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1. Introduction

The classical Fibonacci numbers are defined by the linear recurrence relation

F0 = 0, F1 = 1, Fn = Fn−2 + Fn−1, n = 2, 3, . . .

A closed-form expression is given by

(1.1) Fn =
1
√
5
(ϕn − (1 − ϕ)n),

where

(1.2) ϕ =
1

2

(

1 +
√
5
)

= 1.618 . . .

denotes the golden ratio. A detailed collection of the main properties of the Fibonacci

numbers can be found, for instance, in Koshy [1].
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The work on this note was inspired by a paper published by Popescu and Díaz-

Barrero in 2006 (see [2]). The authors used Jensen’s inequality for convex functions

to prove the following elegant inequality for Fibonacci numbers,

(1.3) (FnFn+1)
2 6

n
∑

k=1

F r
k

n
∑

k=1

F 4−r
k , n ∈ N, r ∈ Z.

The proof reveals that (1.3) is valid for all n ∈ N and r ∈ R. Here, we extend this

result and state an open problem in connection with (1.3).

2. Results

The following extension of inequality (1.3) holds.

Theorem 2.1. Let r, s ∈ R with r + s > 4. Then, for all n ∈ N,

(2.1) (FnFn+1)
2
6

n
∑

k=1

F r
k

n
∑

k=1

F s
k .

The sign of equality holds in (2.1) if and only if n = 1, 2 or n > 3, r = s = 2.

P r o o f. Since Fk > 1, k > 1, we obtain F 2
k 6 F

(r+s)/2
k . Using the Cauchy-

Schwarz inequality gives

(FnFn+1)
2 =

( n
∑

k=1

F 2
k

)2

6

( n
∑

k=1

F
r/2
k F

s/2
k

)2

6

n
∑

k=1

F r
k

n
∑

k=1

F s
k .

We assume that equality holds in (2.1). Let n > 3. We obtain

F 2
k = F

(r+s)/2
k , k = 1, 2, . . . , n.

For k = 3, we find 1
2 (r + s) = 2. Moreover, we get

F
r/2
k = λF

s/2
k , k = 1, 2, . . . , n.

For k = 1 we obtain λ = 1 and for k = 3 we find

2r/2 = F
r/2
3 = λF

s/2
3 = 2s/2.

Thus, r = s. It follows that r = s = 2. �
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This result leads to the problem to determine all real numbers r and s such

that (2.1) holds for all integers n > 1. Here, we offer a partial solution.

Theorem 2.2. Let r, s ∈ R with rs > 0. The inequality (2.1) holds for all n ∈ N

if and only if r + s > 4.

P r o o f. With regard to Theorem 2.1 it remains to prove that if rs > 0 and

r + s < 4, then (2.1) is not valid for all n. Therefore, it suffices to show that

(2.2) lim
n→∞

Qn = 0,

where

Qn = (FnFn+1)
−2

n
∑

k=1

F r
k

n
∑

k=1

F s
k .

We consider two cases.

Case 1. r 6 0 and s 6 0. Then we have F r
k 6 1 and F s

k 6 1, k > 1. Thus,

n
∑

k=1

F r
k 6 n and

n
∑

k=1

F s
k 6 n.

It follows that

(2.3) 0 < Qn 6 (FnFn+1)
−2n2 6

( n

Fn

)2

.

Let ϕ be the number defined in (1.2). Then,

(2.4)
1

2
ϕn 6 ϕn − (1 − ϕ)n.

Using (1.1) and (2.4) gives

(2.5) 0 <
n

Fn
=

√
5n

ϕn − (1− ϕ)n
6 2

√
5
n

ϕn
.

From (2.3) and (2.5) we conclude that (2.2) holds.

Case 2. r > 0 and s > 0. Since

n
∑

k=1

F r
k 6 nF r

n and

n
∑

k=1

F s
k 6 nF s

n ,

we obtain

(2.6) 0 < Qn 6 (FnFn+1)
−2nF r

nnF
s
n =

n2

Fα
n

( Fn

Fn+1

)2
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with α = 4− (r + s) > 0. From (1.1) and (2.4) we get

(2.7) 0 <
n2

Fα
n

=
(
√
5
)α n2

(ϕn − (1 − ϕ)n)α
6

(

2
√
5
)αn2

an

with a = ϕα > 1. Applying

lim
n→∞

n2

an
= 0

and the known limit relation

lim
n→∞

Fn

Fn+1
=

1

ϕ

we conclude from (2.6) and (2.7) that (2.2) holds. �

The following problem still remains open: determine all real parameters r and s

with rs < 0 such that (2.1) holds for all n. It is tempting to conjecture that in this

case the condition r + s > 4 is necessary. We show that this is not true.

Let max(r, s) > 6. Inequality (2.1) is valid for n = 1, 2. Let n > 3. Then,

(FnFn+1)
2
6 (Fn · 2Fn)

2 = (F3F
2
n)

2
6 (F 3

n)
2 = F 6

n 6

n
∑

k=1

F r
k

n
∑

k=1

F s
k .

This means that there exist numbers r and s with rs < 0 and r+s < 4 such that (2.1)

is valid for all n.

A c k n ow l e d g em e n t. We thank the referee for the careful reading of the

manuscript.
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