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Abstract. We give a constructive proof of the factorization theorem for the weighted
Hardy space in terms of multilinear Calderén-Zygmund operators. The result is also new
even in the linear setting. As an application, we obtain the characterization of weighted
BMO space via the weighted boundedness of commutators of the multilinear Calderdn-
Zygmund operators.

Keywords: weighted Hardy space; weighted BMO space; multilinear Calderén-Zygmund
operator; weak factorization

MSC 2020: 42B20, 42B35

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The theory of Hardy space has been developed systematically during the past half-
century. One of the milestones in this area is due to Coifman, Rochberg and Weiss
(see [1]), who gives a constructive proof of the weak factorizations of the classical
Hardy space H'! in terms of Riesz transforms. Later on, Li and Wick in [5] provided
a deeper study of the Hardy and BMO spaces associated to the Neumann Laplacian,
and they also obtained the classical results in the multilinear setting in [6]. Also,
Duong, Li, Wick and Yang in 2016 in [2] obtained the results in the Bessel setting.
Recently, Wang and Zhu in [9] considered the weak factorizations of the classical
Hardy space for multilinear fractional integral operator and the classical results in
the weighted setting in [10].

Inspired by the above articles, we provide a proof of the weak factorization theorem
for weighted Hardy space. The results are certainly a contribution to the recent new
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progress by Li and Wick (see [6]) in weighted setting. The arguments in the paper
closely follow the arguments in [6] and [10]. However, some of the techniques do
not apply to the weighted setting. Therefore, it needs some tedious calculations in
applications.

Throughout this paper, by A < B we mean that A < C'B with a positive con-
stant C independent of the appropriate quantities. If A < B and B < A, we write

A =~ B and say that A and B are equivalent.

1.1. Multilinear Calderdén-Zygmund operators. Let us recall that m-linear
Calderén-Zygmund operator T' is a bounded operator which satisfies

IT(f1s s )l < CllAllee x| fnll 2o

for some 1 < pi1,...,pm < oo with 1/p = 1/p1 + ...+ 1/p,, and the function K,
defined off the diagonal yo = y; = ... = ¥, in (R™)™*1!, satisfies the conditions as
follows:

(1) The function K satisfies the size condition

C
Z;n:l lye — Yol

|K(y0ay17" 7ym)| < (

-

(2) The function K satisfies the regularity condition: Whenever € > 0 and all

1<i<mif |y, —y| < %OI<T}§JL<XM|?JO_?41€|7

C|yi —y§|€
—.
(X lye — o)™

LK (Y053 Yir- oy Um) — KWoy o3 Yy oo ym)| <

m
Then we say K is an m-linear Calderén-Zygmund kernel. If = ¢ (0 suppf:, then
i=1

1=

T(fuvee o f)@ = [ Kne) [T 50 i
j=1

where f1,..., fm are m functions on R™ with (1) supp(f;) # 0.
j=1
We also define that T' is mn-homogeneous if T satisfies
C
an

IT(XBos--->XB,,) ()] >

for balls By = B(zo,7),. .., Bm = B(@m,r) satisfying |z; —xo| = Mrforl=1,...,m
and xg € R™, where r > 0 and M > 10 is a positive constant.
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1.2. Muckenhoupt weights. We need the notion of weighted L? space: LP(w) =
LP(R"™,wdx) denotes the collection of measurable functions f on w such that

1/p
I flle) = (/[R |f(z)Pw(x) da:) < 0.

We recall the definition of A, weight introduced by Muckenhoupt in [7], which gives
the characterization of all weights w(x) such that the Hardy-Littlewood maximal

operator

M{§)w) Z%2|Q|/'f Idy

is bounded on LP(w). For 1 < p < co and a nonnegative locally integrable function w
on R", the weight w is in the Muckenhoupt A, class if it satisfies the condition

el = S“p<|c2|/ ”dx><|c2|/ “(f”)_l/(p_l)dxyl“o'

And a weight function w belongs to the class A; if

[w]a, == r(.12| /Qw(x) dx(es;esgpw(m)fl) < 00.

We write Aoo = |J Ap. For w € A there exist 0 < €, L < oo such that for
1<p<oo
all measurable subsets S of cube @,

w(S) |S]\¢
(1.1) 0 < c(@)
and

IS|\E w(S)
(1.2) (@) <OoGy

In the celebrated work [4] Lerner et al. established a theory of weights adapted
to the multilinear setting and resolved the problems proposed in [3]. For 1 <

Ply- -3 Pm < 00, ﬁ: (plap27"'7pm,)7 and p such that 1/p1 + ...+ 1/pm - 1/p7
a vector weight & = (w1, ws,...,wm) belongs to Ay if

4, S“p<|c2|/ [[eit@) p/p’dx>H<|22|/ (x)lp:’dx)p/p;“o'

m
For brevity, we will often use the notation vz = [] wf-) /Pi i the first integral.
i=1
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1.3. Atomic decomposition of the weighted Hardy spaces. Let 0 < p <
1 < g< o0, s € Zsatisfying s > [n(1/p—1)]. A function a is called a (p, g, s) atom
if there exists a cube () such that
(i) a is supported in Q;
(i) [lallzoq) < w (@)1,
(iil) [pn a(z)z? dz =0 with |y| <s.
Let us recall the definition of H?(w) using the above atoms.

H?(w)= {f €S f(x) g Z Arag(z), each ay is a(p, g, s) atom, and Z |Ak|P < oo}7
k k
setting H?(w) norm of f by
1/p
Ilrc = (S Inl?)
k
where the infimum is taken over all decompositions of f = " Arpay above.
k
1.4. Main results. Our main result is then the following factorization result

for H'(w) in terms of the multilinear operator IT;. This result is new even in the
linear case. The multilinear operator II; is defined as

(g, hay. ooy ) (@) = M (T )i(hiy ooy i1, gy Bty ooy B ) (@) —gT (B, - oy B ) (),

where (7); is the lth partial adjoint of T'. It is easy to see that (T7); is also an
m-linear Calderén-Zygmund operator.

Theorem 1.1. Let 1 <1< m, 1 <p1,...,pm,p <00, I/p1+ ...+ 1/pm =1/p
and w € Ay. Then for any f € H'(w) there exists sequences {\*} € ¢, and functions
gk e L' (w), hf, € LP*(w),...,h¥,, € LP"(w) such that

o0 o0
(1.3) F=Y 3 Mgk k.. nk,) in S
=1s=1
Moreover,
o) (o)
s = {353 X1 1P s - Bl o
k=1s=1
where the infimum above is taken over all possible representations as in (1.3).
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As a direct application, we will give the characterization of the weighted the BMO
space via the boundedness of commutators of the multilinear singular integral oper-
ator. In analogy with the linear case, we define the /th possible multilinear commu-
tators of the multilinear Calderén-Zygmund operator T as

[va]l(flv"'afm)(x) = T(fla"'abfla“'afm)(x) - bT(flaafm)(x)

It is proved in [8] that if w € A1, 1 <p1,...,pm < oo and 1/p=1/p1+... 4+ 1/pm,
then the commutator [b,T] is bounded from LP!(w) x ... x LP™(w) to LP(w!™P) if
and only if b € BMO(w), that is,

1
b w::sup—/bx—b dzr < oo.
oo = s | 14) = bl

The methods used in [8] lie in expanding the kernel locally by Fourier series, which
leads to a very strong assumption on the corresponding kernel. In this paper, we give
a characterization of the weighted BMO space for the mn-homogeneous Calderén-
Zygmund operators, using the duality theorem between H'!(w) and BMO(w).

Theorem 1.2. Let b€ Li _, 1<l <m, 0<a<mn, 1 <pi,...,pm,q < 00,

loc?

1/pr+...+1/pm —1/p=a/n and & € Az,. The commutator [b,T]; is bounded
from LP' (w) x ... x LPm(w) to LP(w'~P) if and only if b € BMO(w).
2. AUXILIARY LEMMAS
In 2018, Li and Wick in [6] showed a technical lemma about certain H' as follows.

Lemma 2.1. Suppose f is a function defined on R™ satisfying [, f(z)dz = 0
and [ f(x)| < XB(z0,1) (%) + XB(yo,1) (%), where |xg — yo| := M > 10. Then we have

£l < Clog M.

In Lemma 2.1, we see that the function f satisfies

|f(@)] < hi(2)XB(zo,1) (%) + h2(T)XB(yo,1) (T)

with hq(x) = ho(z) = 1. However, we need to consider the case when hq, ha do not
belong to L™ arising from the weighted setting. Therefore, it needs some tedious
calculations in applications.
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Lemma 2.2. Let w € A1, 1 < g < co. If the function f satisfies the estimates:
i) [on flx)dz =0,
(ii) there exist x1,z2 € R™ and r > 0 such that

|f(z)| < hi(z)xB, (%) + ha(z)XB, (%) for [z1 — 22| > 47,

where [|h;||La() < Cw(B;)~'9 and B; = B(x;,r), i = 1,2 then there exists
a positive constant C' independent of x1, x5, r such that

|71 — a9

112 < Clog =21

Proof. Assume that f := f1+ f2, where |f;| < h; and supp f; C B; fori =1,2.
We will show that f has the following atomic decomposition:

2 Jo+1

(2.1) F=Y23" Nal,

i=1 j=1

where Jy is the smallest integer larger than log|z1 — x2|/r and for each j, a{ is an
atom and A} a real number satisfying

(2.2) N <1
To this end, for i = 1,2 we write

fl(x) = [fl(x) - ;\'}XBa] + S\}XBi = le(x) + S\}XBH

M= |;| /‘fi(a:)da:

B (ii) and the direct calculation, we get A} := || f}|| a(w w(Bi)l/q/ < 1. We write
:= f1/Al. From the fact that

where

|f (w —
| !\11/()\ ( i)l/q 17

HG/}HL‘I(UJ -

we know that a} is a (1, ¢, 0)-atom supported on B; and \! satisfies (2.2). We further
write

MxB: = Mxs, — A2xap, + Mxap, = 7+ Mxap,,

< 1
M= / i(z)dz
12Bi| /28, @)

Let \? := ||fi2||Lq(w)w(ZBi)1/q/ and a? := f?/)\?. Then we see that a7 is an atom
supported on 2B; and

where

IAF] < (N + X Dw(2B:) < 1
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Continuing in this process with j € 2,3, ..., Jo,

<. 1 . . o

Af = |27B;| Jai fi(z) dz, fij = )\f 1X2‘7_1Bi _>‘§X2J’Bw
? i

N o= lpe@w@B)YT, al = /\—37

we obtain that
2 Jo 2 Jo
(55 3() S FD SERWIRES 3() SIS wecien
i=1~j=1 i=1tj=
where each 7 and 7, af is a (1, ¢,0)-atom and )\f < 1.

2 .
For 3 A/°Xou B, We set
i=1

o= 1

= x)dz.
Bl + 22227 Jye, 1

By the cancellation condition (i) of f, we arrive at

1

|B((z1 + 22)/2,29010)] J 5y ) fo(z) dz.

o — -

It follows that

2
Z)‘;,‘]OXB(QC,',,Q"OT) = A\°XB (2 2%0r) — NOXB (21 422) /2,270 11)]
i=1

+ X B a2) 2,270 17) + A2 X B2y 290m)]
2
= Z fJO+1'
i=1

Fori=1,2, let

Jo+1

xr1+x :

A= P e (B (R 2,270 ) ) and = L
7

Also, @)%t is a (1, ¢,0)-atom and A/ satisfies (2.2). Thus, we have that (2.1)
holds, which implies that f € H'(w) with

; X1 — X2
o <32 3 ] <log 1222

This finishes the proof of Lemma 2.1. O
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P DPm D

There exists a positive constant C such that for any g € L? (w) and h; € LPi(w),
i=1,2,...,m,

IL(g, h1s oo ) L () < CllGH o @yl Les ) - - - 1Al Lo ()
Proof. Note that for any g € Lp/(w) and h; € LPi(w), i =1,2,...,m, we have

[ @b, ) @sta) do = [ g@)lo@7 b, o) @) o) 7 d

Rn

< gl por @ IT(ha, - - s hn)l e ()

m

< Clglpw oy LT ill 2o 0
i=1

A direct calculation gives us that

1 1 1 1 1 1

— 4 ... S
b1 Pi—1 p Pi+1 Pm D

then we obtain the weighted boundedness of the operator
(T*): LP' (W) % ... x LP=1(w) x LP (w) x LP*+ (w) x ... x LP™ (w) = LV (w),

since (7%); is also an m-linear Calderén-Zygmund operator. This implies that
(g, h1,. .., hm)(x) € LY (w) by Holder’s inequality. Moreover,

/ (g, ha, ..., h)(x) dz = 0.
Hence, for b € BMO(w),

b(q")Hl (g7 h17 SERE) hm)(x) dx
R™

/ng(m)[b, Tli(ha, ..., ho)(x) dz

/ @@ B Tk ) @)eo(@) Y da

<9l 2o oy - 10 Thihay -« o han) [ Lo (1)
< ClhallLes ) - - - [hanll Lom @) 19] Lo (@) 10 lBMO (@) -

Therefore, I1;(g, h1, ..., hy) is in H(w) with
1L (g, b1y oo ) L () < ClGl Lo @yl 2er () - - - Al Lom (@)
The proof of Lemma 2.2 is completed. O
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The arguments in the paper closely follow the arguments in [6] and the ideas
from [6] are further combined with some modifications arising from the weighted
setting.

Lemma 2.4. Let 1 <1< m, 1 < p1,...,pm,q <00, I/p1+ ...+ 1/pm = 1/p
and w € A;. For every H'(w)-atom a(x) there exists g € L¥ (w) and h; € LP(w),
i=1,2,...,m and a large positive number M (depending only on ¢) such that

||G_Hl(g,h1,h2,.. ahm)HHl(w) <e
and that [|g|| v ) 1P1llLes ) - [hmllom @) < CM™(+L)  where L is defined
in (1.2).

Proof. Let a(x) be an H!(w)-atom supported in B(wg,r), satisfying that
/ a(z)dz =0 and |lallpew) < w(B(zg, 7))L,

Fix 1 <1 < m. Now select y; € R™ so that y;; — xo; = Mr/\/n, where z¢,; (or y; ;)
is the ith coordinate of xo (or y;) for i = 1,2,...,n. Note that for this y; we have
|zo — yi| = Mr. Similarly to the relation of zy and y;, we choose y; such that zg
and y; satisfies the same relationship as g and y;. Then by induction we choose
Y25 e Y1, Ylt 1, - - - > Ym- We write B; = B(y;, r) and set

g(x) =XB (.13), h](x) ‘= XB; (l‘), J#l,

) a(a) )
hl(x) o (T*)l(hl, R hl—17g7hl+17 .. .,hm)(ﬂﬁo)XBl( )

It follows from the specific choice of the functions h1,...,h—1, 9, hit1,. ..,y that

|(T*)l(h17 SRR hl*lag; hlJrlv .o 7hm)(x0)|
1

>
g /le...me (Jwo — z1] + ... +]z0 — 20| )™

dzy...dzpm =2 CM™™™,

The definitions of the functions g(x) and h;(x) give us that suppg = B(y;,r) and
supp h; = B(y;,r). Moreover,

||9|\Lp’(w)=w(Bz)1/” and || hj | pes (o) = w(B;) /P

fori=1,...,1—1,14+1,...,m. Also,

1

Wl e () = n(w) < CM™w(By)~V/7
|| lHL"(W) |(T*)l(h‘1)'"ahl—17g7hl+17"'ahm)(‘xoﬂ||a||LI(W) w( l)
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From inequality (1.2) we have
w(Bj) Sw((M +1)By) < M w(By).
It is easy to see that

911 o7 oy Il 2o o - - [Pl ) < ML7PEHE),

Next, we have

a’(x)_Hl(gahlahQa“'ahm)(x)
= a(x) — [hl(T*)l(hl, .- .,hl_l,g, hl+1, .. .,hm) — gT(hl7 .. ,hm)(x)]
T
= a(x) (T*)l(hh B -7hl—1;g; hl—i—l; el hm)(l‘o) + g(x)T(hla LR hm)(x)
:Wl(l‘) —l—WQ(J?),

where

T =(T")i(h1,.. ., u—1,9, g, o b)) (o) — (T )i(hay oo =1, 95 P, - o o) ().

It is obvious that Wy () is supported on B(xg,r) and Wa(x) is supported on B(yo, r).
We first estimate W1 (z). For x € B(xo,r) we have

||
Wi(z)| = |a(x
Wi(@)] = lal )|I(T*)z(h1,~~~7h171797hz+1,~~~,hm)($0)|
la(z) |z — 0|
< - N dzy ... dz,
M—mn ,_I;IIB(yj’T) (Zgl,i;él |21 — zi| + |21 — xo)mn+e
< la(@)
ME
with

T= (T*)l(h’h RN hl—laga hl+17 .. '7hm)(x0)_(T*)l(hl7 sy hl—laga hl+17 .. 7hm)(l‘)

Hence, we conclude that

a\xr
W) < @)
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Next, we estimate Wa(z). From the definition of g(x) and h;(x) we have

[T(h1y ..., hm)(2)]
_ 1
(T, i1, g higs - ) (20)

X (K(zl,...,zl,l,xo,zlﬂ,...,zm)(xo)

/H B(y;,r)xB(zo,r)
i#l

—K(21,.. ., 221, %, 2141, - - 2m) (20) ) a(21) th(zj)dzl coodz,

J#l
<o [ a2l — al°
= L mn—+e
I1 Blyjr)x Bzor) (Douey |Zo — 2s])

J#l

rsr(mfl)n

dzi1dz1 ... dzy,

1/4’
1
<M —— dzp < —— a 1=aq
(M,r)mn—i-s /B(yl,r) |a’(zl)| 21 Meprn HaHL (w) <~/Bz w(zl) Zl)

1

<
= Mew(Bl)’

where in the second equality we use the cancellation property of the atom a(z;). It

follows that 1

(Wa(2)] < 32 XBwn (@)
The estimates of W1 (z) and Wa(z) imply that
|a(2)| 1

(23)  la(z) = (g, hay - hn) (2)] < 5 2 X B () + WXB(ym)(x)~

Notice that

(2.4) / [a(x) —IL;i(g, h1, ..., hm)(x)]dz =0,

because the atom a(x) has cancellation property and the second integral equals 0
just by the definitions of II;. Then inequality (2.3) and cancellation (2.4), together

with Lemma 2.1, show that

For M sufficiently large such that

log M
Me ~

a(x) _Hl(gahla' 7hm)(x)HH1(w) <C

Clog M o
Ms

Thus, the result follows from here.

O

With this approximation result above, we can give the proof of the main Theo-

rem 1.1.
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Proof of Theorem 1.1. By Lemma 2.2, it is obvious that

Ii(g, has - - oy ) (@) | 2 (@) < CllGl ot oy 1Pl oy ) - - - Nl Lo ()

It is immediate that for any representation of f as in (1.3), i.e

f= ZZA’% (g5, Bk hE ) ()

=1s=1

with

111 (@) Cmf{z D N gE o @ 1PE s o - ||h§,m||LP"'L(w)};

k=1s=1

where the infimum above is taken over all possible representations of f that sat-
isfy (1.3).

Next, we will show that the other inequality holds and that it is possible to obtain
such a decomposition for any f € H'(w). Applying the atomic decomposition, for
any f € H(w ) we can ﬁnd a sequence {\!} € ¢! and a sequence of H!(w)-atom {al}

so that f = Z Alal and E AL < O fll (o)

S=

We adopt some arguments from [1] (or [6], [9]). Let € > 0 be small enough such
that Ce < 1. For each atom a’ we apply Lemma 2.4 to find the functions g! € LY (w),
hi, € LP'(w),...,h},, € LPm(w) with

a‘;_H(gsahqlw'wh;m)H <e Vs

3l H'(w)

and
1950 2o oy 1Pl Lo1 () - - Pl Lom () < Ce, L),
where C(g, L) = CM™"+L) is a constant depending on ¢ and L. We write

f=Y Mal=:M+E,

where

ZA Hl gev sl""?h;,m)(q")?

Ey = Z)‘i(ai _Hl(g;ahi,lv"' hi m))

Notice that

o0

1B 1wy < D IAY llad = T(gd, bY sy b ) i ) < €Z|>\1 eC|[ fll r (w)-

s=1
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Meanwhile, we can also find a sequence {\2} € [! and a sequence of H!(w)-atom

{a?} such that E; = 3" A\2a2 and

s=1

o0
Y < ClE g ) < Ol il o)

s=1

Again, by applying Lemma 2.4 to each atom a2, there exists g2 € L* (w), hZ, €
Lrr(w), ..., him € LPm(w) with

We then have that F; = My + E> with

ag_H(gs7hsla"'7h§,m)H <e Vs.

- H(w)
gl

00 %)

M2:Z>€ ?ZZAgﬂl(ggahg,p'“ h%m)(x)’
s=1
ZA2 a - gsvhslﬂ"'vhg,m))'

Observe that

o0
1ol wy < DN Mla2 = (g2, b2 1, B2, i )
s=1

62 < Ol )

then

2 oo

f=M+E =M+M+E =Y Y Mgt h, . ht,)+E.
k=1 s=1

The same argument above shows that for each 1 < k& < K produces functions
g¥ € LP (w), | € LP1(w),... k€ LP» (w) with
k
198N £ (uy 161 o1 @21 < - 1S sl Lo oy < C(e, L) Vs,

sequences {AF} € I with ||AF]l;, < e*7'C*||f| m1(w), and a function Ex € H'(w)
with

K oo
HEKHHl(w)<(C€)Kl|f||H1(w) and f:ZZAI;HZ(gfahI;Jv"'ah];,m)+Ek'

k=1s=1
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Letting K — oo gives the desired decomposition of

f:ZZ)\ II; gqahelw"vhf,m)'

k=1s=1
We conclude that
[ee] [ee] [ee]
DD NI e R W) = g Il
k=1 s=1 k=1
Thus, we have completed the proof of Theorem 1.1. O

Finally, we dispense with the proof of Theorem 1.2.

Proof of Theorem 1.2. The upper bound in this theorem is contained in [8].
For the lower bound, suppose that f € H'(w), using the weak factorization in
Theorem 1.1 and the weighted boundedness of [b, T];, we obtain

ZA b Hl ge? sl""’h?,m»Lz

S

H
gl
Il

tqu
Mx

)‘]:<g§7 [b7 T] (hs 1o+ h?,m)>L2

=~
Il
_
»
I
-

Hence, we have that

(b, fr2| < ZZIA’“I 19€ 1 27 15 TIe (RS 1 - BE ) | o er=)

k=1 s=1
< I, TTes LPH(w) x - XL”’”( ) = LP(w'P)

(o) o0
ZZ INENGE ] o o H 128 527 ()
k=1s=1 j=1

Ol Thex L7 (w) x ... x LP (w) = LA )| 1 f 2 -

From the duality theorem between H'(w) and BMO(w) we get

[bllBMOw) = sup [ (b, f) 2]
Hf”Hl(w)<1

<C|b, T)i: LP* (W) x ... x LPm(w) — LP(w'™P)]],

it follows that b € BMO(w). O
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