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Abstract. M.Busaniche, R.Cignoli (2014), C. Tsinakis and A.M.Wille (2006) showed
that every residuated lattice induces a residuation on its full twist product. For their
construction they used also lattice operations. We generalize this problem to left-residuated
groupoids which need not be lattice-ordered. Hence, we cannot use the same construction
for the full twist product. We present another appropriate construction which, however,
does not preserve commutativity and associativity of multiplication. Hence we introduce
the so-called operator residuated posets to obtain another construction which preserves the
mentioned properties, but the results of operators on the full twist product need not be
elements, but may be subsets. We apply this construction also to restricted twist products
and present necessary and sufficient conditions under which we obtain a pseudo-Kleene
operator residuated poset.
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1. Introduction

Busaniche and Cignoli (see [1]) as well as Tsinakis and Wille (see [6]) showed that

if (L,6, ·,→, 1) is a residuated lattice then · and → can be used to define binary

operations ⊙ and ⇒ on the full twist product of (L,6) such that the resulting

structure becomes a residuated lattice again. For the construction of such opera-

tions ⊙ and ⇒ they used the lattice operations ∨ and ∧. When going from lattices
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to residuated posets, the natural question arises whether also in this case the corre-

sponding twist product can be equipped with certain operations ⊙ and ⇒ (without

using lattice operations) such that the resulting structure is residuated again. We

solve this problem in the positive. We define suitable operations ⊙ and ⇒ on the

full twist product such that the arising structure becomes a left-residuated groupoid

again. Unfortunately, this construction does preserve neither commutativity nor as-

sociativity of the original structure (Q,6, ·,→, 1). Hence, we try another approach

where instead of operations we use certain operators ⊙ and ⇒ in such a way that

the full twist product becomes an operator residuated poset and the commutativity

as well as associativity of the original operation · are preserved. As the authors

already showed in [3], any poset Q = (Q,6) can be embedded into a pseudo-Kleene

poset (Pa(Q),6, ′) where (Pa(Q),6) is a certain subposet of the full twist product

of Q. This has motivated us to investigate whether our construction of the opera-

tors ⊙ and ⇒ can be extended also to this case, i.e. whether we can determine for a

bounded commutative residuated monoid (Q,6, ·,→, 0, 1) a corresponding pseudo-

Kleene poset which is operator residuated and into which Q can be embedded. We

characterize those left-residuated posets for which our construction is possible.

2. Preliminaries

The concept of a Kleene lattice (alias Kleene algebra) was introduced by Kalman

(see [5], and also [4]). Recall that a Kleene lattice is a distributive lattice L =

(L,∨,∧, ′) with an involution ′ satisfying the so-called normality condition, i.e. the

inequality

x ∧ x′ 6 y ∨ y′

which can be rewritten as an identity. This concept was generalized by the first

author in [2]: L is called a pseudo-Kleene lattice if it satisfies the above identity, but

it need not be distributive.

Let (P,6) be a poset, a, b ∈ P and A,B ⊆ P . Then the lower cone L(A) of A and

the upper cone U(A) of A are introduced as

L(A) := {x ∈ P : x 6 A}, U(A) := {x ∈ P : x > A}.

Here x 6 A means x 6 y for all y ∈ A and, similarly, x > A means x > y for all

y ∈ A. The expression A 6 B means x 6 y for all x ∈ A and y ∈ B. Instead of

L({a, b}) and L(U(A)) we simply write L(a, b) and LU(A), respectively. Analogously

we proceed in similar cases. Let maxA denote the set of all maximal elements of

(A,6). A unary operation ′ on P is called antitone if x, y ∈ P and x 6 y implies

y′ 6 x′, an involution if it satisfies the identity x′′ ≈ x.
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The concept of a pseudo-Kleene lattice was generalized by the authors in [3] for

posets as follows:

A pseudo-Kleene poset is a poset P = (P,6, ′) with an antitone involution satis-

fying the condition

L(x, x′) 6 U(y, y′)

for all x, y ∈ P . A Kleene poset is a distributive pseudo-Kleene poset. Recall that

a poset (P,6) is called distributive if it satisfies one of the following equivalent LU-

identities:
L(U(x, y), z) ≈ LU(L(x, z), L(y, z)),

U(L(x, y), z) ≈ UL(U(x, z), U(y, z)).

In [3] it was shown that an arbitrary poset can be embedded into a pseudo-Kleene

poset by means of the so-called twist construction:

The full twist product of a poset Q = (Q,6) is the poset (Q2,6t) where

(x, y) 6t (z, v) if and only if x 6 z and v 6 y

for all (x, y), (z, v) ∈ Q2. We have

L((x, y), (z, v)) = L(x, z)× U(y, v), U((x, y), (z, v)) = U(x, z)× L(y, v)

for all (x, y), (z, v) ∈ Q2.

3. Left-residuated groupoids

We will investigate when a residuated poset can be transferred to a residuated full

twist product. For this purpose we use the twist construction. For residuated lattices

such a transfer was already published in [1] by using a construction developed in [6].

From now on, let (Q,6, ·,→, 1) denote a poset with constant 1 endowed with

two binary operations · and →. For our next investigations, consider the following

conditions.

(1) x 6 y implies z · x 6 z · y (right-isotony),

(2) x 6 y implies x · z 6 y · z (left-isotony),

(3) x · y 6 z if and only if x 6 y → z (left-adjointness),

(4) x 6 y implies z → x 6 z → y,

(5) x 6 y implies y → z 6 x → z,

(6) x · 1 ≈ x,

(7) x · y 6 x, y

for all x, y, z ∈ Q.
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The above mentioned conditions are related as shown in the following lemmas.

Lemma 3.1. For (Q,6, ·,→, 1) the following holds:

(i) (1) and (3) imply (5).

(ii) If · is commutative then (1) and (6) imply (7).

P r o o f. Let a, b, c ∈ Q.

(i) If a 6 b then every of the following statements implies the next one:

b → c 6 b → c,

(b → c) · b 6 c,

(b → c) · a 6 c,

b → c 6 a → c.

(ii) We have a · b 6 a · 1 = a and a · b = b · a 6 b. �

Lemma 3.2. Assume (Q,6, ·,→, 1) with associative · to satisfy (2) and (3). Then

it satisfies

(8) (x · y) → z ≈ x → (y → z).

P r o o f. Let a, b, c ∈ Q. Then every of the following statements implies the next

one:
(a · b) → c 6 (a · b) → c,

((a · b) → c) · (a · b) 6 c,

(((a · b) → c) · a) · b 6 c,

((a · b) → c) · a 6 b → c,

(a · b) → c 6 a → (b → c).

Moreover, every of the following statements implies the next one:

a → (b → c) 6 a → (b → c),

(a → (b → c)) · a 6 b → c,

((a → (b → c)) · a) · b 6 (b → c) · b,

(a → (b → c)) · (a · b) 6 (b → c) · b.

Together with (b → c) · b 6 c which follows from b → c 6 b → c we obtain (a →

(b → c)) · (a · b) 6 c which implies a → (b → c) 6 (a · b) → c. �
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Now we introduce one of our main concepts.

Definition 3.3. (Q,6, ·,→, 1) is called a left-residuated groupoid if it satisfies (3)

and (6). It is called

bounded if (Q,6) is bounded (0 is the bottom and 1 the top element),

commutative if · is commutative,

associative if · is associative.

A commutative residuated monoid is a commutative and associative left-residuated

groupoid.

An example of a bounded residuated monoid which is not a lattice follows.

E x am p l e 3.4. The poset visualized in Figure 1

0

a

c

f

h

1

b

e

d

g

Figure 1.

together with the operations given by

· 0 a b c d e f g h 1
0 0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 0 a

b 0 0 a 0 0 a a 0 a b

c 0 0 0 a 0 a 0 a a c

d 0 0 0 0 a 0 a a a d

e 0 0 a a 0 a a a a e

f 0 0 a 0 a a a a a f

g 0 0 0 a a a a a a g

h 0 0 a a a a a a a h

1 0 a b c d e f g h 1

→ 0 a b c d e f g h 1
0 1 1 1 1 1 1 1 1 1 1
a h 1 1 1 1 1 1 1 1 1
b g h 1 h h 1 1 h 1 1
c f h h 1 h 1 h 1 1 1
d e h h h 1 h 1 1 1 1
e d h h h h 1 h h 1 1
f c h h h h h 1 h 1 1
g b h h h h h h 1 1 1
h a h h h h h h h 1 1
1 0 a b c d e f g h 1

is a bounded commutative residuated monoid which is not a lattice.
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The next lemma shows some elementary properties of left-residuated groupoids.

Lemma 3.5. The following holds:

(i) Every left-residuated groupoid (Q,6, ·,→, 1) satisfies (2), (4) and

(9) 1 → x ≈ x.

(ii) If (Q,6, ·,→, 1) satisfies (5), (6) and (9) then it satisfies

(10) x 6 y → x.

P r o o f. Let a, b, c ∈ Q.

(i) Condition (2): If a 6 b then every of the following statements implies the next

one:
b · c 6 b · c,

b 6 c → (b · c),

a 6 c → (b · c),

a · c 6 b · c.

Condition (4): If a 6 b then every of the following statements implies the next

one:
c → a 6 c → a,

(c → a) · c 6 a,

(c → a) · c 6 b,

c → a 6 c → b.

Condition (9): We have that 1 → a 6 1 → a implies 1 → a = (1 → a) · 1 6 a

and a · 1 6 a implies a 6 1 → a.

(ii) We have a = 1 → a 6 b → a. �

Now we show that every left-residuated groupoid naturally induces a left-

residuated groupoid on its full twist product.

Theorem 3.6. Let (Q,6, ·,→, 1) be a poset with binary operations · and → and

a constant 1, let a, b ∈ Q and f , g be surjective mappings from Q2 to Q satisfying

f(a, b) = g(a, b) = 1, and consider the full twist product (Q2,6t,⊙,⇒, (a, b)) of

(Q,6) with the binary operations ⊙ and ⇒ defined by

(x, y)⊙ (z, v) := (x · f(z, v), g(z, v) → y),

(x, y) ⇒ (z, v) := (f(x, y) → z, v · g(x, y))

for all (x, y), (z, v) ∈ Q2 and the constant (a, b). Then (Q,6, ·,→, 1) is a left-

residuated groupoid if and only if (Q2,6t,⊙,⇒, (a, b)) has this property.
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P r o o f. We investigate when statements (Q2,6t,⊙,⇒, (a, b)) satisfy (3) and (6).

The following are equivalent:

(Q2,6t ,⊙,⇒, (a, b)) satisfies (3),

(x, y)⊙ (z, v) 6t (t, w) is equivalent to (x, y) 6t (z, v) ⇒ (t, w),

(x · f(z, v), g(z, v) → y) 6t (t, w) is equivalent to (x, y) 6t (f(z, v) → t, w · g(z, v)),

(x · f(z, v) 6 t and w 6 g(z, v) → y) is equivalent to

(x 6 f(z, v) → t and w · g(z, v) 6 y),

(Q,6, ·,→, 1) satisfies (3).

Moreover, the following statements are equivalent:

(Q2,6t,⊙,⇒, (a, b)) satisfies (6),

(x, y)⊙ (a, b) ≈ (x, y),

(x · f(a, b), g(a, b) → y) ≈ (x, y),

(x · 1, 1 → y) ≈ (x, y),

x · 1 ≈ x and 1 → y ≈ y,

(Q,6, ·,→, 1) satisfies (6) and (9).

Now Lemma 3.5 completes the proof. �

Corollary 3.7. Let (Q,6, ·,→, 1) be a poset with binary operations · and→ and

a constant 1, and consider the full twist product (Q2,6t,⊙,⇒, (1, 1)) of (Q,6) with

the binary operations ⊙ and ⇒ defined by

(x, y)⊙ (z, v) := (x · z, v → y), (x, y) ⇒ (z, v) := (x → z, v · y)

for all (x, y), (z, v) ∈ Q2 and the constant (1, 1). Then (Q,6, ·,→, 1) is a left-

residuated groupoid if and only if (Q2,6t,⊙,⇒, (1, 1)) has this property.

P r o o f. This is a special case of Theorem 3.6 where a = b = 1, f is the first

and g the second projection. �

Corollary 3.8. Let (Q,6, ·,→, 1) be a poset with binary operations · and→ and

a constant 1, and consider the full twist product (Q2,6t,⊙,⇒, (1, 1)) of (Q,6) with

the binary operations ⊙ and ⇒ defined by

(x, y)⊙ (z, v) := (x · v, z → y), (x, y) ⇒ (z, v) := (y → z, v · x)

for all (x, y), (z, v) ∈ Q2 and the constant (1, 1). Then (Q,6, ·,→, 1) is a left-

residuated groupoid if and only if (Q2,6t,⊙,⇒, (1, 1)) has this property.

P r o o f. This is a special case of Theorem 3.6 where a = b = 1, f is the second

and g the first projection. �
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4. Operator residuated posets

One can easily see that the left-residuated groupoid (Q2,6t,⊙,⇒, (a, b)) from

Theorem 3.6 need neither be commutative nor associative even if (Q,6, ·,→, 1) has

this property. Hence, we introduce the next concept.

Definition 4.1. An operator residuated poset is an ordered six-tuple (Q,6,⊙,

⇒, 0, 1) such that

(i) (Q,6, 0, 1) is a bounded poset,

(ii) ⊙ and ⇒ are mappings from Q2 to 2Q (so-called operators),

(iii) x⊙ y ≈ y ⊙ x,

(iv)
⋃

u∈x⊙y

(u⊙ z) =
⋃

u∈y⊙z

(x⊙ u) (operator associativity),

(v) x⊙ y 6 z if and only if x 6 y ⇒ z

for all x, y, z ∈ Q.

The following result shows that when using an operator residuated structure on

the full twist product, the commutativity and associativity of the original bounded

left-residuated groupoid are preserved.

Theorem 4.2. Let (Q,6, ·,→, 0, 1) be a bounded commutative residuated

monoid and a0 ∈ Q. Then (Q2,6t,⊙,⇒, (0, 1), (1, 0)), where (Q2,6t) is the full

twist product of (Q,6) and the operators ⊙ and ⇒ on Q2 are defined by

(x, y)⊙ (z, v) := {(x · z, x → v), (x · z, z → y)},

(x, y) ⇒ (z, v) := {(x → z, x · v), (v → y, x · v)}

for all (x, y), (z, v) ∈ Q2 is an operator residuated poset and the mapping x 7→ (x, a0)

is an embedding of (Q,6) into (Q2,6t).

P r o o f. Let a, b, c, d, e, f ∈ Q. According to Lemmas 3.1, 3.2, and Lemma 3.5,

(Q,6, ·,→, 0, 1) satisfies (1)–(10).

(i) It is evident that (Q2,6t, (0, 1), (1, 0)) is a bounded poset.

(ii) ⊙ and ⇒ are mappings from (Q2)2 to 2(Q
2).

We must prove (iii)–(v) of Definition 4.1.

(iii) We have

(a, b)⊙ (c, d) = {(a · c, a → d), (a · c, c → b)}

= {(c · a, c → b), (c · a, a → d)} = (c, d)⊙ (a, b).

376



(iv) We have

⋃

(x,y)∈(a,b)⊙(c,d)

((x, y)⊙ (e, f)) =
⋃

(x,y)∈{(a·c,a→d),(a·c,c→b)}

((x, y) ⊙ (e, f))

= ((a · c, a → d)⊙ (e, f)) ∪ ((a · c, c → b)⊙ (e, f))

= {((a · c) · e, (a · c) → f), ((a · c) · e, e → (a → d)),

((a · c) · e, (a · c) → f), ((a · c) · e, e → (c → b))},

⋃

(x,y)∈(c,d)⊙(e,f)

((a, b)⊙ (x, y)) =
⋃

(x,y)∈{(c·e,c→f),(c·e,e→d)}

((a, b)⊙ (x, y))

= ((a, b)⊙ (c · e, c → f)) ∪ ((a, b)⊙ (c · e, e → d))

= {(a · (c · e), a → (c → f)), (a · (c · e), (c · e) → b),

(a · (c · e), a → (e → d)), (a · (c · e), (c · e) → b)}

and

{((a · c) · e, (a · c) → f), ((a · c) · e, e → (a → d)),

((a · c) · e, (a · c) → f), ((a · c) · e, e → (c → b))}

= {(a · (c · e), a → (c → f)), (a · (c · e), (c · e) → b),

(a · (c · e), a → (e → d)), (a · (c · e), (c · e) → b)}.

(v) The following statements are equivalent:

(a, b)⊙ (c, d) 6t (e, f),

{(a · c, a → d), (a · c, c → b)} 6t (e, f),

a · c 6 e, f 6 a → d and f 6 c → b,

a 6 c → e, a 6 f → d and c · f 6 b,

(a, b) 6t {(c → e, c · f), (f → d, c · f)},

(a, b) 6t (c, d) ⇒ (e, f).

Finally, (a, a0) 6 (b, a0) is equivalent to a 6 b. �

E x am p l e 4.3. If (Q,6, ·,→, 0, 1) := ({0, 1},6, ·, (x, y) 7→ 1 − x + xy, 0, 1)

(where +, − and · denote addition, subtraction and multiplication of the reals,

respectively) then the tables for ⊙ and ⇒ look as follows:
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⊙ (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) {(0, 1)} {(0, 1)} {(0, 0), (0, 1)} {(0, 0), (0, 1)}

(0, 1) {(0, 1)} {(0, 1)} {(0, 1)} {(0, 1)}

(1, 0) {(0, 0), (0, 1)} {(0, 1)} {(1, 0)} {(1, 0), (1, 1)}

(1, 1) {(0, 0), (0, 1)} {(0, 1)} {(1, 0), (1, 1)} {(1, 1)}

⇒ (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) {(1, 0)} {(0, 0), (1, 0)} {(1, 0)} {(0, 0), (1, 0)}

(0, 1) {(1, 0)} {(1, 0)} {(1, 0)} {(1, 0)}

(1, 0) {(0, 0), (1, 0)} {(0, 1)} {(1, 0)} {(0, 1), (1, 1)}

(1, 1) {(0, 0), (1, 0)} {(0, 1), (1, 1)} {(1, 0)} {(1, 1)}

5. Pseudo-Kleene posets

It has been shown by the authors in [3] that every poset Q = (Q,6) can be

embedded into a pseudo-Kleene one. For this we use a certain modification of the

full twist product construction as follows.

Let a ∈ Q and put

Pa(Q) := {(x, y) ∈ Q2 : L(x, y) 6 a 6 U(x, y)},

(x, y) 6t (z, v) :⇔ (x 6 z and v 6 y),

(x, y)′ := (y, x)

for all (x, y), (z, v) ∈ Q2. The following was proved in [3]:

⊲ (Pa(Q),6t,
′) is a pseudo-Kleene poset,

⊲ the mapping x 7→ (x, a) is an embedding of Q into (Pa(Q),6t),

⊲ (Pa(Q),6t,
′) is a Kleene poset if and only if Q is distributive.

Since Pa(Q) is a subset of the full twist product of Q, it is a question if resid-

uation from (Q,6, ·,→, 1) can be transferred to Pa(Q) as shown in Theorem 3.6.

Unfortunately, this is not possible in general since Pa(Q) need not be closed under

the operators ⊙ and ⇒ defined in Theorem 3.6. However, we can get necessary and

sufficient conditions under which Pa(Q) is closed under these operators and hence

becomes a pseudo-Kleene operator residuated poset.

If Q = (Q,6) is a poset, a, b ∈ Q and every element of Pa(Q) is comparable with

(a, a) then (a, b) ∈ Pa(Q) and hence (a, a) 6t (a, b) or (a, b) 6t (a, a) whence b 6 a

or a 6 b, i.e. b is comparable with a.
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Theorem 5.1. Let (Q,6, ·,→, 0, 1) be a bounded commutative residuated

monoid and a ∈ Q with a · a = a, put Q := (Q,6) and assume that all elements of

Pa(Q) are comparable with (a, a). Then

⊲ (Pa(Q),6t,⊙,⇒, (0, 1), (1, 0)), where the operators ⊙ and ⇒ are defined by

(x, y)⊙ (z, v) := {(x · z, x → v), (x · z, z → y)},

(x, y) ⇒ (z, v) := {(x → z, x · v), (v → y, x · v)}

for all (x, y), (z, v) ∈ Pa(Q) is an operator residuated poset if and only if the

following two conditions hold:

a · x < a ⇒ a · x = 0,(11)

a < x ⇒ x → a = a.(12)

⊲ (Pa(Q),6t,
′) where (x, y)′ := (y, x) for all (x, y) ∈ Pa(Q) is a pseudo-Kleene

poset.

⊲ The mapping x 7→ (x, a) is an embedding of Q into (Pa(Q),6t).

⊲ (x, y)′ ∈ (x, y) ⇒ (0, 1) for all (x, y) ∈ Pa(Q).

P r o o f. Let b, c, d, e ∈ Q. According to Lemmas 3.1, 3.2 and 3.5, (Q,6, ·,→, 0, 1)

satisfies (1)–(10). If a 6 x, y then a = a · a 6 a · y 6 x · y according to (1) and (2),

i.e. we have

(13) a 6 x, y ⇒ a 6 x · y.

⊲ Assume (b, c), (d, e) 6t (a, a). Then the following holds:

(b · d, b → e) 6t (a, a) because b · d 6 b 6 a by (7) and a 6 e 6 b → e by (10).

(b · d, d → c) 6t (a, a) because b · d 6 b 6 a by (7) and a 6 c 6 d → c by (10).

Since b 6 a we have b · e 6 a according to (7).

If b · e = a then (b → d, b · e) is comparable with (a, a).

If b · e < a then (b → d, b · e) is comparable with (a, a) if and only if a 6 b → d.

(e → c, b · e) >t (a, a) because a 6 c 6 e → c by (10) and b · e 6 b 6 a by (7).

⊲ Assume (b, c) 6t (a, a) 6t (d, e). Then the following holds:

Since b 6 a we have b · d 6 a according to (7).

If b · d = a then (b · d, b → e) is comparable with (a, a).

If b · d < a then (b · d, b → e) is comparable with (a, a) if and only if a 6 b → e.

(b · d, d → c) 6t (a, a) because b · d 6 b 6 a by (7) and a 6 c 6 d → c by (10).

(b → d, b · e) >t (a, a) because a 6 d 6 b → d by (10) and b · e 6 b 6 a by (7).

(e → c, b · e) >t (a, a) because a 6 c 6 e → c by (10) and b · e 6 b 6 a by (7).
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⊲ Assume (d, e) 6t (a, a) 6t (b, c). Then the following holds:

(b · d, b → e) 6t (a, a) because b · d 6 d 6 a by (7) and a 6 e 6 b → e by (10).

Since d 6 a we have b · d 6 a according to (7).

If b · d = a then (b · d, d → c) is comparable with (a, a).

If b · d < a then (b · d, d → c) is comparable with (a, a) if and only if a 6 d → c.

Since a 6 b, e we have a 6 b · e according to (13).

If b · e = a then (b → d, b · e) is comparable with (a, a).

If a < b · e then (b → d, b · e) is comparable with (a, a) if and only if b → d 6 a.

If b · e = a then (e → c, b · e) is comparable with (a, a).

If a < b · e then (e → c, b · e) is comparable with (a, a) if and only if e → c 6 a.

⊲ Assume (a, a) 6t (b, c), (d, e). Then the following holds:

Since a 6 b, d we have a 6 b · d according to (13).

If b · d = a then (b · d, b → e) is comparable with (a, a).

If a < b · d then (b · d, b → e) is comparable with (a, a) if and only if b → e 6 a.

If b · d = a then (b · d, d → c) is comparable with (a, a).

If a < b · d then (b · d, d → c) is comparable with (a, a) if and only if d → c 6 a.

(b → d, b · e) > (a, a) because a 6 d 6 b → d by (10) and b · e 6 e 6 a by (7).

Since e 6 a we have b · e 6 a according to (7).

If b · e = a then (e → c, b · e) is comparable with (a, a).

If b · e < a then (e → c, b · e) is comparable with (a, a) if and only if a 6 e → c.

Hence (x, y)⊙(z, v) ⊆ Pa(Q) and (x, y) ⇒ (z, v) ⊆ Pa(Q) for all (x, y), (z, v) ∈ Pa(Q)

if and only if the following statements hold:

(a) b, d 6 a 6 c, e and b · e < a imply a 6 b → d.

(b) b, e 6 a 6 c, d and b · d < a imply a 6 b → e.

(c) c, d 6 a 6 b, e and b · d < a imply a 6 d → c.

(d) c, d 6 a 6 b, e and a < b · e imply b → d 6 a.

(e) c, d 6 a 6 b, e and a < b · e imply e → c 6 a.

(f) c, e 6 a 6 b, d and a < b · d imply b → e 6 a.

(g) c, e 6 a 6 b, d and a < b · d imply d → c 6 a.

(h) c, e 6 a 6 b, d and b · e < a imply a 6 e → c.

Now (a) is equivalent to the statements

b · a < a implies a 6 b → 0,

a · b < a implies a · b 6 0,

a · b < a implies a · b = 0,

Condition (11).
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In the same way one can see that (b), (c) and (h) are equivalent to (11). Moreover,

(d) is equivalent to the statements

a 6 b, e and a < b · e imply b → a 6 a,

a < b implies b → a 6 a,

a < b implies b → a = a,

Condition (12).

In the same way one can see that (e), (f) and (g) are equivalent to (12). Moreover,

we have

(b, c)′ = (c, b) ∈ {(b → 0, b), (c, b)} = {(b → 0, b · 1), (1 → c, b · 1)} = (b, c) ⇒ (0, 1).

The rest follows from Theorem 4.2. �

E x am p l e 5.2. Consider the bounded commutative residuated semigroup

(Q,6, ·,→, 0, 1) with Q = {0, a, 1}, 0 < a < 1, and

· 0 a 1
0 0 0 0
a 0 a a

1 0 a 1

→ 0 a 1
0 1 1 1
a 0 1 1
1 0 a 1

and put Q := (Q,6). It is easy to check that Q is a distributive lattice and

(Q,6, ·,→, 0, 1) is a bounded commutative residuated monoid satisfying all the as-

sumptions of Theorem 5.1. The poset (Pa(Q),6t) is depicted in Figure 2.

(0, 1)

(a, a)

(1, 0)

(0, a)

(1, a)

(a, 0)

(a, 1)

Figure 2.
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Then the operators ⊙ and ⇒ have the following tables:

⊙ 0a 01 a0 aa a1 10 1a

0a 01 01 01 01 01 0a, 01 0a, 01

01 01 01 01 01 01 01 01

a0 01 01 a0 a0, a1 a0, a1 a0 a0, a1
aa 01 01 a0, a1 a1 a1 a0, aa aa, a1

a1 01 01 a0, a1 a1 a1 a0, a1 a1

10 0a, 01 01 a0 a0, aa a0, a1 10 10, 1a

1a 0a, 01 01 a0, a1 aa, a1 a1 10, 1a 1a

⇒ 0a 01 a0 aa a1 10 1a

0a 10 a0, 10 10 10 a0, 10 10 10

01 10 10 10 10 10 10 10

a0 0a 0a 10 0a, 1a 0a, 1a 10 0a, 1a

aa 0a, 1a 0a, aa 10 1a aa, 1a 10 1a
a1 0a, 1a 0a, 1a 10 1a 1a 10 1a

10 0a 01 a0, 10 0a, aa 01, a1 10 0a, 1a

1a 0a, 1a 01, a1 a0, 10 aa, 1a a1 10 1a

Hence (Pa(Q),6t,⊙,⇒, (0, 1), (1, 0)) is an operator residuated poset and (Pa(Q),

6t,
′) a Kleene lattice.

E x am p l e 5.3. On the other hand, the bounded commutative residuated

monoid (Q,6, ·,→, 1) from Example 3.4 has only two idempotents, namely 0 and 1.

Every element of P0(Q) = ({0} × Q) ∪ (Q × {0}) is comparable with (0, 0). But if

x 6= 0, 1 then 0 < x, but x → 0 6= 0 contradicting (12). Similarly, every element

of P1(Q) = ({1} × Q) ∪ (Q × {1}) is comparable with (1, 1). But if x 6= 0, 1 then

0 < 1 · x < 1 contradicting (11).

A c k n ow l e d g em e n t. The authors are grateful to the anonymous referee

whose valuable comments helped to increase the quality of the paper.
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