function ṽ inW1,r
0 (U2) that coincides

with v in U1 ∩ R2
d−.

Let η be a C∞-function in R2, supported in U2, such that η = 1 in U1 and η is

symmetric with respect to the line x1 = d. (It means that η(d+ϑ, x2) = η(d−ϑ, x2)

for all ϑ, x2 ∈ R.)

Due to [21], there exists a divergence-free extension v2 of function v from U2∩R2
d−

to the whole set U2, such that v2 ∈ W1,r(U2) and ‖v2‖1,r;U2
6 c‖v‖1,r, where c is

independent of v.

Since ∇η · v2 ∈ W 1,r
0 (U2) and

∫
U2

∇η · v2 dx = 0, there exists (by [16], Theo-

rem III.3.3) v∗ ∈ W
2,r
0 (U2) such that div v∗ = ∇η · v2 in U2 and

‖v∗‖2,r;U2
6 c‖∇η · v2‖1,r;U2

6 c‖v2‖1,r;U2
6 c‖v‖1,r,

where c is independent of v. Extending v∗ by zero to R2 \ U2, we have ‖v∗‖2,r 6

c‖v‖1,r. Put

(3.10) ṽ := ηv2 − v∗, p̃ := ηp.

Function ṽ is divergence-free, belongs toW1,r
0 (U2) and satisfies the estimates

‖ṽ‖1,r;U2
6 c(‖v2‖1,r;U2

+ ‖v∗‖1,r;U2
) 6 c‖v2‖1,r;U2

6 c‖v‖1,r,

where c is independent of v. Moreover, as v ∈ W2,2
per(Ω) and p ∈ W 1,2

per(Ω), the

functions ṽ and p̃ (defined by (3.10) in U2 ∩R2
d− and extended by zero to R

2
d−), are

in W2,2(R2
d−) and W

2,2(R2
d−), respectively. They satisfy equation (3.5) a.e. in the

half-plane R2
d−, where function f̃ is now given by the formula

f̃ := ηdiv F− 2ν∇η · ∇v − ν(∆η)v − (∇η)p+ νη∆g∗ + ν∆v∗ in U2 ∩ R
2
d−

and f̃ := 0 in R2
d− \ U2. This function, although it is different from function f̃ from

the proof of Lemma 3.2, satisfies the estimate (3.8).

Note that

(3.11) ν
∂ṽ

∂n
− p̃n = νη

∂v

∂n
− ν

∂v∗

∂n
− ηpn = η

(
ν
∂u

∂n
− pn

)
− ν

∂v∗

∂n

= −ηF · n− ν
∂v∗

∂n
= −h̃

a.e. on Γout, where

h̃ := ηF · n+ ν
∂v∗

∂n
(in the sense of traces on Γout).

We have used the identities u = v + g∗ (in Ω) and ∂g∗/∂n = 0 (a.e. on Γout).
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Step 2. Function h̃ satisfies the estimates

(3.12) ‖h̃‖1−1/r,r;Γout
6 c‖F‖1−1/r,r;Γout

+ ν
∥∥∥
∂v∗

∂n

∥∥∥
1−1/r,r;Γout

6 c‖F‖1,r + c‖v∗‖2,r;U2

6 c‖F‖1,r + c‖v‖1,r.

Let F̃ be a function in W 1,r
per(Ω)

2×2, provided by Lemma 3.1, where we consider f̃

instead of f and h̃ instead of h. Then div F̃ = f̃ a.e. in Ω and F̃ · n = h̃ a.e. on Γout.

Moreover, due to (3.1), (3.8) and (3.12),

(3.13) ‖F̃‖1,r 6 c‖f̃‖r + c‖h̃‖1−1/r,r;Γout
6 c(‖F‖1,r + ‖g∗‖2,r + ‖v‖1,r).

Let the functional F̃ ∈ V−1,r
σ (Ω) be defined by the same formula as (2.2), where we

only consider F̃ instead of F. We claim that νArṽ = F̃. Indeed, applying (3.11), we

obtain for any w ∈ C∞
σ (Ω):

ν〈Arṽ,w〉
(V−1,r

σ ,V1,r′
σ )

= ν

∫

Ω

∇ṽ : ∇w dx

=

∫

Γout

ν
∂ṽ

∂n
·w dl − ν

∫

Ω

∆ṽ ·w dx

=

∫

Γout

ν
∂ṽ

∂n
·w dl +

∫

Ω

(−∇p̃+ f̃) ·w dx

=

∫

Γout

[
ν
∂ṽ

∂n
− p̃n

]
·w dl +

∫

Ω

div F̃ ·w dx

= −

∫

Γout

h̃ ·w dl +

∫

Γout

(F̃ · n) ·w dl −

∫

Ω

F̃ : ∇w dx

= −

∫

Ω

F̃ : ∇w dx = 〈F̃,w〉
(V−1,r

σ ,V1,r′
σ )

.

(The integrals containing ∂ṽ/∂n, ∆ṽ and ∇p̃, make sense, because ṽ ∈ W2,2(Ω) and

p̃ ∈W 1,2(Ω).) As C∞
σ (Ω) is dense in V1,r′

σ (Ω), the equation ν〈Arṽ,w〉
(V−1,r

σ ,V1,r′
σ )

=

〈F̃,w〉
(V−1,r

σ ,V1,r′
σ )
holds for all w ∈ V1,r′

σ (Ω).

Step 3. In this part, we apply the method of difference quotients (see [3], [19]

and [37]) in order to derive estimate (3.4).

Recall that f̃ is defined in R2
d− and supported in the closure of U2 ∩R2

d−, and h̃ is

defined in Γout and supported in the closure of U2 ∩ γout. For δ ∈ R, denote

Dδ
2 f̃(x1, x2) :=

f̃ (x1, x2 + δ)− f̃(x1, x2)

δ
, Dδ

2h̃(d, x2) :=
h̃(d, x2 + δ)− h̃(d, x2)

δ
.

Dδ
2 f̃ and D

δ
2h̃ are the so-called difference quotients.
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Recall that F̃ ∈ W 1,r
per(Ω)

2×2 and F̃ = O in the sense of traces on Γ0, which

follows from Lemma 3.1. Thus, if F̃ is extended by O from Ω to Ω ∪ P0, then

the extended function is in W 1,r
per(Ω ∪ P0)

2×2, div F̃ = O in P0 and ‖F̃‖1,r;Ω∪P0
=

‖F̃‖1,r. Furthermore, F̃ can be extended from Ω ∪ P0 to the stripe R2
(0,d) :=

{x = (x1, x2) ∈ R2; 0 < x1 < d} as τ -periodic function in variable x2, lying in

W 1,r
loc (R

2
(0,d)). Let us denote the extension again by F̃ and define

Dδ
2F̃(x1, x2) :=

F̃(x1, x2 + δ)− F̃(x1, x2)

δ
for (x1, x2) ∈ R

2
(0,d).

Denote F̃δ(x1, x2) := δ−1
∫ δ

0
F̃(x1, x2 + ϑ) dϑ. Then

Dδ
2F̃(x1, x2) =

1

δ

∫ δ

0

∂2F̃(x1, x2 + ϑ) dϑ = ∂2F̃δ(x1, x2).

Using the τ -periodicity of the function F̃δ in variable x2 in R2
(0,d) and applying

Hölder’s inequality, we get

‖F̃δ‖
r
r;Ω∪P0

=

∫

Ω∪P0

∣∣∣∣
1

δ

∫ δ

0

F̃(x1, x2 + ϑ) dϑ

∣∣∣∣
r

dx

=

∫ d

0

∫ τ

0

∣∣∣∣
1

δ

∫ δ

0

F̃(x1, x2 + ϑ) dϑ

∣∣∣∣
r

dx2 dx1

6

∫ d

0

∫ τ

0

1

δ

∫ δ

0

|F̃(x1, x2 + ϑ)|r dϑ dx2 dx1

=

∫ d

0

1

δ

∫ δ

0

∫ τ

0

|F̃(x1, y2)|
r dy2 dϑ dx1

=

∫ d

0

∫ τ

0

|F̃(x1, y2)|
r dy2 dx1

=

∫

Ω∪P0

|F̃(x)|r dx = ‖F̃‖rr;Ω∪P0
.

We can similarly show that ‖∇F̃δ‖rr;Ω∪P0
6 ‖∇F̃‖rr;Ω∪P0

. Consequently, ‖F̃δ‖1,r 6

‖F̃δ‖1,r;Ω∪P0
6 ‖F̃‖1,r;Ω∪P0

6 c‖F̃‖1,r. Thus,

(3.14) ‖Dδ
2F̃‖r = ‖∂2F̃δ‖r 6 ‖F̃δ‖1,r 6 c‖F̃‖1,r 6 c(‖f̃‖r + ‖h̃‖1−1/r,r;Γout

).

Let Dδ
2ṽ and D

δ
2p̃ be defined by analogy with D

δ
2 f̃ and D

δ
2F̃. The functions D

δ
2ṽ,

Dδ
2p̃ satisfy the equations

−ν∆Dδ
2ṽ +∇Dδ

2p̃ = divDδ
2F̃, divDδ

2ṽ = 0

a.e. in Ω. (The validity of these equations a.e. in Ω follows from the inclusions

ṽ ∈ W2,2(Ω) and p̃ ∈ W 1,2(Ω).) Since ṽ and p̃ satisfy (3.11) not only on Γout, but
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also on γout, the functions D
δ
2ṽ and D

δ
2p̃ satisfy the boundary condition

−ν
∂Dδ

2ṽ

∂n
+Dδ

2p̃n = Dδ
2h̃

on Γout. From this, one can deduce that νArD
δ
2ṽ = F̃δ, where the functional F̃δ

in V−1,r
σ (Ω) is defined by the same formula as (2.2), where we only consider Dδ

2F̃

instead of F. It follows from Lemma 2.1 that

‖∇Dδ
2ṽ‖r 6 ‖F̃δ‖V−1,r

σ
.

Since ‖F̃δ‖V−1,r
σ

6 ‖Dδ
2F̃‖r 6 c(‖f̃‖r + ‖h̃‖1−1/r,r;Γout

), we obtain

(3.15) ‖∇Dδ
2ṽ‖r 6 c(‖f̃‖r + ‖h̃‖1−1/r,r;Γout

).

Applying further Lemma 2.3 (with g∗ = 0), (3.14) and (3.15), we obtain the

estimate of Dδ
2p̃:

(3.16) ‖Dδ
2p̃‖r 6 c(‖∇Dδ

2ṽ‖r + ‖Dδ
2F̃‖r) 6 c(‖f̃‖r + ‖h̃‖1−1/r,r;Γout

).

As the right-hand sides of (3.15) and (3.16) are independent of δ, we may let δ tend

to 0 and we obtain

(3.17) ‖∇∂rṽ‖r + ‖∂2p̃‖r 6 c(‖f̃‖r + ‖h̃‖1−1/r,r;Γout
).

This shows that ∂1∂2ṽ1, ∂
2
2 ṽ1, ∂1∂2ṽ2, ∂

2
2 ṽ2 and ∂2p̃ are all in L

r(Ω) and their

norms are less than or equal to the right-hand side of (3.17). Consequently, as ṽ

is divergence-free, the same statement also holds for ∂21 ṽ1. Now, from (3.5) (con-

sidering just the first scalar component of this vectorial equation), we deduce that

∂1p̃ ∈ Lr(Ω). Finally, considering the second scalar component in equation (3.5), we

obtain ∂21 ṽ2 ∈ Lr(Ω), too. Thus, applying also (3.8) and (3.9), we get

‖ṽ‖2,r + ‖∇p̃‖r 6 c(‖F‖1,r + ‖g∗‖2,r + ‖v‖1,r).

This inequality, formulas (3.9), the estimate of ‖v∗‖2,r and the fact that η = 1 on U1

yield (3.4). �

The next corollary is an immediate consequence of Lemmas 3.2 and 3.3.

Corollary 3.1. Let Ω′ be a sub-domain of Ω such that Ω′ ⊂ Ω ∪ Γ0
in ∪ Γ0 ∪ Γ0

out·

Then v ∈ W2,r(Ω′), p ∈W 1,r(Ω′) and estimate (3.3) holds.
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Lemma 3.4. Let Ω′ be a sub-domain of Ω such that ∂Ω′∩Γ0 = ∅ and Γ+ ⊂ ∂Ω′.

Then v ∈ W2,r(Ω′), p ∈W 1,r(Ω′) and

(3.18) ‖v‖2,r;Ω′ + ‖∇p‖r;Ω′ 6 c(‖div F‖r + ‖g∗‖2,r + ‖v‖1,r),

where c = c(ν,Ω,Ω′).

Lemma 3.4 is quite obvious because Γ+ is in fact an artificial boundary of Ω and

all relevant quantities are τ -periodic in variable x2. Nevertheless, we sketch the

principle of the proof: consider δ > 0 and denote

Aδ
− := A− + δe2, Aδ

+ = A+ + δe2,

Bδ
−
:= B− + δe2, Bδ

+ = B+ + δe2,

Γδ
in := Γin + δe2, Γδ

−
= Γ− + δe2,

Γδ
+ := Γ+ + δe2, Γδ

out = Γout + δe2,

where e2 is the unit vector in the direction of the x2-axis. Suppose that δ > 0 is

so small that the curve Γδ
− still lies below the profile P0. Denote by Ω

δ the domain

bounded by the curves Γδ
in, Γ

δ
−
, Γδ

out, Γ
δ
+ and Γ0. The “open” curve Γ

0
+ is a subset

of Ωδ. Thus, applying appropriately Corollary 3.1 in domain Ωδ instead of Ω, we

deduce that v and p (extended periodically in the direction of x2) are regular in a

neighborhood of Γ0
+ in Ωδ. This implies the statement of the lemma.

C om p l e t i o n o f t h e p r o o f of Theorem 3.1 in the case r > 2. An analogue

of Lemma 3.4 also holds if one considers Ω′, satisfying the condition Γ− ⊂ ∂Ω′

instead of Γ+ ⊂ ∂Ω′. This and Lemmas 3.2–3.4 complete the proof of statements (1)

and (5) of Theorem 3.1.

Case 2: 1 < r < 2. There exist sequences {fn}, {hn} and {gn} in L2(Ω),

W
1/2,2
per (Γout) and W3/2,2(Γin), respectively, such that f

n → f in Lr(Ω), hn → h

in W
1−1/r,r
per (Γout) and gn → g in W

2−1/r,r
per (Γin) for n → ∞. Let Fn and gn

∗ be

the functions given by Lemma 3.1, Lemma 2.2 and Remark 3.1 in the case that we

consider fn, hn and gn instead of f , h and g, respectively. Let the functionals Fn

and Gn (corresponding to Fn and gn
∗
) be defined by formulas (2.2) and (2.3), re-

spectively. Then it follows from [36], Theorem 2, and also from the first part of this

proof (where we assumed that r > 2), that the unique solution vn of the equation

νA2v
n = Fn + νGn belongs to V1,r

σ (Ω) ∩W2,r(Ω) and the associated pressure pn

lies in W 1,r(Ω), the functions un := gn
∗
+ vn and pn satisfy equations (1.1) (with

fn = div Fn) and (1.2) a.e. in Ω, un, pn satisfy boundary conditions (1.3), (1.4)

and (1.8) in the sense of traces on Γin, Γ0 and Γout, respectively, u
n, pn satisfy the
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conditions of periodicity (1.5)–(1.7) in the sense of traces on Γ− and Γ+ and

(3.19) ‖un‖2,2 + ‖∇pn‖2 6 c(‖fn‖2 + ‖gn‖3/2,2;Γin
+ ‖hn‖1/2,2;Γout

),

where c = c(ν,Ω). However, estimate (3.2) does not follow from (3.19) by the limit

transition for n→ ∞, because the norms ‖fn‖2, ‖g
n‖3/2,2;Γin

and ‖hn‖1/2,2;Γout
may

tend to infinity if n→ ∞. Nevertheless, repeating the procedures from the proofs of

Lemmas 3.2–3.4, we also derive that

(3.20) ‖un‖2,r + ‖∇pn‖r 6 c(‖fn‖r + ‖gn‖2−1/r,r;Γin
+ ‖hn‖1−1/r,r;Γout

),

where c = c(ν,Ω, r). The limit transition for n→ ∞ yields (3.2). �

R em a r k 3.3. Theorem 3.1 can be generalized so that it yields (u, p) ∈

Wn+2,r(Ω)×Wn+1,r(Ω) for n ∈ {0} ∪N. The generalization, however, requires the

boundary Γ0 of profile P0 to be of the class C
2+n, the function F in Wn+1,r

per (Ω)2×2

and the given velocity profile g on Γin to be in W
n+2−1/r,r
per (Γin). One also needs

a modification of Lemma 2.2 and Remark 3.1, which provides g∗ inW
n+2,r
per (Ω). We

do not include the proof of the generalization here, because it would be more or less

just a technical modification of the proof of Theorem 3.1.

R em a r k 3.4 (On the strong Stokes operator Ar). Denote (for 1 < r < ∞)

by Lr
σ(Ω) the closure of C

∞
σ (Ω) in Lr(Ω). Functions v from Lr

σ(Ω) are divergence-

free in the sense of distributions in Ω, their normal components (in the sense of

traces) belong to the space W−1/r,r(∂Ω) (the dual to W 1−1/r′,r′(∂Ω), see [16], The-

orem III.2.2), satisfy v ·n = 0 as an equality in W−1/r,r(Γin ∪Γ0) and the condition

of periodicity v · n|Γ−
= −v · n|Γ+

in the sense that

〈v·n, ϕ(·)〉(W−1/r,r(Γ−),W1−1/r′,r′ (Γ−)) = −〈v·n, ϕ(·−τe2)〉(W−1/r,r(Γ+),W1−1/r′,r′ (Γ+))

for each function ϕ ∈ W 1−1/r′,r′(Γ−). Moreover,

〈v · n, 1〉(W−1/r,r(Γout),W1−1/r′,r′ (Γout))
= 0.

Obviously, V1,r
σ (Ω) →֒ Lr

σ(Ω) →֒ V−1,r
σ (Ω).

Denote by D(Ar) the set {v ∈ V1,r
σ (Ω); Arv ∈ Lr

σ(Ω)} and define

Ar := Ar

∣∣
D(Ar)

.

(Recall that operator Ar is defined in Section 1 and its main properties are given by

Lemma 2.1.) In contrast to the “weak Stokes operator” Ar, it is logical to call Ar
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the strong Stokes operator. Considering g = 0 and h = 0 in Theorem 3.1, we deduce

that D(Ar) = V1,r
σ (Ω) ∩W2,r(Ω) and

(3.21) ‖v‖2,r 6 c3‖Arv‖r

for v ∈ D(Ar). Moreover, using (3.21), it is easy to show that Ar is a one-to-one,

densely defined and closed operator in Lr
σ(Ω) with a compact resolvent. It follows

directly from Lemma 2.1 and the definition of Ar that R(Ar) (the range of Ar) is

the whole space Lr
σ(Ω).
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