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TOPOLOGICAL ENTROPY AND DIFFERENTIAL EQUATIONS

Jan Andres and Pavel Ludvík

Abstract. On the background of a brief survey panorama of results on the
topic in the title, one new theorem is presented concerning a positive topological
entropy (i.e. topological chaos) for the impulsive differential equations on the
Cartesian product of compact intervals, which is positively invariant under the
composition of the associated Poincaré translation operator with a multivalued
upper semicontinuous impulsive mapping.

1. Introduction and some preliminaries

The main aim of this short note is two-fold: (i) to describe briefly the recent state
of the study of a topic at the title, (ii) to indicate the investigation of topological
entropy for differential equations with multivalued impulses.

The first definition of topological entropy was given in 1965 by Adler, Konheim
and McAndrew for (single-valued) continuous maps in compact topological spaces
(see [1]). Another definition was introduced in 1971 by Bowen for uniformly conti-
nuous maps in not necessarily compact metric spaces (see [10]), who proved the
equivalence of his definition with the one in [1] in compact metric spaces.

Definition 1 (cf. [10]). Let (X, d) be a metric space, K be a compact subset
of X and f : X → X be a uniformly continuous map. A set S ⊂ K is called
(n, ε)-separated with respect to f , for a positive integer n and ε > 0, if for every
pair of distinct points x, y ∈ S, x 6= y, there is at least one k with 0 ≤ k < n such
that d(fk(x), fk(y)) > ε. Then, denoting the number of different orbits of length n
by

s(n, ε, f,K) := max{#S : S ⊂ X is an (n, ε)-separated set with respect to f} ,

the topological entropy h(f) of f is defined as

(1) h(f) := sup
K ⊂ X, K is compact

lim
ε→0

[
lim sup
n→∞

1
n

log s(n, ε, f,K)
]
.
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The topological entropy in the sense of Definition 1 is, besides other things, a
topological invariant, but not a homotopy invariant. If f : Rn → Rn is a linear map,
then according to [10, Theorem 15]

(2) h(f) =
∑
|λi|>1

log |λi| ,

where λ1, . . . , λn are the eigenvalues of f .
Definition 1 can be applied to differential equations via the associated Poincaré

translation operators along their trajectories (see Section 2 below).
In this way, the upper and lower estimates of topological entropy were obtained

for linear systems of ordinary differential equations in e.g. [9, 12,23,24].
For nonlinear systems, the obtained results can be characterized as either

generic in R2 (lower estimates) by means of the Artin braid group theory (see e.g.
[15, 19, 20,27]) or rather implicit for higher-dimensional systems (upper and lower
estimates, especially in R3) (see e.g. [16], [21], and the references therein) or just
numerical (see e.g. [26]).

For systems with impulses, the results are rare. For nonlinear impulsive systems
(see e.g. [2, 5, 8]), and for multivalued or discontinuous impulsive systems (see e.g.
[3, 4, 7, 13,14]).

Of course, if the systems or impulses are multivalued, then Definition 1 is
insufficient, and must be appropriately changed. A suitable definition with this
respect seems to be the following one by Kelly and Tennant (see [17]).

Definition 2 (cf. [17]). Let (X, d) be a compact metric space and ϕ : X →
K(X), where K(X) := {K ⊂ X : K is a non-empty compact subset}, be an upper
semicontinuous map (i.e. ϕ has a closed graph Γϕ := {(x, y) ∈ X ×X : y ∈ ϕ(x)}.

Let the space of n-orbits of ϕ be denoted as

Orbn(ϕ) := {(x1, . . . , xn) ∈ Xn : xi+1 ∈ ϕ(xi), i = 1, . . . , n− 1} .

We say that S ⊂ Orbn(ϕ) is (n, ε)-separated for ϕ, for a positive integer n and
ε > 0, if for every pair of distinct n-orbits {xi}ni=1 and {yi}ni=1 there is at least one
k with 1 ≤ k ≤ n such that d(xk, yk) > ε.

The topological entropy hKT(ϕ) of ϕ is defined as

(3) hKT(ϕ) := lim
ε→0

[
lim sup
n→∞

1
n

log(s(n, ε, ϕ))
]
,

where s(n, ε, ϕ) stands for the largest cardinality of an (n, ε)-separated subset of
Orbn(ϕ) for ϕ, i.e.

s(n, ε, ϕ) := max{#S : S ⊂ Orbn(ϕ) is an (n, ε)-separated set for ϕ} .

One can readily check that, for single-valued continuous maps in compact metric
spaces, Definition 2 reduces to Definition 1.

It will be convenient to prove the following lemma.

Lemma 3. Let ϕ : X → K(X) and ψ : Y → K(Y ) be upper semicontinuous maps
with compact convex values in compact convex subsets X and Y of Banach spaces.
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Then the inequality
hKT(ϕ× ψ) ≥ max{hKT(ϕ), hKT(ψ)}

holds for the Cartesian product ϕ×ψ : X ×Y → K(X ×Y ), where (ϕ×ψ)(x, y) =
ϕ(x)× ψ(y), for every (x, y) ∈ X × Y , and X × Y is endowed with the maximum
norm.

Proof. According to the well known Kakutani-Fan’s theorem (see e.g. [6, Corollary
I.6.21]), there exist fixed points x ∈ ϕ(x) and y ∈ ψ(y) of ϕ and ψ, and subsequently
(x, y) ∈ (ϕ× ψ)(x, y) of ϕ× ψ.

One can easily check that from Definition 2 it immediately follows (cf. [17,
Theorem 4.2]):

hKT(ϕ× ψ) ≥ max{hKT(ϕ× id |y), hKT(id |x × ψ)}
= max{hKT(ϕ), hKT(ψ)} ,

which completes the proof. �

Remark 4. The inequality in Lemma 3 can be generalized to the equality

hKT(ϕ1 × . . .× ϕn) =
n∑
i=1

hKT(ϕi) ,

where ϕi : Xi → K(Xi) are upper semicontinuous maps in compact metric spaces
Xi, i = 1, . . . , n. Its proof is rather technical, but can be made quite analogously
as in the single-valued case (see e.g. [25, Theorem 7.10]).

Let us note that in our papers [3, 4, 7] still formally another extension of
Definition 1 was employed, matching with the Nielsen fixed point theory on tori
Rn/Zn. On the other hand, here we would like to follow rather the ideas from
[8], where single-valued arguments were, however, exclusively applied on compact
subsets in Euclidean spaces Rn.

2. Some further preliminaries

Hence, as already pointed out, it will be also convenient to recall some properties
of the Poincaré translation operators Tω : Rn → Rn, associated with the differential
equation
(4) x′ = F (t, x)
where F : R× Rn → Rn satisfies F (t, x) ≡ F (t+ ω, x), for some given ω > 0, and
is the Carathéodory mapping, i.e.

(i) F (·, x) : [0, ω]→ Rn is measurable, for every x ∈ Rn,
(ii) F (t, ·) : Rn → Rn is continuous, for almost all (a.a.) t ∈ [0, ω].

Let, furthermore, (4) satisfy a uniqueness condition and all solutions of (4) entirely
exist on the whole (−∞,∞).

By a (Carathéodory) solution x(·) of (4), we understand a locally absolutely
continuous function, i.e. x ∈ ACloc(R,Rn), which satisfies (4) for a.a. t ∈ R. For a
continuous right-hand side F , we have obviously x ∈ C1(R,Rn).
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The Poincaré translation operator Tω : Rn → Rn along the trajectories of (4) is
defined as follows:

(5) Tω(x0) := {x(ω) : x(·) is a solution of (4) such that x(0) = x0} .

It is well known (see e.g. [18, 22]) that Tω is an orientation-preserving homeomor-
phism such that T kω = Tkω, for every k ∈ N. It is also isotopic to identity.

If F ∈ C1(Rn+1,Rn), then Tω is a diffeomorphism of class C1 such that
det DT kω (x0) > 0 holds for every x0 = T kω (x0) and any k ∈ N, where the mapping
DTω(x0) : Rn → Rn denotes the Fréchet derivative of Tω at x0 ∈ Rn, which is a
linear map corresponding to the Jacobian matrix of Tω at x0.

For F ∈ C1(Rn+1,Rn), we can consider the variation equation of (4) with
respect to an ω-periodic solution x(·) of (4), namely

(6) x′ = Dx F (t, x(t))x ,

where Dx F (t, x) is the Jacobian matrix of F (t, x) with respect to x. It is a
linear differential equation with ω-periodic continuous coefficients. If W (t) is its
fundamental matrix, then DTω(x0) = W (ω)W (0)−1.

Now, consider the vector linear equation

(7) x′ = A(t)x ,

A(t) = {aij(t)}ni,j=1, with ω-periodic measurable coefficients aij(t), where∣∣∫ ω
0 aij(t) dt

∣∣ <∞, for all i, j = 1, . . . , n. It is well known that its solution x(·) with
x(0) = x0 can be expressed as x(t) = W (t)x0, where W (t) is the fundamental matrix
of (7) such that W (0) = W−1(0) is a unit matrix. Thus, Tω(x0) = x(ω) = W (ω)x0.
The operator W (ω) is called a monodromy operator and the eigenvalues of the
related matrix are the multiplicators of (7). The same terminology is related to (6).

If, in particular, A(t) ≡ A in (7) has constant coefficients aij(t) ≡ aij ; i, j =
1 . . . , n, then the solutions x(·) of (7) take the simple form x(t) = eAtx0, i.e.
W (t) = eAt, and so

Tω(x0) = eAωx0 = W (ω)x0 .

The multiplicators µi of the monodromy matrix W (ω) can be therefore easily
expressed as

µi = eλiω , i = 1, . . . , n ,
where λi, i = 1, . . . , n, are the eigenvalues of A. Hence, in order to have |µi| > 1,
for some i ∈ {1, . . . , n}, it is sufficient and necessary that Reλi > 0 for such
i ∈ {1, . . . , n}.

Because of a uniqueness condition, there is, for any k ∈ N, an evident one-to-one
correspondence between the kω-periodic solutions x(·) of (4), x(t) ≡ x(t+ kω) and
x(t) 6≡ x(t+ jω) for j < k, and k-periodic points x0 of Tω such that x(0) = x0, i.e.
x0 = T kω (x0) and x0 6= T jω(x0) for j < k.

Now, consider the impulsive differential equation

(8)
{
x′ = F (t, x), t 6= tj := jω , for ω > 0 ,
x(t+j ) = I(x(t−j )) , j ∈ Z ,
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where F : R×Rn → Rn is as above in (4), and I : Rn → K0 is a compact continuous
impulsive mapping such that K0 := cl I(Rn) and I(K0) = K0. Its solutions will be
also understood in the same Carathéodory sense, i.e. x ∈ AC((tj , tj+1)), j ∈ Z.

One can readily check that there is again a one-to-one correspondence between
kω-periodic solutions x(·) of (8) and k-periodic points x0 = x(0) of the composition
I ◦ Tω, for any k ∈ N.

Therefore, we can naturally introduce the following definition of topological
entropy for (4), (7) and (8).

Definition 5. We say that equation (4) (in particular (7)), resp. (8), has a
topological entropy h if h = h(Tω), resp. h = h(I ◦ Tω).

In view of Definitions 1, 5 and formulas (2), (5), equation (7) has a topological
entropy h = h(Tω) = h(W (ω) · id) =

∑
|µi|>1 log |µi|, where W (ω) is a fundamental

matrix of (7) at ω > 0 and µi, i = 1, . . . , n, are its eigenvalues. In particular, for
A(t) ≡ A, we get that

h = h(eAω · id) =
∑

Reλi>0
log |eλiω| = ω log e

∑
Reλi>0

Reλi .

For ω = 1, it is in accordance with the calculations in [9, 12,23].
Similarly, equation (8), where F (t, x) := A(t)x and I is a real (n× n)-matrix,

has a topological entropy

h = h(I ·W (ω) · id) =
∑
|νi|>1

log |νi| ,

where W (ω) is as above and νi, i = 1, . . . , n, are the eigenvalues of the product
I ·W (ω).

3. Topological chaos for impulsive differential equations

In spite of the above arguments, observe that e.g. the scalar equation x′ = ax
with I = id |R possesses for a = log 2

ω log e the positive entropy h = h(Tω) = log 2,
but does not admit any nontrivial (nonzero) periodic solution. In the spirit of the
“criticism” in [11], since the dynamics of x′ = ax have not a complicated behaviour,
Definitions 1 and 5 are not suitable for any sort of deterministic chaos. In other
words, to speak about topological chaos determined by a positive entropy requires
here to be restricted to compact subsets of Rn, which are positively invariant under
the compositions I ◦ Tω.

For multivalued impulses, the situation becomes still more delicate, because
Definition 1 must be replaced e.g. by Definition 2.

For the sake of simplicity, we will consider just the linear homogeneous diagonal
system of differential equations with special multivalued upper semicontinuous
impulses, namely

(9)
{
x′ = (diag[a1, . . . , an])x , x = (x1, . . . , xn) ,
xi(t+j ) ∈ Ii(xi(t−j )) , i = 1, . . . , n, j ∈ Z ,
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where Ii : R→ K([0, 1]), Ii(xi) ≡ Ii(xi + 1), and

Ii|[0,1](xi) :=
{

[0, 1] , for xi ∈ {0, 1} ,
xi , otherwise (i.e. for xi ∈ (0, 1)) ,

i = 1, . . . , n.

Definition 6. We say that system (9) has a topological entropy h if h := hKT(I ◦
T1|[0,1]n), where hKT denotes the topological entropy in the sense of Definition 2,
I = (I1, . . . , In) and T1 : Rn → Rn is the associated Poincaré translation operator
along the trajectories of x′ = (diag[a1, . . . , an])x, defined for ω = 1 in (5).

Theorem 7. The topological entropy h of equation (9) satisfies the inequality
h ≥ (log

√
2)
∑
ai≥0 sgn(1 + ai). In particular, if at least one coefficient ai is

nonnegative (i.e. ai ≥ 0, for some i ∈ {1, . . . , n}), then equation (9) exhibits on
[0, 1]n a topological chaos in the sense that h > 0.

Proof. The associated Poincaré translation operator T1 along the trajectories of
x′ = (diag[a1, . . . , an])x, defined for ω = 1 in (5), takes the form
T1(x) = (ea1 , . . . , ean)x = W (1)x, where µi = eai , i = 1, . . . , n, are the multiplica-
tors of W (1).

Since
I ◦ T1(x) = (I1(ea1x1), . . . , In(eanxn)) ,where x = (x1, . . . , xn) ∈ [0, 1]n,

Ii(eaixi) ≡ Ii(eai(xi + e−ai)), and

Ii|[0,e−ai ](eaixi) =
{

[0, 1] , for xi ∈ {0, e−ai} ,
xi , otherwise (i.e. for xi ∈ (0, e−ai)) ,

i = 1, . . . , n, we obtain by means of the equality in Remark 4 (for a particular
inequality, see Lemma 3) that

h := hKT(I ◦ T1|[0,1]n) =
n∑
i=1

hKT(Ii(eai · id |[0,1])) .

Checking the proof of [17, Theorem 6.2], it is straightforward to realize that
hKT(Ii(eai · id |[0,1])) ≥ log

√
2, provided ai ≥ 0 for some i ∈ {1, . . . , n}. Summing

up, h = hKT(I ◦ T1|[0,1]n) ≥ (log
√

2)
∑
ai≥0 sgn(1 + ai), as claimed. �

Remark 8. If at least one component Ii, for some i ∈ {1, . . . , n}, of the impulsive
mapping I is replaced by Îi : R→ K([0, 1]), where Îi(xi) ≡ Îi(xi + 1), and

Îi|[0,1](x) :=
{

[0, 1] , for x ∈ {0, 1} ,
{0} , otherwise (i.e. for xi ∈ (0, 1)) ,

then (cf. Lemma 3) h = hKT(Îi(eai · id |[0,1])) = ∞, for any ai ∈ R, because (see
[17, Theorems 5.4 and 7.1])

hKT(Îi(eai · id |[0,1]) ≥
1
2hKT(Îi

2
(eai · id |[0,1]) = hKT([0, 1]|[0,1]) =∞ ,

where [0, 1]|[0,1] denotes a constant multivalued mapping with values [0, 1].
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Remark 9. In case of diagonalizable or weakly coupled systems, the situation
becomes more complicated and requires a further technical elaboration. For the
single-valued case, see e.g. [8].
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