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Abstract. Let (Gn)n>1 be a binary linear recurrence sequence that is represented by the
Lucas sequences of the first and second kind, which are {Un} and {Vn}, respectively. We

show that the Diophantine equation Gn = B · (glm − 1)/(gl − 1) has only finitely many

solutions in n,m ∈ Z
+, where g > 2, l is even and 1 6 B 6 gl − 1. Furthermore, these

solutions can be effectively determined by reducing such equation to biquadratic elliptic
curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi)
related to the bounds of the integral points on such curves, we conclude the finiteness
result. In fact, we show this result in detail in the case of Gn = Un, and the remaining
case can be handled in a similar way. We apply our result to the sequences of Fibonacci
numbers {Fn} and Pell numbers {Pn}. Furthermore, with the first application we determine

all the solutions (n,m, g,B, l) of the equation Fn = B · (glm − 1)/(gl − 1), where 2 6 g 6 9
and l = 1.

Keywords: Diophantine equation; Lucas sequence; repdigit; elliptic curve

MSC 2020 : 11D72, 11B37, 11B39, 11A63, 11J86

1. Introduction

Let P and Q be nonzero relatively prime integers. Let the sequences {Un} =

{Un(P,Q)} and {Vn} = {Vn(P,Q)} be defined by the same recurrence relation

Un = PUn−1 −QUn−2 (similarly, Vn = PVn−1 −QVn−2)

for n > 2 with the initial terms U0 = 0, U1 = 1 and V0 = 2, V1 = P . The discriminant

of these sequences is defined by D = P 2 − 4Q. The characteristic polynomial of the
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recurrence is given by

X2 − PX +Q,

which has the roots

α =
P +

√
D

2
and β =

P −
√
D

2
.

Thus, α 6= β, α + β = P , α · β = Q, and (α − β)2 = D. The sequences {Un}
and {Vn} are called the (first and second kind) Lucas sequences corresponding to
the parameters (P,Q). The terms of Lucas sequences of the first and second kind

satisfy the identity

(1.1) V 2
n = DU2

n + 4Qn.

Moreover, if the ratio ζ = α/β of the roots of the characteristic polynomial is a root

of unity, then the sequences {Un} and {Vn} are said to be degenerate, and non-
degenerate otherwise. Describing all the degenerate Lucas sequences follows from

the fact that

|ζ + ζ−1| =
∣

∣

∣

α

β
+

β

α

∣

∣

∣
6 2.

Since α/β+β/α = (P 2 − 2Q)/Q, it follows that P 2− 2Q = 0, ±Q, ±2Q. This gives

P 2 = Q, 2Q, 3Q, 4Q. Since gcd(P,Q) = 1, we get (P,Q) = (1, 1), (−1, 1), (2, 1) or

(−2, 1). Therefore, if D = 0 or D = −3, then the sequence is degenerate (for more

details, see e.g. [21], pages 2–7). The most interesting Lucas sequences of the first

and second kind are the sequences of the Fibonacci numbers, Pell numbers, Lucas

numbers, and Pell-Lucas numbers, which are given by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 ∀n > 2,

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 ∀n > 2,

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 ∀n > 2,

Q0 = 2, Q1 = 2, Qn = 2Qn−1 +Qn−2 ∀n > 2,

respectively. Diophantine equations involving terms of such sequences have been

investigated by several authors. For instance, there are many articles in the literature,

which address Diophantine equations involving binary recurrence sequences with

repdigits that are defined as follows. A natural number N is called a base g-repdigit

for g > 2 if all of its base g-digits are equal; that is, if

N = b · g
m − 1

g − 1
for some m > 1 and b ∈ {1, . . . , g − 1}.
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The problem of finding all perfect powers among repdigits was presented in 1956

by Obláth (see [20]) and then solved by Bugeaud and Mignotte in 1999 (see [9]).

Thereafter, many authors have started to study the solutions of such Diophantine

equations. For instance, Luca in [16] used an elementary way to show that the

largest number whose decimal expansion has only one distinct digit in the sequence

of Fibonacci numbers or Lucas numbers is F10 = 55 or L5 = 11, respectively. In

addition, Díaz Alvarado and Luca in [10] found all Fibonacci numbers that are sums

of two repdigits. Furthermore, a similar problem was investigated in the case of

Lucas numbers by Adegbindin, Luca and Togbé in [1]. For other related results, we

refer to [6], [12], [15], [18], [23] and the references given there. Luca’s result (see [16])

was generalized by Marques and Togbé in [17], in which they determined all the

solutions of the Diophantine equations

(1.2) Fn = B · 10
lm − 1

10l − 1
and Ln = B · 10

lm − 1

10l − 1

in positive integers m, n and l, with m > 1, 1 6 l 6 10 and 1 6 B 6 10l − 1,

which are (m,n, l) = (2, 10, 1) and (m,n, l) = (2, 5, 1) in the Fibonacci and Lucas

cases, respectively. It is clear that these equations have solutions only with l = 1.

In general, if (Gn)n>1 is an integer linear recurrence sequence, they gave a finiteness

result for the equation

(1.3) Gn = B · g
lm − 1

gl − 1
,

where n, m, g, l and B are positive integers such that m > 1, g > 1, 1 6 B 6 gl − 1.

In fact, they proved their results using heavy computations followed by a result due

to Matveev (see [19]) on the lower bound on linear forms of logarithms of algebraic

numbers to obtain bounds for n and m. As these bounds could be very high, they

used a result due to Dujella and Pethő (see [11]) on the Baker-Davenport reduc-

tion to reduce these bounds. With respect to these results, the following natural

questions arise.

⊲ Is there another approach that is easier to be applied to such concrete equations?

⊲ Do the equations in (1.2) have solutions in any base g other than 10, say g > 2,

in the case of l = 1?

In this paper, we answer the above questions positively. Indeed, we firstly use a dif-

ferent and direct approach to obtain a general finiteness result for the Diophantine

equation (1.3) in which the sequence Gn is represented by the non-degenerate Lucas

sequences of the first and second kind with Q ∈ {−1, 1} and l is an even positive
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integer. Our argument is based on combining equation (1.3) with the identity re-

lationship between Lucas sequences of the first and second kind (1.1) to produce

biquadratic elliptic curves of the form

(1.4) y2 = ax4 + bx2 + c,

with integer coefficients a, b, c and discriminant ∆ = 16ac(b2 − 4ac)2 6= 0. The

integral points of a biquadratic elliptic curve can be determined using an algorithm

implemented in Magma (see [5]) as SIntegralLjunggrenPoints() (based on results

obtained by Tzanakis, see [27]) or an algorithm described by Alekseyev and Tengely

in [2] in which they gave an algorithmic reduction of the search for integral points

on such a curve by solving a finite number of Thue equations. It is clear that such

a biquadratic elliptic curve in the form (1.4) can be further written as an elliptic

curve of the form

(1.5) Y 2 = X3 + bX2 + acX,

where X = ax2, Y = axy and its discriminant is a2c2(b2−4ac) 6= 0. For determining

all integral points on a given elliptic curve, one can follow the so-called elliptic

logarithm method developed by Stroeker and Tzanakis (see [26]) and independently

by Gebel, Pethő and Zimmer (see [13]). There exists a number of software imple-

mentations for determining integral points on elliptic curves based on this technique

such as an algorithm implemented in SageMath (see [25]) as integral points().

In 1968, Baker (see [3]) gave an explicit bound for the size of all the integral solutions

of any equation of the form

y2 = ax3 + bx2 + cx+ d,

where a, b, c, d denote rational integers with a 6= 0 and the polynomial on the right

has three simple roots. Furthermore, one year later in [4], he extended this result to

some further equations of the form

(1.6) ym = b0x
n + b1x

n−1 + . . .+ bn,

where n > 3 and b0 6= 0, b1, . . . , bn ∈ Z. Indeed, he gave bounds for the integral

solutions of the given equations for all m > 2. Let us recall the result in the case of

m = 2 in the following theorem and let us call it Baker’s theorem:
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Baker’s theorem. If the polynomial on the right of the Diophantine equa-

tion (1.6), where m = 2, possesses at least three simple zeros, then all of its solutions

in integers x, y satisfy

max(|x|, |y|) < exp exp exp{(n10nH)n
2},

where H = max
06i6n

|bi|.

Such bounds have been improved and generalized by several authors including

Brindza (see [7]), Shorey and Tijdeman (see [22]), Sprindžuk (see [24]), Bugeaud

(see [8]), Hajdu and Herendi (see [14]). In fact, the best known bounds concerning

the solutions of elliptic equations over Q are due to Hajdu and Herendi in 1998

(see [14]).

R em a r k 1.1. Since a finiteness result for equation (1.3) in the case of Gn = Un

or Gn = Vn can be obtained in a similar way, we only present and prove this result

in detail in the case of Gn = Un and omit the proof of the remaining case.

As applications of our result, we apply our method on the sequences of Fibonacci

and Pell numbers that satisfy equation (1.3). Indeed, with the first application

we also generalize the result of Marques and Togbé in [17] in the case of Fibonacci

numbers by determining all the solutions (n,m, g,B, l) of Fn = B ·(glm − 1)/(gl − 1)

in the case of 2 6 g 6 9 and l = 1. Note that the case of Lucas numbers can be

generalized similarly, therefore we omit the details of this case. More precisely, we use

our approach in the case where l is even, otherwise we follow the technique of Marques

and Togbé in [17] of using the result of Matveev on linear forms in three logarithms

and the result of Dujella and Pethő on the method of Baker-Davenport reduction.

2. Auxiliary results

In this section, we recall some useful results that will be used in the proof of The-

orem 3.2 (particularly in case of l = 1). Recall that the Binet’s Fibonacci numbers

formula is known as

(2.1) Fn =
αn − βn

α− β
, where (α, β) =

(1 +
√
5

2
,
1−

√
5

2

)

for all n > 0, where α is called the golden ratio and β = −1/α. Moreover, it is also

known that

(2.2) αn−2 6 Fn 6 αn−1 holds for all n > 1.
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Also, recall that the logarithmic height of an s-degree algebraic number α is defined as

(2.3) h(α) =
1

s

(

log |a|+
s

∑

j=1

logmax{1, |α(j)|}
)

,

where a is the leading coefficient of the minimal polynomial of α (over Z), (α(j))16j6s

are the conjugates of the algebraic number α, and the absolute value of a complex

number z = x+ iy is determined by |z| =
√

x2 + y2.

In order to obtain some bounds for n and m, we need to use a lower bound for

a linear form logarithms à la Baker, which was given by the following lemma due to

Matveev, see [19] (also see Lemma 2 in [17]).

Lemma 2.1. Define

(2.4) Λ = a1 logα1 + a2 logα2 + a3 logα3,

where a1, a2 and a3 are nonzero integers and α1, α2 and α3 are nonzero algebraic

numbers. Let d be the degree of the number field Q(α1, α2, α3) over Q and χ =

[R(α1, α2, α3) : R]. If Λ 6= 0, then

log |Λ| > −C1d
2A1A2A3 log(1.5edB

′ log(ed)),

where A1, A2 and A3 are real numbers satisfying the condition

Aj > max{dh(αj), | log(αj)|, 0.16} ∀ j ∈ {1, 2, 3},(2.5)

B′ > max{1,max{|aj|Aj/A1 : 1 6 j 6 3}},(2.6)

and

(2.7) C1 =
5.165

6χ
· e3(7 + 2χ)(20.2 + log(35.5d2 log(ed))).

After finding upper bounds for n andm, which could be very large, the next step is

to reduce them. For that we use the following lemma, which is a variant of the Baker-

Davenport lemma, due to the result of Dujella and Pethő (see Lemma 5 in [11]).

Lemma 2.2. Suppose that M is a positive integer. Let p/q be the convergent of

the continued fraction expansion of κ such that q > 6M and let ε = ‖µq‖ −M‖κq‖,
where ‖·‖ denotes the distance from the nearest integer. If ε > 0, then there is no

solution of the inequality

0 < mκ− n+ µ < AK−m

in n,m ∈ Z in the range

log(Aq) − log ε

logK
6 m 6 M.
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3. Main results

This section contains two main theorems. The first one presents our main the-

oretical result related to the finiteness result of equation (1.3) in the case when l

is even, and in the second theorem we present our computational results regarding

the applications of our method on the sequences of Fibonacci and Pell numbers and

a generalization of the Fibonacci case in the result of Marques and Togbé in [17]. We

also remark that in Theorem 3.1; g, l > 2 are fixed, l is even and 1 6 B 6 gl−1 are as-

sumed. But in practice, determining the solutions of any equation of the form (1.3)

(for a particular sequence and any even number l) is achieved similarly for every

g ∈ {2, 3, . . .} and B ∈ {1, 2, . . . , gl−1}. Therefore, to make the presentation simpler,
in Theorem 3.2 we assume that 2 6 g 6 9, l ∈ {1, 2, 4} and 1 6 B 6 min{10, gl − 1}
in the case of Gn = Fn and 2 6 g 6 9, l = 2 and 1 6 B 6 min{5, gl − 1} in the case
of Gn = Pn.

Theorem 3.1. Let P and Q be nonzero integers with Q ∈ {−1, 1} and t be a pos-
itive integer. If Gn = Un(P,Q) is non-degenerate and l = 2t, then the Diophantine

equation (1.3) has finitely many solutions of the form (n,m), which can be effectively

determined.

Theorem 3.2. If Gn = Fn, then the Diophantine equation (1.3) has the following

solutions with 2 6 g 6 9, l ∈ {1, 2, 4} and 1 6 B 6 min{10, gl − 1} :

(n,m, g,B, l) ∈ {(4, 2, 2, 1, 1), (5, 2, 4, 1, 1), (6, 2, 3, 2, 1), (6, 2, 7, 1, 1),
(7, 3, 3, 1, 1), (8, 2, 6, 3, 1), (8, 3, 4, 1, 1), (5, 2, 2, 1, 2),

(8, 3, 2, 1, 2), (9, 2, 4, 2, 2), (9, 2, 2, 2, 4)}.

Furthermore, suppose that 2 6 g 6 9, l = 2, 1 6 B 6 min{5, gl − 1} and Gn = Pn.

Then equation (1.3) has no more solutions other than (n,m, g,B, l) = (3, 2, 2, 1, 2).

4. Proofs of theorems

4.1. Proof of Theorem 3.1. Since Gn = Un(P,Q) = Un with Q ∈ {−1, 1} and
l = 2t for an integer t > 1, we combine equation (1.3) with identity (1.1) to obtain

(g2t − 1)2V 2
n = DB2(g2tm − 1)2 + 4(g2t − 1)2Qn,

which can be further written as biquadratic curves of the form

(4.1) y2 = DB2(x4 − 2x2 + 1) + 4G2Qn,
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where D = P 2 − 4Q, G = (g2t − 1), 1 6 B 6 (g2t − 1), x = gtm and y = GVn such

that m, g > 2. Next, we show that the given curves have nonzero discriminants in

order to prove they present elliptic curves. Since Q ∈ {−1, 1}, we split the proof
into two cases:

Case 1. If Q = 1, then equation (4.1) becomes

(4.2) y2 = D1B
2(x4 − 2x2 + 1) + 4G2,

where D1 = (P 2 − 4), whose discriminant is

∆1 = 4096D3
1G

4B6(D1B
2 + 4G2).

In addition to P being nonzero, we consider only non-degenerate Lucas sequences, i.e.

(P,Q) 6∈ {(−2, 1), (−1, 1), (1, 1), (2, 1)}.

Hence, D1 > 0, which implies that (D1B
2+4G2) > 0 as B > 0 and G > 0. Therefore

it is clear that ∆1 6= 0 (indeed, ∆1 > 0).

Case 2. Similarly, if Q = −1, we obtain the curves

(4.3) y2 = D2B
2(x4 − 2x2 + 1) + 4G2

and

(4.4) y2 = D2B
2(x4 − 2x2 + 1)− 4G2,

where D2 = (P 2 + 4), and their discriminants are

∆2 = 4096D3
2G

4B6(D2B
2 + 4G2)

and

∆3 = 4096D3
2G

4B6(D2B
2 − 4G2),

respectively. Again, it is obvious that ∆2 6= 0 as D2 > 0, B > 0 and G > 0. For

a contradiction we assume that ∆3 = 0, which is true if and only if

D2B
2 − 4G2 = 0.

The latter equation is true if and only if D2 is a square number; that is, if there

exists a nonzero integer T such that

T 2 − P 2 = 4,

which has no more rational integer solutions other than (T, P ) ∈ {(−2, 0), (2, 0)},
which contradicts that P 6= 0. Thus, ∆3 6= 0.
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Therefore, we conclude that the biquadratic curves (4.1) represent elliptic curves.

Moreover, it was mentioned earlier that the biquadratic curves (4.1) can be written

in the form (1.5); that is,

(4.5) Y 2 = X3 − 2DB2X2 +DB2(DB2 + 4G2Qn)X,

where X = DB2x2 and Y = DB2xy. In a similar way, one can easily show that the

latter curves have nonzero discriminants. Thus, curves (4.5) represent elliptic curves.

Finally, by the result of Baker’s theorem and its best improvement by Hajdu and

Herendi, the number of the integral points of curves (4.1) or (4.5) is finite. Hence,

these points can be effectively determined using the techniques mentioned earlier.

The only problem that may appear here is that there is no known algorithm to

determine the rank and generators of the Mordell-Weil groups of elliptic curves, there

are techniques that work well in practice but there is no guarantee to succeed. If we

have such an elliptic curve, then we may follow the previously mentioned argument of

Alekseyev and Tengely. As a result, the number of the solutions (n,m) is finite, and

they can be effectively determined. This completes the proof of Theorem 3.1. �

4.2. Proof of Theorem 3.2. We split the proof of this theorem into two cases

regarding the sequences of Fibonacci numbers and Pell numbers in which they satisfy

equation (1.3). The proof of Fibonacci case is divided into two subcases: the first one

is if l = 1, in which we use the result of Matveev on linear forms in three logarithms

and the result of Dujella and Pethő on the method of Baker-Davenport reduction,

and the other is the case of l = 2, 4, in which we apply our approach presented

in Theorem 3.1. On the other hand, the proof of the Pell case will be handled in

a similar way using only the result of Theorem 3.1.

4.2.1. The Fibonacci case: Gn = Fn.

Case l = 1:

Step 1. Finding a bound for n in the equation

(4.6) Fn = B · g
m − 1

g − 1
,

where 2 6 g 6 9, 1 6 B 6 min{10, g−1} and m > 2. Note that since (g−1) < 10 for

all 2 6 g 6 9, here we only use the range 1 6 B 6 (g− 1). Suppose that n > 50. By

substituting Binet’s Fibonacci numbers formula (2.1) in equation (4.6), we get that

αn − βn

√
5

= B · g
m − 1

g − 1
,
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which can be further written as

(4.7) αn −
√
5B

g − 1
gm = βn −

√
5B

g − 1
.

By taking the absolute value for both sides of the latter equation, we obtain that

(4.8)
∣

∣

∣
αn −

√
5B

g − 1
gm

∣

∣

∣
6 α−50 +

√
5 < 2.3

as β = −1/α, n > 50 and B 6 (g − 1). Define

(4.9) Λ = log

√
5B

g − 1
− n logα+m log g.

Since

eΛ =

√
5B

g − 1
α−ngm,

we get (from inequality (4.8)) that

(4.10) |eΛ − 1| < 2.3

αn
< α−n+2.

To apply Lemma 2.1, we first state and prove the following claim:

Claim 4.1. Suppose that Λ is defined in equation (4.9). Then Λ > 0.

P r o o f. From equation (4.7) and the fact that β = −1/α, we deduce that

(4.11) 1− eΛ =
1

αn

(

βn −
√
5B

g − 1

)

=
1

αn

(

(−1)nα−n −
√
5B

g − 1

)

.

Now, we consider the following cases regarding the values of n.

⊲ If n is even, then equation (4.11) with the hypotheses −n < −50, g 6 9 and B > 1,

implies that

1− eΛ =
1

αn

(

α−n −
√
5B

g − 1

)

<
1

αn

(

α−50 −
√
5

8

)

< 0,

which leads to Λ > 0.

⊲ If n is odd, then for all n > 50, 2 6 g 6 9 and 1 6 B 6 g − 1 we have that

(α−1)n +
√
5B/(g − 1) > 0. Therefore equation (4.11) again gives

1− eΛ =
−1

αn

(

(α−1)n +

√
5B

g − 1

)

< 0,

which also implies that Λ > 0.

Thus, the claim is completely proved. �
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From (4.10) and the fact that Λ > 0, we obtain that Λ < eΛ − 1 < α−n+2.

Therefore

(4.12) log |Λ| < (−n+ 2) logα.

With respect to the notation of Lemma 2.1 and by comparing equations (2.4)

and (4.9), we have that

α1 =

√
5B

g − 1
, α2 = α, α3 = g, a1 = 1, a2 = −n and a3 = m.

We also note that the number field Q(α1, α2, α3) = Q
(√

5
)

is of degree d = 2.

Furthermore, the conjugates of α1, α2 and α3 are α
′

1 = −α1, α
′

2 = β and α′

3 = α3,

respectively. Clearly, the minimal polynomial of α1 is

(x− α1)(x − α′

1) = x2 − 5B2

(g − 1)2
,

which is a divisor of (g − 1)2x2 − 5B2. Therefore, by using the definition of the

logarithmic height of algebraic numbers in (2.3) we get that the logarithmic height

of the 2-degree algebraic number α1 is

h(α1) 6
1

2

(

2 log 8 + 2 log
√
5
)

< 2.89

as g 6 9 and B 6 g − 1. Similarly, h(α2) =
1
2 logα < 0.25 and h(α3) = log g < 2.2

as g 6 9. Hence, from inequality (2.5) we take A1 = 5.78, A2 = 0.5 and A3 = 4.4.

Furthermore, to obtain an estimated value for B′ using inequality (2.6), let us first

consider and prove the following claim:

Claim 4.2. The values of n and m in equation (4.6) satisfy that n > m.

P r o o f. First of all, from equation (4.6) we have that

(4.13) Fn >
gm − 1

g − 1
as B > 1.

On the other hand, we see that

gm − 1

g − 1
− gm−1 = gm ·

( 1

g − 1
− 1

g

)

− 1

g − 1
= gm · 1

g(g − 1)
− 1

g − 1
> 0 as m > 1,

which gives

(4.14)
gm − 1

g − 1
> gm−1.
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Combining inequalities (4.13), (4.14) and (2.2), we get that

(4.15) gm−1 < Fn 6 αn−1.

Taking the logarithm for both sides, we obtain that (m − 1) log g < (n − 1) logα,

which leads to

(4.16) m < (n− 1)
logα

log g
+ 1.

Since logα/ log g < 1 as g > 2, we get that m < (n − 1) + 1 = n with m > 2. This

proves the claim. �

Therefore since n > 50, we have that

max{1,max{|aj|Aj/A1 : 1 6 j 6 3}} = max
{ 0.5

5.78
n,

4.4

5.78
m
}

,

and then it suffices to take B′ = 5
6n as n > m. From (2.7) we get that C1 < 4.45 ·109

since χ = 1 and d = 2. Therefore, Lemma 2.1 yields

(4.17) log |Λ| > −2.27 · 1011 log(11.51n).

Combining inequalities (4.12) and (4.17), we obtain that

2.27 · 1011 log(11.51n) > (n− 2) logα,

which implies that n < 1014.

Step 2. Finding a bound for m in equation (4.6). For that, we first give the

following lemma:

Lemma 4.1. The solutions of equation (4.6) satisfy

(4.18) (n− 2)
logα

log g
< m < (n− 1)

logα

log g
+ 1.

P r o o f. The proof follows easily from combining fact (2.2) and equation (4.6).

Indeed, for all 2 6 g 6 9, 1 6 B 6 g − 1 and m > 1 one can see that

αn−2 6 Fn < gm.

Taking the logarithm for both sides, we obtain that

(n− 2) logα < m log g,

which leads to

(4.19) (n− 2)
logα

log g
< m.

The upper bound follows from inequality (4.16). Hence, Lemma 4.1 is proved. �

312



Thus, from the upper bound of inequality (4.18) and the estimate of n (that is,

n < 1014) we obtain that

m < (1014 − 1)
logα

log g
+ 1 < 7 · 1013 as g > 2.

Step 3. Reducing the obtained bounds. We know that 0 < Λ < α−n+2. From

inequality (4.15) we also know that αn−1 > gm−1, which leads to

α−n+2 < g−m+1α < g−m+2

as α < g for all 2 6 g 6 9. Hence,

0 < m logα3 − n logα2 + logα1 < g−m+2.

Dividing the latter inequality by logα2, we get that

(4.20) 0 < m
logα3

logα2
− n+

logα1

logα2
< 3 · g2 · g−m.

Without loss of generality and to be more precise, since α1 =
√
5B/(g − 1), α2 = α

and α3 = g for all g ∈ {2, 3, . . . , 9} and 1 6 B 6 g − 1, respectively, we use the

notation “ng, mg, Bg” instead of “n, m, B” for the rest of the proof of the bounds

reduction step. Therefore we rewrite (4.20) in the form

(4.21) 0 < mgκg − ng + µg < 3 · g2 · g−mg ,

where

κg =
log g

logα
and µg =

log
(√

5Bg

)

− log(g − 1)

logα
.

It is clear that

µg >
log

√
5− log(g − 1)

logα

as Bg > 1. Since α and g are multiplicatively independent, we have that κg is irra-

tional. Thus, we may denote P(k,g)/Q(k,g) to be the kth convergent of the continued

fraction of κg. Now, we use Lemma 2.2 to reduce the upper bound of mg (which is

very large since mg < 7 · 1013). That will lead to reducing the upper bound of ng.

Therefore we take M = Mg = 7 · 1013. Moreover, if the conditions of Lemma 2.2
are satisfied, that is, if Q(k,g) > 6M and εg = ‖µgQ(k,g)‖ −M‖κgQ(k,g)‖ > 0, then

we take Ag = 3 · g2 and Kg = g. For g = 2, we have B2 = 1, κ2 = log 2/ logα and

µ2 > log
√
5/ logα. Therefore we obtain that

P(32,2)

Q(32,2)
=

2683806884597620

1863211227378077
,
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from which we have Q(32,2) > 6M and

ε2 >

∥

∥

∥

log
√
5

logα
Q(32,2)

∥

∥

∥
−M

∥

∥

∥

log 2

logα
Q(32,2)

∥

∥

∥
> 0.4 > 0.

Therefore we have that A2 = 3 · 22 and K2 = 2. Hence, Lemma 2.2 tells us that

there is no solution to inequality (4.21) and then to the Diophantine equation (4.6)

in the case of g = 2; that is,

(4.22) Fn2
= 2m2 − 1

in the range
[⌊ log(A2Q(32,2)/ε2)

logK2

⌋

+ 1,M
]

= [56, 7 · 1013].

Therefore m2 6 56 and inequality (4.19) gives us n2 < 83. To finish, we use Sage-

Math (see [25]) to print all the Fibonacci numbers in the range 50 < n2 < 83

of which we see that there are no Fibonacci numbers satisfying equation (4.22)

with 2 6 m2 6 56. However, in the range 3 6 n2 6 50 we get the solution

(n2,m2, g, B2, l) = (4, 2, 2, 1, 1). Let us now consider the case g = 6, which im-

plies that 1 6 B6 6 5, κ6 = log 6/ logα and µ6 > log
(

1/
√
5
)

/ logα. Thus,

Q(30,6) = 1232281049712607 > 6M and ε6 > 0.1 > 0. For that we take A6 = 3 · 62
and K6 = 6, and Lemma 2.2 leads to unsolvablity of the equation

(4.23) Fn6
=

B6

5
· (6m6 − 1)

with 24 6 m6 6 M . Therefore m6 6 24, which implies that n6 < 92. Again, we

get no solutions to equation (4.23) (in fact, to equation (4.6) in the case of g = 6)

with 50 < n6 < 92, but we get the solution (8, 2, 6, 3, 1), where 3 6 n6 6 50. In

a similar way, for all the remaining values of g, one can show that the hypotheses of

Lemma 2.2 are satisfied and determine the other desired solutions in the theorem in

the case of l = 1.

Case l ∈ {2, 4}:
⊲ If l = 2, then quation (1.3) becomes

(4.24) Fn = B · g
2m − 1

g2 − 1
.

We consider in detail the case where we have g = 2, and the remaining values of g

will be pursued in a similar way following the proof of Theorem 3.1. Since P = 1,
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Q = −1, l = 2, t = 1 and g = 2, we have that D2 = 5, G = 3 and 1 6 B 6 3.

Therefore, for all B ∈ {1, 2, 3}, equation (4.3) leads to the biquadratic elliptic curves

y2 = 5x4 − 10x2 + 41,(4.25)

y2 = 20x4 − 40x2 + 56,(4.26)

y2 = 45x4 − 90x2 + 81,(4.27)

and also equation (4.4) gives the curves

y2 = 5x4 − 10x2 − 31,(4.28)

y2 = 20x4 − 40x2 − 16,(4.29)

y2 = 45x4 − 90x2 + 9,(4.30)

respectively, where x = 2m and y = 3Ln. Let us consider curve (4.25) and by using

the Magma function SIntegralLjunggrenPoints(), we get the following integral

points with positive values for the x-coordinates

[[1,−6], [2, 9], [5, 54], [8,−141]].

Combining the values of x of these integral points with x = 2m, we only obtainm = 3.

Therefore, since B = 1, g = 2 and m = 3, equation (4.24) implies that n = 8. Hence,

we get the solution (n,m, g,B, l) = (8, 3, 2, 1, 2). Next, we consider (4.26), which has

no integral points other than [x, y] = [1, 6] in which the value of x is positive. Thus,

we have no solution for equation (4.24). Similarly, we get no solution for (4.24) in the

case of equations (4.27), (4.29) and (4.30). Finally, we deal with equation (4.28) and

here we get x = 4, which leads to m = 2. Hence, we get the solution (5, 2, 2, 1, 2).

The other remaining values of g can be treated in a similar way. Indeed, we get only

one solution, which is (9, 2, 4, 2, 2) in the case of B = 2 and g = 4.

⊲ If l = 4, then quation (1.3) implies that

(4.31) Fn = B · g
4m − 1

g4 − 1
.

In fact, it can be proven completely following the same approach as in the previous

case, in which we had l = 2. But let us treat this case using the elliptic curve

equation (4.5). For that we may consider the case where we have g = 2 and B = 2.

Again, since D = 5, t = 2 and G = 15, equation (4.5) gives the curves

Y 2 = X3 − 40X2 − 17600X,(4.32)

Y 2 = X3 − 40X2 + 18400X,(4.33)
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where X = 20(16)m and Y = 300(4)mLn. By considering equation (4.32) and using

the SageMath function integral points(), we get the integral points

[(176 : 1056 : 1), (220 : 2200 : 1), (225 : 2325 : 1), (320 : 4800 : 1), (529 : 11293 : 1),

(4400 : 290400 : 1), (5120 : 364800 : 1), (818620 : 740649800 : 1)],

in which we considered only the points with positive values for the X-coordinates.

From these points, only X = 5120 leads to a solution of equation (4.31), that is

(n,m, g,B, l) = (9, 2, 2, 2, 4). On the other hand, the integral points of the elliptic

curve (4.33) give no solution to equation (4.31). Furthermore, the other remaining

cases for all the values of g can be handled in a similar way. More precisely, one can

show that equation (4.31) has no more solutions.

The Fibonacci case is completely proved.

4.2.2. The Pell case: Gn = Pn. Here, we have l = 2. Thus, equation (1.3)

becomes

(4.34) Pn = B · g
2m − 1

g2 − 1
.

Solving this equation completely is handled in a similar way in the case of Fibonacci

numbers with l being even. Here, we have D2 = 8 and t = 1. If we consider g = 2

and B = 1, then we get G = 3. These lead to the biquadratic elliptic curves

y2 = 8x4 − 16x2 − 28,(4.35)

y2 = 8x4 − 16x2 + 44,(4.36)

where x = 2m and y = 3Qn. Equation (4.35) leads to the solution (n,m, g,B, l) =

(3, 2, 2, 1, 2), and equation (4.36) implies no solution to equation (4.34). The remain-

ing cases are treated similarly. As a result, equation (4.34) does not have any more

solutions. Hence, the Pell case is also proved.

Therefore, Theorem 3.2 is completely proved. �

A c k n ow l e d g em e n t. The authors would like to express their sincere grati-

tude to the referee for the careful reading of the manuscript and many useful com-
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