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Abstract. We analyse the roots of the polynomial xn − pxn−1 − qx − 1 for p > q > 1.
This is the characteristic polynomial of the recurrence relation Fk,p,q(n) = pFk,p,q(n−1)+
qFk,p,q(n−k+1)+Fk,p,q(n−k) for n > k, which includes the relations of several particular
sequences recently defined. In the end, a matricial representation for such a recurrence
relation is provided.
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1. Introduction

For integers k > 2 and n > 0, and a rational number p > 1, the (k, p)-Fibonacci

numbers, denoted by Fk,p(n), are defined by the recursion relation

(1.1) Fk,p(n) = pFk,p(n− 1) + (p− 1)Fk,p(n− k + 1) + Fk,p(n− k) for n > k,

satisfying the initial conditions

Fk,p(0) = 0 and Fk,p(n) = pn−1 for 1 6 n 6 k − 1.

The (k, p)-Fibonacci numbers were recently considered in [1]. They are of the

Fibonacci type and clearly F2,1(n + 1) is the nth Fibonacci number. Indeed, these

numbers include many notorious sequences and their properties have been studied

in [1], [7].
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Earlier, to define the so-called generalized Pell numbers, W loch in [13] considered

the recurrence relation

(1.2) Pk(n) = Pk(n− 1) + Pk(n− k + 1) + Pk(n− k) for n > k + 3.

While the characteristic polynomial of (1.1) is

(1.3) fn,p(x) = xn − pxn−1 − (p− 1)x− 1,

the one for (1.2) is

(1.4) pn(x) = xn − xn−1 − x− 1.

The characterization of the roots of the polynomial fn,1(x) = xn−xn−1−1, which

is a particular case of (1.3), was studied by Kilic and Stakhov and Rozin in [5], [8], [9].

For a general p > 2, Trojovský proved in [11] the next theorem.

Theorem 1.1 ([11]). For the integer numbers n > 3 and p > 2, the polyno-

mial fn,p(x) defined in (1.3) has:

(i) a unique positive root, say an,p, and

p < an,p < p+
2

pn−3
.

Moreover, lim
n→∞

an,p = p and lim
p→∞

an,p = ∞.

(ii) a unique negative root if n is even.

(iii) two negative roots if n is odd and

(a) p = 3 and n > 7,

(b) p ∈ {4, 5, 6} and n > 5, or

(c) p > 7 and n > 3.

(iv) only simple roots.

For the polynomial pn(x), Trojovský in [10] also proved the following theorem.

Theorem 1.2 ([10]). For a given integer number n > 2, the polynomial pn(x)

defined in (1.4) has:

(i) a unique positive root, say an, and

1 < an < 1 +

√

2

n− 1
.

Moreover, lim
n→∞

an = 1.

(ii) a unique negative root if n is even.

(iii) only simple roots.

Additionally, in Theorem 1.2 it is also proved that the sequence (an) is strictly

decreasing.

190



The aim of this note is to bring both theorems and all particular cases into

a common ground, providing a new type of recurrence relation extending both (1.1)

and (1.2). In the last section, we provide a determinantal interpretation for these

sequences.

2. The roots

Our aim is to analyse the roots of the characteristic polynomial of the recurrence

relation defined by

(2.1) Fk,p,q(n) = pFk,p,q(n− 1) + qFk,p,q(n− k + 1) + Fk,p,q(n− k)

for n > k and p > q > 1, which is

(2.2) f(x) = xn − pxn−1 − qx− 1.

It contains both (1.3) and (1.4). In general, finding explicit solutions is a difficult

task, as we can see in some related polynomials in [3].

We split our main result into several propositions, providing a common framework

for future developments.

Proposition 2.1. The polynomial f(x) defined in (2.2) has only one positive root,

say an,p,q, which satisfies p < an,p,q < p+ 1 for n > 3. Moreover, lim
n→∞

an,p,q = p for

any p > q > 1.

P r o o f. First we claim that there is no root in (0, p). The solution of the equation

f(x) = 0 is equivalent to that of xn−1 = (qx+ 1)/(x− p). When x ∈ (0, p), we

have xn−1 > 0, but (qx+ 1)/(x− p) < 0. So no x ∈ (0, p) would lead to xn−1 =

(qx+ 1)/(x− p).

Next we claim that there is exactly one root in [p,∞). Since the derivative of f ,

defined by

f ′(x) = xn−2(nx− np+ p)− q,

is an increasing function and f ′(p) = pn−1 − q > 0 for p > q > 1 and n > 3,

we conclude that f ′(x) > 0 for x > p. This implies that there is at most one root

in [p,∞). Actually, a root in [p,∞) does exist, by noting that f(p) = −pq−1 < 0 and

f(p+ 1) = (p+ 1)n−1 − (p+ 1)q − 1 > (p+ 1)2 − (p+ 1)p− 1 = p > 0

for n > 3 and p > q > 0. So the unique root in [p,∞), say an,p,q, lies in (p, p+ 1).

191



Furthermore, the unique positive root an,p,q is infinitely close to p. In fact, for any

sufficiently small positive constant δ > 0, we have

f(p+ δ) = (p+ δ)n−1δ − (p+ δ)q − 1,

taking into account that f(p+ δ) > 0 is equivalent to

n > 1 +
ln((p+ δ)q + 1)− ln δ

ln(p+ δ)
,

which is clearly true for a sufficiently large n. This means that the unique positive

root an,p,q approaches to p as n → ∞, independently of q > 1. �

In the next proposition, we analyse the roots in terms of the parity of n.

Proposition 2.2. If n is even, then the polynomial f(x) defined in (2.2) has only

one negative root, which is in the interval (−1, 0).

If n is odd, the polynomial f(x) has either none or exactly two negative roots,

which are both in the interval (−1, 0) (if they exist). In particular, when n is suffi-

ciently large, f(x) must have two negative roots in the interval (−1, 0) when q > 1.

P r o o f. First assume that n is even. Set g(x) = f(−x). We have

g(x) = f(−x) = (−x)n − p(−x)n−1 + qx− 1 = xn + pxn−1 + qx− 1.

Clearly g(x) increases in x > 0, and g(0) = −1 < 0, but lim
x→∞

g(x) = ∞. So g(x) has

exactly one positive root. Equivalently, f(x) has exactly one negative root. Actually,

the unique positive root of g(x) lies in (0, 1), since g(1) = p + q > 0. This means

that the unique negative root of f(x) is in (−1, 0).

Next assume that n is odd. Set h(x) = −f(−x). This time we have

h(x) = −f(−x) = −((−x)n − p(−x)n−1 + qx− 1) = xn + pxn−1 − qx+ 1.

Note that

h′(x) = xn−2(nx+ np− p)− q,

which increases in x > 0. Together with h′(0) = −q < 0 and lim
x→∞

h′(x) = ∞, we can

deduce that h′(x) = 0 has exactly one root in (0,∞). As a consequence, h(x) has

at most two roots in (0,∞) (or, equivalently, f(x) has at most two negative roots),

since h(0) = 1 > 0 and lim
x→∞

h(x) = ∞.

It is worth mentioning that f(x) having only one negative root is impossible. Recall

that f(x) has only one positive root; from Proposition 2.1, the complex roots and

their conjugates occur in pairs, thus an odd n implies that the number of negative

roots must be even.
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Furthermore, h(x) has exactly two roots in (0,∞) if and only if h(r) < 0 for

some r ∈ (0,∞). When n is large enough, such an r must exist. If r ∈ (1/q, 1), then

qr− 1 > 0 holds. Moreover, rn + prn−1 approaches to 0 as n tends to infinity, which

means that

qr − 1 > rn + prn−1,

or, equivalently, h(r) < 0 for n large enough. Actually, the two positive roots

of h(x) are in (0, 1) or, equivalently, f(x) has two negative roots in (−1, 0), because

h(0) = 1 > 0 and h(1) = p− q + 2 > 0, and h(0) < h(1) in particular. �

Remark 2.1. Notice that how large n should be in Proposition 2.2 is determined

by p and q.

Finally, we show that all roots are simple with an eventual exception.

Proposition 2.3. All roots are simple, except whenever

f
(

−
n+ 2pq − npq +

√

(n+ 2pq − npq)2 + 4pq(n− 1)2

2(n− 1)q

)

= 0

for some odd n. In that eventuality,

−
n+ 2pq − npq +

√

(n+ 2pq − npq)2 + 4pq(n− 1)2

2(n− 1)q

is of multiplicity 2 and all other roots remain simple.

P r o o f. Suppose to the contrary that f(x) has a root, say ε, with multiplicity at

least 2. In this sense, f(ε) = f ′(ε) = 0, i.e.,

f(ε) = εn − pεn−1 − qε− 1 = εn−1(ε− p)− qε− 1 = 0

and

f ′(ε) = εn−2(nε− np+ p)− q = 0.

This means that ε is a (nonzero) root of the quadratic equation on x:

x(x − p)q = (nx− np+ p)(qx+ 1),

or, equivalently,

(n− 1)qx2 − (npq − 2pq − n)x− p(n− 1) = 0.

Now, let

l(x) = (n− 1)qx2 − (npq − 2pq − n)x− p(n− 1).
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From l(−1/q) = −p− 1/q < 0, we know that l(x) has two real roots (which means

that ε must be a real number); the smaller one is just ε (from Propositions 2.1

and 2.2), i.e.,

ε = −
n+ 2pq − npq +

√

(n+ 2pq − npq)2 + 4pq(n− 1)2

2(n− 1)q
,

for some odd n. �

3. A matricial interpretation

Is it interesting that the recurrence (2.1) and, consequently, all particular cases can

be interpreted in terms of Hessenberg matrices. In fact, it is known (cf., e.g., [4], [6])

that if a1, a2, . . . is a sequence such that

an+1 = p1,na1 + . . .+ pn,nan,

then

an+1 = a1 det





















p1,1 p1,2 p1,3 . . . p1,n−1 p1,n

−1 p2,2 p2,3 . . . p2,n−1 p2,n
0 −1 p3,3 . . . p3,n−1 p3,n
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

0 . . . . . . 0 −1 pn,n





















.

For example, setting k = 4 in (2.1), we have

F4,p,q(n) = det





























a0 a1 a2 a3

−1 0 0 0 1

−1 0 0 q 1

−1 0 0 q
. . .

−1 p 0
. . .

−1 p
. . .

. . .
. . .





























(n+1)×(n+1)

.

We believe that this representation might be useful in distinct settings by using

the determinant properties. Of course, Fk,p,q(n) can be interpreted in terms of the

permanent (for more details on this and other interpretations, the reader is referred

to [2], [12]).
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